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Casa Matem ática Oaxaca (CMO), Oaxaca, Mexico

Superradiance... – p. 1/34



Outline

A Brief Review of Superradiance

The Black Hole Bomb Effect

Kerr-AdS Black Holes in All Dimensions

The Klein-Gordon Equation and Separability

Boundary Conditions and Quasinormal Modes

Low-Frequency Solutions and Matching Procedure

Damping Parameter and Superradiant Instability

Superradiance... – p. 2/34



Superradiance

As is known, classically the stationary black holes are “dead” objects, it
is of crucial importance to explore their characteristic re sponses to
external perturbations of different sorts.

Superradiance is one of such responses.

Superradiance is a property of rotating black holes by which waves of
certain frequencies are amplified when scattering by the black holes.

The quantum aspects of this phenomenon traces back to the so- called
Klein paradox (1929) whose subsequent resolution revealed the
existence of superradiant boson (not fermion!) states in the presence of
strong electromagnetic fields.
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Superradiance

The superradiant effect also arises in many classical syste ms moving
through a medium with the linear velocity that exceeds the phase
velocity of waves under consideration.

As early as 1934 it was known that the reflection of sound waves from the
boundary of a medium, which moves with supersonic velocity , occurs
with amplification .

N. N. Andreev and I. G. Rusakov, Acoustics of a Moving Medium, GTTI, Moscow
1934.
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AKUSTIKA

“the reflection of sound waves from the boundary of a medium, w hich moves
with supersonic velocity , occurs with amplification ...”
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Superradiance and Black Holes

The superradiant condition can be fulfilled in a rotational c ase as well.
For a wave of frequency ω and angular momentum m, the angular
velocity of a body Ω can exceed the angular phase velocity ω/m of the
wave, (Ω > ω/m). For this case, Zeldovich (1971) demonstrated the
amplification of waves reflected from a rotating and conducti ng cylinder .

Zel’dovich put forward the idea that a semitransparent mirror
surrounding the cylinder could provide exponential amplification of
waves . He also anticipated that the phenomenon of superradiance a nd
the process of exponential amplification of waves would occu r in the
field of a Kerr black hole .

The quantitative theory of superradiance for scalar, elect romagnetic and
gravitational waves in the Kerr metric was developed in clas sic papers by
Starobinsky (1973) and Starobinsky and Churilov (1974) .
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Black Hole Bomb

The black hole superradiance was independently predicted b y Misner
(1972), who pointed out that certain modes of scalar waves scattere d off
the Kerr black hole undergo amplification.

The black hole superradiance on its own has only a conceptual
significance.

The possible applications of the superradiant mechanism we re explored
by Press and Teukolsky (1972) . In particular, by locating a spherical
mirror around a rotating black hole, they pointed out that su ch a system
would eventually develop a strong instability against expo nentially
growing modes in the superradiant regime, thus creating a black hole
bomb .
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The Cosmological Constant

Another realization of the black hole bomb effect occurs in p ure
geometrical settings namely, in anti-de Sitter (AdS) space times due to
their causal structure.

The causal structure of the AdS spacetime shows that spatial infinity in it
corresponds to a finite region with a timelike boundary; The s pacetime
exhibits a “box-like” behavior, ensuring the repetitive reflections of
massless bosonic waves between spatial infinity and a Kerr-A dS black
hole.

The small Kerr-AdS black holes may become unstable against external
perturbations (S. W. Hawking et al, 1999) .

The Hawking idea was further developed by many investigator s; (Cardoso,
2004; Kodama, 2008 etc.
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Our Purpose

Continuing this line of investigation, we wish to give a new i nsight into
the Black Hole Bomb Effect.

To develop a quantitative theory of the black hole superradi ant instability
to low-frequency scalar perturbations in a vein which consi sts of a
higher-dimensional rotating (charged) AdS black hole with a single
angular momentum.

To give a universal analytic expression for the superradiant instability for
slowly rotating charged AdS black holes in all spacetime dimensions .

To figure out how do the instability properties depend on the number of
spacetime dimensions?
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The Spacetime Metric

ds2 = −∆r

Σ

(

dt− a sin2 θ

Ξ
dφ

)2

+
Σ

∆r
dr2 +

Σ

∆θ
dθ 2

+
∆θ sin

2 θ

Σ

(

a dt− r2 + a2

Ξ
dφ

)2

+ r2 cos2 θ dΩ2
N−3 , (1)

where N is the number of spatial dimensions ( N ≥ 3) and

dΩ2
N−3 = dχ1

2 + sin2 χ1 ( dχ2
2 + sin2 χ2 (...dχN−3

2...) ) , (2)

is the metric on a unit (N − 3)-sphere. The metric functions are given by

∆r =
(

r2 + a2
)

(

1 + r2

l2

)

−mr4−N , ∆θ = 1− a2

l2
cos2 θ , Σ =

r2 + a2 cos2 θ , Ξ = 1− a2

l2
, Λ = −l−2N(N − 1)/2 .
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Properties 1

The stationary and azimuthal isometries: ξ(t) =
∂
∂t , ξ(φ) =

∂
∂φ

ΩH = aΞ
r2
+
+a2

, ⇔ χ = ξ(t) + ΩH ξ(φ)

The potential one-form for a small electric charge of the bla ck hole is
determined by the difference between the timelike Killing i sometries of the
metric and those of its reference (the vanishing mass parame ter, m = 0)
background

A = − Qr4−N

(N − 2)Σ

(

dt− a sin2 θ

Ξ
dφ

)

(3)

The electrostatic potential of the horizon, defined as ΦH = −A · χ , is given
by

ΦH =
Q

(N − 2)

r4−N
+

r2+ + a2
. (4)
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Properties 2

By a rescaling of the mass parameter in the spacetime metric ( 1),

m → m− q2/rN−2 , (5)

one can introduce a generic electric charge into the black ho le spacetime.
However, in higher dimensions the system of Einsten-Maxwel l equations
becomes consistent only in the limit of slow rotation (Aliev, 2006) . The horizon
of such a black hole is governed by the equation (dropping the a2 term)

r2(N−2)

(

1 +
r2

l2

)

−mrN−2 + q2 = 0 , (6)

where the parameter q is related to the electric charge of the black hole by the
relation

q2 =
8πGQ2

(N − 2) (N − 1)
. (7)

Superradiance... – p. 12/34



Scalar Field

It is straightforward to show that the Klein-Gordon equatio n
DµDµΦ = 0 , Dµ = ∇µ − ieAµ , can be written out in the form

1

Σ rN−3

∂

∂r

(

∆r r
N−3 ∂Φ

∂r

)

+
1

Σ sin θ cosN−3 θ

∂

∂θ

(

∆θ sin θ cos
N−3 θ

∂Φ

∂θ

)

+gab
∂2Φ

∂xa∂xa
− 2ieAa ∂Φ

∂xa
− e2AaA

aΦ+
1

r2 cos2 θ
△(N−3)Φ = 0 . (8)

Here we have introduced the Laplace-Beltrami operator △(N−3) on a unit

(N − 3)-sphere,

△(N−3)Φ =
1√
γ

∂

∂xα

(

√
γ γαβ

∂Φ

∂xβ

)

, (9)

decomposing the indices as µ = {r, θ, a, α}, where a = 0, 3 ≡ t, φ and
α = 1, ..., N − 3 .
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Separability

Next, to separate variables in equation (8) we assume the ans atz in the form

Φ = e−iωt+imφR(r)S(θ)Yj(Ω) , (10)

where m is the “magnetic” quantum number, (ω > 0,m > 0).

The hyperspherical harmonics Yj(Ω) are eigenfunctions of the
Laplace-Beltrami operator. The corresponding eigenvalue s are given by

△(N−3)Yj(Ω) = −j(j +N − 4)Yj(Ω). (11)

With this in mind, it is not difficult to show that the separati on ansatz yields
two decoupled ordinary differential equations; the angula r equation
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Angular Equation

1

sin θ cosN−3 θ

d

dθ

(

∆θ sin θ cos
N−3 θ

dS

dθ

)

+

[

λ− 1

∆θ

(

mΞ

sin θ
− aω sin θ

)2

−j(j +N − 4)

cos2 θ

]

S = 0.

With the regular boundary conditions at θ = 0 and θ = π/2, this equation
yields a well-defined eigenvalue problem for the separation constant
λ = λℓ(ω). The associated eigenfunctions are spheroidal harmonics
S(θ) = Sℓmj(θ|aω). Assuming that aω ≪ 1 and a/l ≪ 1 a one can show
that

λ = ℓ(ℓ+N − 2) +O
(

a2ω2, a2/l2
)

, (12)

where ℓ is constrained by the condition ℓ ≥ m+ j (see e.g. Berti et al, 2006).

Superradiance... – p. 15/34



Radial Equation

∆r

rN−3

d

dr

(

∆rr
N−3 dR

dr

)

+ U(r)R = 0 , (13)

U(r) = −∆r

[

λ+
j(j +N − 4)a2

r2

]

+ (r2 + a2)2
(

ω − amΞ

r2 + a2
− eQ

N − 2

r4−N

r2 + a2

)2

. (14)

The radial equation can be put in the Schr ödinger form

d2Y

dr2
∗

+ V (r)Y = 0 , Y =
[

rN−3(r2 + a2)
]1/2

R ,
dr∗
dr

=
r2 + a2

∆r
(15)

where the effective potential is given by

V (r) =
U(r)

(r2 + a2)2
− 1

f

d2f

dr2
∗

, f =
[

rN−3(r2 + a2)
]1/2

. (16)
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Boundary Conditions 1

Recalling that the AdS spacetime yields a natural reflective boundary at
spatial infinity due to its confining-box behavior, it is temp ting to impose the
vanishing field boundary condition,

Φ → 0 , r → ∞ . (17)

Meanwhile, it is clear that at the horizon one must impose an i ngoing wave
boundary condition. At the horizon, the effective potentia l reduces to

V (r+) = (ω −mΩH − eΦH)2 . (18)
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Boundary Conditions 2

This in turn yields the asymptotic solution that represents a purely ingoing
wave at the horizon,

Φ = e−iωt+imφ e−i(ω−ωp)r∗S(θ)Yj(Ω) , (19)

where ωp is the threshold frequency, given by

ωp = mΩH + eΦH . (20)

It follows that for the frequency range

0 < ω < ωp , (21)

the phase velocity of the wave, vph = ω/(ωp − ω), is in the opposite direction
with respect to the group velocity, vgr = −1. This fact signifies the
appearance of superradiance, resulting in the energy outflo w from the black
hole.
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Quasinormal Modes

Thus, requiring a purely ingoing wave at the horizon and a pur ely damping
wave at infinity, we arrive at a characteristic-value problem for complex
frequencies of quasinormal (ringing) modes of the massless scalar field .
(ω = ωn + iδ)

As follows from the decomposition

Φ = e−iωt+imφR(r)S(θ)Yj(Ω) , (22)

the imaginary part of these frequencies describes the dampi ng of the modes.
A characteristic mode is stable if the imaginary part of its c omplex frequency
is negative (the positive damping), while for the positive imaginary part, the
mode undergoes exponential growth (the negative damping). In the latter case,
the system will develop instability
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Solutions

We find low-frequency solutions, ω ≪ 1/r+ , to some approximated
versions of the radial equation , which are applicable in various regions of
the spacetime

We divide the spacetime into the near horizon, r − r+ ≪ 1/ω, and
far-horizon, r − r+ ≫ r+, regions and approximate the radial equation
for each of these regions.

The solution of in the far-region which is valid only for larg e r, might also
correspond to small ω(r − r+) for sufficiently small frequencies, i.e.
provided that ωr+ ≪ ω(r − r+) ≪ 1.

Meanwhile, for ω → 0, the near-horizon region solution tends to cover
whole spacetime.

Altogether, one can conclude that for sufficiently small fre quencies there
must exist a region, given by r+ ≪ r − r+ ≪ 1/ω, where the
near-horizon solution overlaps the far-region solution.
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Near Region Solution 1

In the region near the horizon, r − r+ ≪ 1/ω, and for low frequency
perturbations r+ ≪ 1/ω, the radial equation reduces to the hypergeometric
type equation

z(1−z)
d2R

dz2
+(1−z)

dR

dz
+

[

1− z

z
Ω2 − ℓ

N − 2

(

1 +
ℓ

N − 2

)

1

1− z

]

R = 0 ,

(23)
where

Ω =
x

N−1

N−2

+

N − 2

ω − ωp

x+ − x−
, z =

x− x+
x− x−

, x = rN−2 . (24)

This equation can be solved in a standard way by the ansatz

R(z) = ziΩ (1− z)1+l/2 F (z) , (25)

where F (z) = F (α , β , γ, z) is the hypergeometric function.
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Near Region Solution 2

The desired solution is given by

R(z) = Ain
(+) z

−iΩ (1−z)1+
ℓ

N−2 F

(

1 +
ℓ

N − 2
, 1 +

ℓ

N − 2
− 2iΩ , 1− 2iΩ , z

)

,

(26)

where Ain
(+) is a constant.
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Near Region Solution 3

The large r (z → 1) limit of the near-horizon solution is given by

R ≃ Ain
(+)Γ(1− 2iΩ)

[

Γ
(

−1− 2ℓ
N−2

)

(x+ − x−)
1+ ℓ

N−2

Γ
(

− ℓ
N−2

)

Γ
(

− ℓ
N−2 − 2iΩ

) r2−N−ℓ

+
Γ
(

1 + 2ℓ
N−2

)

(x+ − x−)
−

ℓ
N−2

Γ
(

1 + ℓ
N−2

)

Γ
(

1 + ℓ
N−2 − 2iΩ

) rℓ

]

.(27)

It turns out that the quotient of gamma functions Γ
(

−1− 2ℓ
N−2

)

/Γ
(

− ℓ
N−2

)

appearing in the first line requires a special care for N ≥ 4, yielding in some
cases divergent results for an integer ℓ.

The matching procedure fails for some values of ℓ (in odd spacetime
dimensions !)
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Matching Procedure

The key idea to avoid this failure:

Assume that ℓ is nearly integer, approaching its exact value only in the li mit.

This can always be thought of as a pure mathematical trick by i ntroducing a
small deviation from its exact value. In the rotating case, s uch an assumption
could be argued physically as well, if one takes into account the correction
terms in the eigenvalue equation.

However, we are dealing with the regime of slow rotation (ign oring a2 and
higher-order terms) .

Therefore, we will henceforth employ a formal mathematical trick, assuming
that ℓ is an approximate integer .

See also an old paper by D. Page (1976).
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Far Region Solution 1

In the far-horizon region, r − r+ ≫ r+ , one can approximate the radial
equation by its purely AdS limit. Finally, we have the equati on

y(1− y)
d2R

dy2
+

[

1−
(

1 +
N

2

)

y

]

dR

dy
− 1

4

[

ω2l2

y
− ℓ(ℓ+N − 2)

y − 1

]

R = 0 .

(28)
The solution to this equation which is regular at r → 0 and satisfies the

vanishing field condition at r → ∞ is given by

R(y) = A∞ y−
ℓ
2
−

N
2 (1−y)

ℓ
2 F

(

N

2
+

ℓ

2
+

ωl

2
,

N

2
+

ℓ

2
− ωl

2
, 1 +

N

2
, 1/y

)

,

(29)
where A∞ is a constant and

y =

(

1 +
r2

l2

)

. (30)
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Far Region Solution 2

The small r behavior of this solution, y → 1, is given by

R(r) ≃ A∞ (−1)ℓ/2 Γ

(

1 +
N

2

)

[

Γ
(

N
2 + ℓ− 1

)

lN+ℓ−2 r2−N−ℓ

Γ
(

N
2 + ℓ

2 +
ωl
2

)

Γ
(

N
2 + ℓ

2 − ωl
2

)

+
Γ
(

1− ℓ− N
2

)

l−ℓ rℓ

Γ
(

1− ℓ
2 + ωl

2

)

Γ
(

1− ℓ
2 − ωl

2

)

]

, (31)

In order that this solution be finite at the origin of the AdS sp ace, r = 0, we

must set the ”quantization” condition N
2 + ℓ

2 − ωl
2 = −n, which in turn

governs the discrete frequency spectrum for scalar perturb ations by the
remarkably simple formula

ωn =
2n+ ℓ+N

l
, ω = ωn + iδ , (32)
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Damping Parameter 1

Performing the matching of these solutions in the overlappi ng region
r+ ≪ r − r+ ≪ 1/ω, allows us to find the damping parameter by iteration
and, to first order, it is given by

δ = 2i
(−1)n

n!

(x+ − x−)
1+ 2ℓ

N−2

lN+2ℓ−1

Γ
(

1 + ℓ
N−2

)

Γ
(

1 + 2ℓ
N−2

)

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

) ×

Γ
(

−1− 2ℓ
N−2

)

Γ
(

− ℓ
N−2

)

Γ
(

1 + ℓ
N−2 − 2iΩ

)

Γ
(

− ℓ
N−2 − 2iΩ

)

Γ
(

1− ℓ− N
2

)

Γ
(

1− ℓ− N
2 − n

) . (33)

To proceed further with this expression, we need to establis h its sign for the
cases of interest.

We begin by simplifying the quotients of gamma functions, ap pearing in the
second line of this expression.
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Damping Parameter 2

δ =
(x+ − x−)

1+ 2ℓ
N−2

n! lN+2ℓ−1

Γ2
(

1 + ℓ
N−2

)

Γ
(

1 + 2ℓ
N−2

)

Γ
(

2 + 2ℓ
N−2

)

∣

∣Γ
(

1 + ℓ
N−2 − 2iΩ

)
∣

∣

2

π cos
(

πℓ
N−2

) ×

[

i sin

(

πℓ

N − 2

)

cosh(2πΩ)− cos

(

πℓ

N − 2

)

sinh(2πΩ)

]

×

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

)

n
∏

k=1

(

N

2
+ ℓ+ k − 1

)

. (34)

The real part of this quantity describes the damping of modes and is positive
for Ω < 0, i.e. in the superradiant regime. Meanwhile, the imaginary part
gives the frequency-shift of modes with respect to the AdS sp ectrum and
behaves as being not sensitive to the superradiance.
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Exhaustive Cases: (i)

δ =
(x+ − x−)

1+ 2ℓ
N−2

n! lN+2ℓ−1

Γ2
(

1 + ℓ
N−2

)

Γ
(

1 + 2ℓ
N−2

)

Γ
(

2 + 2ℓ
N−2

)

∣

∣Γ
(

1 + ℓ
N−2 − 2iΩ

)
∣

∣

2

π cos
(

πℓ
N−2

) ×

[

i sin

(

πℓ

N − 2

)

cosh(2πΩ)− cos

(

πℓ

N − 2

)

sinh(2πΩ)

]

×

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

)

n
∏

k=1

(

N

2
+ ℓ+ k − 1

)

. (35)

(i) ℓ
N−2 = p+ ǫ, where p is a non-negative integer, the imaginary part of (36)

vanishes and the real part correctly describes the instability of the associated
modes in the superradiant regime, Ω < 0. This choice also encompasses the
case of instability for rotating AdS black holes in 4D spacet ime (N = 3),
Cardoso et al (2004) .
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Exhaustive Cases: (ii)

δ =
(x+ − x−)

1+ 2ℓ
N−2

n! lN+2ℓ−1

Γ2
(

1 + ℓ
N−2

)

Γ
(

1 + 2ℓ
N−2

)

Γ
(

2 + 2ℓ
N−2

)

∣

∣Γ
(

1 + ℓ
N−2 − 2iΩ

)
∣

∣

2

π cos
(

πℓ
N−2

) ×

[

i sin

(

πℓ

N − 2

)

cosh(2πΩ)− cos

(

πℓ

N − 2

)

sinh(2πΩ)

]

×

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

)

n
∏

k=1

(

N

2
+ ℓ+ k − 1

)

. (36)

(ii) ℓ
N−2 6= (p+ 1/2) + ǫ. In this case, the damping parameter in (36) remains

complex, describing both the frequency-shift and superrad iant instability of
the associated modes, by its imaginary and real parts, respe ctively;

Superradiance... – p. 30/34



Exhaustive Cases: (iii)

(iii) ℓ
N−2 = (p+ 1/2) + ǫ, ǫ → 0.

δ = −(x+ − x−)
1+ 2ℓ

N−2

π n! lN+2ℓ−1

Γ2
(

1 + ℓ
N−2

)
∣

∣Γ
(

1 + ℓ
N−2 − 2iΩ

)
∣

∣

2

Γ
(

1 + 2ℓ
N−2

)

Γ
(

2 + 2ℓ
N−2

)

[

sinh(2πΩ) +
i

πǫ
cosh(2πΩ)

]

×

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

)

n
∏

k=1

(

N

2
+ ℓ+ k − 1

)

. (37)

Thus the imaginary part contains 1/ǫ type divergence in the limit ǫ → 0.

Since the horizon radius r+ is small enough, (x+−x−)
1+ 2ℓ

N−2

ǫ to high accuracy,
can be driven to a small finite quantity even for the lowest mod e.
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Exhaustive Cases: (iii) Numeric Analysis

(iii) ℓ
N−2 = (p+ 1/2) + ǫ, ǫ → 0.

δ = −(x+ − x−)
1+ 2ℓ

N−2

π n! lN+2ℓ−1

Γ2
(

1 + ℓ
N−2

)
∣

∣Γ
(

1 + ℓ
N−2 − 2iΩ

)
∣

∣

2

Γ
(

1 + 2ℓ
N−2

)

Γ
(

2 + 2ℓ
N−2

)

[

sinh(2πΩ) +
i

πǫ
cosh(2πΩ)

]

×

Γ (N + ℓ+ n)

Γ
(

N
2 + n+ 1

)

Γ
(

N
2 + ℓ− 1

)

n
∏

k=1

(

N

2
+ ℓ+ k − 1

)

. (38)

Numeric analysis shows that the imaginary part of this param eter can be
thought of as representing a small frequency-shift in the spectrum by
choosing ǫ → 10−8 in 5 dimensions and ǫ → 10−15 in 7 dimensions.
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Concluding Remarks 1

In four dimensions, the superradiant instability of small K err-AdS black
holes to low-frequency scalar perturbations appears to be amenable to a
complete quantitative description .

In higher dimensions, it appears that there exist some subtleties with the
matching procedure , where it fails to be valid for certain modes of scalar
perturbations.

This makes the use of numerical integration inevitable, the reby creating a
gap in the complete analytic description of the superradiant in stability in
all dimensions.

We have filled this gap , extending the complete analytic description of
the black hole superradiant instability to all higher dimen sions and
focusing on a small rotating charged AdS black hole, in the re gime of
slow rotation and with a single angular momentum.
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Concluding Remarks 2

We have employed the idea that the orbital quantum number ℓ can be
thought of as an approximate integer and managed to perform the
matching procedure, resulting in the complete low-frequen cy solution.

Finally, we have given a remarkably instructive expression for the
damping parameter , which appears to be a complex quantity in general.

We have shown that the real part of the damping parameter can b e used
to give a universal analytic description of the superradiant instability for
slowly rotating charged AdS black holes in all spacetime dim ensions.

The instability time scale, τ = 1/δ, significantly grows as the number of
dimensions increases.

Thank You !
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