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Convergence in analysis

Many theorems of analysis assert that, under various hypotheses, a
certain type of sequence (an) converges.

Questions:

• To what extent can one compute a rate of convergence?

• What parameters does the rate of convergence depend on?

When rates are noncomputable and nonuniform, it is especially
important to know:

• What other data can be computed?

• What other uniformities can be obtained?



Computability in analysis

A name for a real number is a Cauchy sequence (an) of rationals
such that for every m and n ≥ m, |an − am| ≤ 2−m.

A real number r is computable if it has a computable name.

A computable f : R→ R takes a name (presented as an oracle) to
a name.

Theorem (Specker)

There is a computable, nondecreasing sequence (an) of rationals in
[0, 1] with no computable limit.



Rates of convergence

Suppose (an) is Cauchy:

∀ε > 0 ∃m ∀n, n′ ≥ n d(an′ , an) < ε

A function r(ε) satisfying

∀n, n′ ≥ r(ε) d(an′ , an) < ε

is called a bound on the rate of convergence.

For computable (an), if there is a computable bound on the rate of
convergence, then it has a computable limit (but the converse does
not necessarily hold).



Finiteness

Let α be an infinite sequence of 0’s and 1’s.

Three ways to say “there are finitely many 1’s”:

1. For some n, there are no 1’s beyond position n.

2. For some k , there are at most k-many 1’s.

3. There are not infinitely many 1’s.

These make very different existence claims:

1. ∃n ∀m ≥ n α(m) 6= 1

2. ∃k ∀m |{i ≤ m | α(i) = 1}| ≤ k

3. ∀f ∃n (f (n) > n→ α(f (n)) 6= 1).

(See Bezem, Nakata, Uustalu, “Streams that are finitely red.”)



Convergence

Corresponding ways of saying that a sequence (an) in a complete
space converges:

1. (an) is Cauchy.

2. For every ε > 0, (an) has finitely many ε-fluctuations.

3. (an) is metastably convergent.

These call for three types of information:

1. A bound on the rate of convergence.

2. A bound on the number of fluctuations.

3. A bound on the rate of metastability.



Outline

• Computability, uniformity, and convergence

• Rates of convergence in the mean ergodic theorem

• Bounds on the number of oscilliations

• Metastability

• Pointwise a.e. convergence



Ergodic theory

A measure-preserving system X = (X ,B, µ,T ) consists of:

• a set, X (the “states” of the system)

• a σ-algebra, B a (the “measurable subsets”)

• a finite σ-additive measure, µ; wlog µ(X ) = 1

• a measure-preserving transformation, T : µ(T−1A) = µ(A) for
every A ∈ B

If x is a state, think of Tx as being the state after one unit of time.

The system is said to be ergodic if there are no non-trivial
T -invariant subsets; in other words, T−1(A) = A implies µ(A) = 0
or µ(A) = 1.



The pointwise ergodic theorem

Consider the orbit x ,Tx ,T 2x , . . ., and let f : X → R be some
measurement. Consider the averages

1

n
(f (x) + f (Tx) + . . .+ f (T n−1x)).

For each n ≥ 1, define Anf to be the function 1
n

∑
i<n f ◦ T i .

Theorem (Birkhoff)

For every f in L1(X ), (Anf ) converges pointwise almost
everywhere, and in the L1 norm.

The limit, f ∗, is T -invariant, that is, f ∗ ◦ T = f ∗.

If X is ergodic, then (Anf ) converges to the constant function∫
f dµ.



The mean ergodic theorem

Recall that L2(X ) is the Hilbert space of square-integrable
functions on X modulo a.e. equivalence, with inner product

〈f , g〉 =

∫
fg dµ

Theorem (von Neumann)

For every f in L2(X ), (Anf ) converges in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T̂
on L2(X ),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. satisfying ‖T̂ f ‖ ≤ ‖f ‖ for every f in H).



Ergodic theory

Applications:

• Stochastic processes (µ(A) is the probability of being in state
A)

• Statistical mechanics

• Physics (e.g. evolution by Hamilton’s equations preserves
Lebesgue measure)

• Diophantine analysis

• Additive combinatorics



Rates of convergence

Let us focus on the mean ergodic theorem.

Question: can we compute a bound on the rate of convergence of
(Anf ) from the inital data (T and f )?

In other words: can we compute a function r : Q→ N such that
for every rational ε > 0,

‖Anf − An′f ‖ < ε

whenever n, n′ ≥ r(ε)?

Krengel (et al.): convergence can be arbitrarily slow. But
computability is a different question.



Noncomputability

Observation (Bishop): the ergodic theorems imply the limited
principle of omniscience.

Theorem (V’yugin)

There is a computable shift-invariant measure µ on 2ω such that
limn→∞ An1[1] is not computable.



Noncomputability

This is essentially a recasting of V’yugin’s result:

Theorem (Avigad and Simic)

There are a computable measure-preserving transformation of [0, 1]
under Lebesgue measure and a computable characteristic function
f = χA, such that if f ∗ = limn Anf , then ‖f ∗‖2 is not a
computable real number.

In particular, f ∗ is not a computable element of L2(X ), and there
is no computable bound on the rate of convergence of (Anf ) in
either the L2 or L1 norm.

In general, everything is computable from 0′, and this is sharp.



Computability

Theorem (Avigad, Gerhardy, and Towsner)

Let T̂ be a nonexpansive operator on a separable Hilbert space and
let f be an element of that space. Let f ∗ = limn Anf . Then f ∗,
and a bound on the rate of convergence of (Anf ) in the Hilbert
space norm, can be computed from f , T̂ , and ‖f ∗‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗

is computable from T and f .

Jason Rute and I have shown that this generalizes to a uniformly
convex Banach space.



Oscillations

Definition
Say that (an) admits m ε-fluctuations if there are
i1 ≤ j1 ≤ . . . ≤ im ≤ jm such that, for each u = 1, . . . ,m,
d(aiu , aju) ≥ ε.

These are also sometimes called ε-jumps, or ε-oscillations.

A moment’s reflection shows that (an) is Cauchy if and only if for
every ε > 0, it admits only finitely many ε-fluctuations.

Call a bound ε 7→ k(ε) on m a bound on the number of
fluctuations.



Oscillations

Specker’s examples show that for (an) is a nondecreasing sequence
in a closed interval [a, b], there may not be a computable bound on
the rate of convergence.

Clearly there is no uniform bound either.

But there are at most d(b − a)/εe many ε-fluctuations.

This is easily computable, and very uniform.

(For bounded sequences, bounds on oscillations are closely related
to bounds on upcrossings.)



Oscillations

Say the total variation of a sequence (an) in a metric space is∑
n d(an, an+1).

If the total variation of a sequence is less than B, then (using the
triangle inequality) there are at most dB/εe-many ε-fluctuations.

For the mean ergodic theorem, though, this is too strong. Consider
R as a 1-dimensional Hilbert space, with Tx = −x .

The orbit of 1 is
1,−1, 1,−1, . . .

and the averages are

1, 0, 1/3, 0, 1/5, 0, . . .

and the total variation diverges.



A variational inequality

Theorem (Jones, Ostrovskii, and Rosenblatt)

Let T be any nonexpansive operator on a Hilbert space H, and
x ∈ H. Then for any sequence n1 ≤ n2 ≤ . . .,

(
∞∑
k=1

‖Ank+1
x − Ankx‖

2)1/2 ≤ 25‖x‖.

This implies that, in particular, the number of ε-fluctuations is at
most (25‖x‖/ε)2.



A variational inequality

Consider the case where T is an isometry.

By the spectral theorem, it suffices to prove the theorem in the
case where Tx = e iθx is a rotation of the unit circle
{z ∈ C | |z | = 1}.

To bound
∑

k ‖Ank+1
x − Ankx‖2, divide N into two sets:

• S = {k | |nk+1θ − nkθ| < 1} (the “short” jumps)

• L = {k | |nk+1θ − nkθ| ≥ 1} (the “long” jumps)



A variational inequality

∑
k∈S ‖Ank+1

x − Ankx‖2 is small because the individual differences
are small.∑

k∈L ‖Ank+1
x − Ankx‖2 is small because the nk ’s increase fast

enough.

Jones, Kaufman, Rosenblatt, Wierdl used this analysis, together
with ideas from Bourgain, to obtain pointwise variational
inequalities.



Uniformly convex spaces

Definition
A Banach space B is uniformly convex if for every ε ∈ (0, 2] there
exists a δ ∈ (0, 1] such that for all x , y ∈ B, if ‖x‖ ≤ 1, ‖y‖ ≤ 1,
and ‖x − y‖ ≥ ε, then ‖(x + y)/2‖ ≤ 1− δ.

Lp(X ) for 1 < p <∞ are uniformly convex, but not L1(X ) or
L∞(X ).

Pisier has shown that any uniformly convex Banach space is
isomorphic to one with modulus of uniform convexity η(ε) = Kεp

for some p ≥ 2.

In 1939, Garrett Birkhoff gave a short and elegant proof that the
mean ergodic theorem holds for uniformly convex spaces.



Uniformly convex spaces

Theorem (Avigad and Rute)

Let p ≥ 2 and let B be any p-uniformly convex Banach space. Let
T be a linear operator on B satisfying B1‖y‖ ≤ ‖T ny‖ ≤ B2‖y‖
for every n and y ∈ B, for some B1,B2 > 0. Then for any x in B
and any increasing sequence (tk)k∈N,∑

k

‖Atk+1
x − Atkx‖

p ≤ C‖x‖p

for some constant C (depending only on B1, B2, K , and p).

The difficulty is that the spectral theorem does not apply here.



Uniformly convex spaces

Theorem (Pisier)

Suppose 2 ≤ p <∞. The following are equivalent:

1. B is isomorphic to a p-uniformly convex Banach space.

2. There is a constant, C , such that if (Mn)n≥0 is any martingale
in Lp(X ;B), then

‖M0‖pLp(X ;B) +
∑
n≥0
‖Mn+1 −Mn‖pLp(X ;B) ≤ C sup

n≥0
‖Mn‖pLp(X ;B).

The idea behind our proof:

• For Lp(Rn) , Jones, Kaufman, Rosenblatt, and Wierdl later
use martingales instead of spectral analysis.

• They obtain a key result for lp(R), and then use transfer.

• We use Pisier’s theorem to obtain the result for lp(B).

• Use a novel transfer argument to pass from lp(B) to B.



Metastability

Recall that (an) is Cauchy if

∀ε > 0 ∃m ∀n, n′ ≥ m d(an, an′) < ε

But in general m is not computable from (an) and ε.

The statement above is equivalent to

∀ε > 0,F ∃m ∀n, n′ ∈ [m,F (m)] d(an, an′) < ε.

Given ε > 0 and F , one can find such an m by blind search.

Call M(F , ε) a bound on the rate of metastability if it is a bound
on such an m.



Metastability

Note that the bound on the number of ε-fluctuations in the last
theorem depends only on ‖x‖/ε, B1, B2, K , p (and otherwise not
on B or T ).

The metastable formulation of the mean ergodic theorem says that
for any function F ,

∀ε > 0 ∃m ∀n, n′ ∈ [m,F (m)] (‖Anf − An′f ‖ < ε).

The results above give a uniform and explicit bound on m.

We will see that this uniformity holds much more generally.



Metastability

The metastable translation of a convergence statement is an
instance of Kreisel’s “no-counterexample interpretation,” which is,
in turn, special case of the Gödel’s Dialectica interpretation.

Ulrich Kohlenbach has developed extensive “proof mining”
methods based on these ideas.

Without knowing about Jones, Rosenblatt, and Ostrovskii’s result,
Gerhardy, Towsner, and I gave such bounds for the Hilbert space
case in 2007.

Kohlenbach and Leuştean extended this to uniformly convex
Banach spaces.

Kohlenbach and his students have extended the analysis to many
other settings.



Metastability

Metastability played a role in the Tao-Green proof that there are
arbitrarily long arithmetic progressions in the primes.

In 2007, Tao used metastability to prove a generalization of the
mean ergodic theorem to certain “multiple” averages. There are
now other proofs that do not use metastability.

In 2012, Miguel Walsh used metastability to generalize Tao’s result
to nilpotent group actions.

In a blog post, Tao has given an alternate proof of Walsh’s
theorem, using nonstandard analysis.



Metastability

In these applications, it is the uniformity given by a metastable
bound that proves useful.

José Iovino and I noticed that such uniformities are easily obtained
using a compactness argument.



Ultraproducts in analysis

Let I be any infinite set,D be a nonprincipal ultrafilter on I .

Suppose that for each i , (Xi , di ) is a metric space with a
distinguished point ai .

Let
X∞ =

{
(xi ) ∈

∏
i∈I

Xi

∣∣ sup
i

d(xi , ai ) <∞
}
/ ∼,

where (xi ) ∼ (yi ) if and only if limi ,D d(xi , yi ) = 0.

Call this the “ultraproduct of the spaces Xi .” This works for more
general metric structures.



Metastability and ultraproducts

Theorem (Avigad and Iovino)

Let C be a collection of pairs ((X , d), (an)n∈N). Fix a nonprincipal
ultrafilter. The following statements are equivalent:

1. There is a uniform bound on the rate of metastability for the
sequences (an).

2. For any sequence ((Xk , dk), (akn))k∈N of elements of C , the
sequence (ān) in the ultraproduct is Cauchy.

The first clause means: for every F : N→ N and ε > 0, there is a
b with the following property: for every pair ((X , d), (an)n∈N) in C ,
there is an n ≤ b such that d(ai , aj) < ε for every i , j ∈ [n,F (n)].



Metastability and ultraproducts

What this means: if you have a convergence theorem, and

• the class of structures described by the theorem is closed
under ultraproducts, and

• and the hypotheses are preserved by ultraproducts,

then there is a uniform bound on the rate of metastability.

There are sufficient syntactic conditions for these conditions to
hold.



Metastability and ultraproducts

A strong version of the mean ergodic theorem:

Theorem (Lorch, Riesz, Yosida, Kakutani)

If T is any power-bounded linear operator on a reflexive Banach
space B, and x is any element of B, then the sequence (Anx)x∈N
converges.

Alas, the class of reflexive Banach spaces is not closed under
ultraproducts.

But for fixed p, the p-uniformly convex spaces are, confirming the
uniformity in that case.



Metastability and ultraproducts

There are other collections of reflexive Banach spaces preserved
under ultraproducts: uniformly nonsquare Banach spaces, J-(n, ε)
convex Banach spaces, etc.

The result also shows that mere convergence in the Tao / Walsh
results implies uniformity.

It also provides short confirmations of other uniformities uncovered
by Kohlenbach and students.

The method, as I described it, does not cover results that involve
non-continuous functions.

Simon Cho recently generalized the ultraproduct construction to
metric spaces with additional structure, to handle such cases.



Metastability and ultraproducts

If you prove a convergence theorem, you know it is true.

• Closure under ultraproducts then tells you that there are
uniform bounds on the rate of metastability.

• Under general computability hypotheses, there is even a
computable bound (Rute).

Alternatively, using Kohlenbach’s methods:

• If the proof can be carried out in a certain (strong) theory,
and the theorem has a certain logical form, you get uniformity
and computability at once.

• Precise details of the theory give you more information about
the computation.

• Analysis of the proof gives you an explicit bound.



Pointwise convergence a.e.

A sequence of functions (fn) in on a finite measure space converges
a.e. if and only if

∀ε > 0, λ > 0 ∃m ∀n, n′ ≥ m µ{x | |fn(x)− fn′(x)| ≥ ε} < λ.

One can similarly consider rates of convergence, variational
inequalities, and metastable versions.

For example, Jones, Kaufman, Rosenblatt, and Wierdl show:

Theorem
Let p ≥ 2, f ∈ Lp. Then for any increasing (tk)k∈N,∥∥∥∥∥∥

(∑
k

sup
u,v∈[tk ,tk+1]

|Auf − Av f |p
)1/p

∥∥∥∥∥∥
p

≤ Cp · ‖f ‖p.



Pointwise convergence a.e.

Another one:

Theorem
Let q > p ≥ 2, f ∈ Lq.∥∥∥∥∥∥

(
sup
(tk )

∑
k

|Atk+1f − Atk f |
q

)1/q
∥∥∥∥∥∥
p

≤ Cp,q · ‖f ‖p.



Summary

Given a convergence theorem, you can ask:

• Are there computable / uniform bounds on the rate of
convergence?

• Are there computable / uniform bounds on the number of
oscillations?

• Are there computable / uniform bounds on the rate of
metastability?

General questions:

• Can this information be mined systematically from the original
proofs?

• What mathematical / computational / combinatorial
information does this provide?


