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Proof theory of CAT(κ)-spaces



CAT(κ)-spaces (for κ > 0) can be understood as a generalization of

Riemannian manifolds whose sectional curvature is upper bounded by κ :

A CAT(κ)-space is a geodesic space whose triangles ∆(x1, x2, x3) are

thinner than their comparison triangles in the space M2
κ which is the unit

sphere S2 in R3 equipped with

dM2
κ

(x, y) :=
1
√
κ

arccos(〈x, y〉),

i.e

∀t ∈ [0, 1]
(
d(x1, (1− t)x2 + tx3) ≤ dM2

κ
(x1, (1− t)x2 + tx3)

)
,

whenever x1, x2, x3 ∈ X and x1, x2, x3 ∈ S2 with

d(x1, x2) + d(x2, x3) + d(x1, x3) < 2Dκ, where Dκ := π/
√
κ, and

d(xi, xj) = dM2
κ

(xi, xj) (i, j ∈ {1, 2, 3}.
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Basic facts

Under the above bound 2Dκ on the perimeter of a geodesic triangle

with ∆(x1, x2, x3) a comparison triangle always exists and is unique

up to isometry.

Geodesics are unique if diam(X ) < Dκ.

Metric projections (single valued) onto convex subsets exist if

diam(X ) < 1
2Dκ.

If X is CAT(κ) and κ′ ≥ κ, then X is also CAT(κ′).

Example: (S2, dM2
1
) is a CAT(1)-space.
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Fig. 2 An intuitive understanding of curvature.

Romeil S. Sandhu et al. Sci Adv 2016;2:e1501495

Published by AAAS
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A nonlinear ergodic theorem

Consider first a Hilbert space X and a closed convex subset C . For a

sequence (λn) in [0, 1] define the Halpern iteration of a nonexpansive

mapping T : C → C starting from x0 by

xn+1 = λn+1x0 + (1− λn+1)Txn.

Under suitable conditions on (λn) that allow for the choice

λn := 1/(n + 1) Wittmann proved in 1992:

Theorem

If T has a fixed point then (xn) is strongly convergent to the fixed point

closest to x0.
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If T is linear and λn := 1/(n + 1), then (xn) coincides with the

Cesàro means and so gives the Mean Ergodic Theorem.

In 1975, Baillon showed that the Cesáro means in general fail to

converge strongly but do converge weakly if T is not linear.

K., Comm. Contemp. Math. 2012: explicit rates of asymptotic

regularity and metastability (for the weak Cauchy property) in

Baillon’s theorem.

In 1976, Baillon showed strong convergence if T additionally is odd.

In 1990, Wittmann showed that

‖Tx + Ty‖ ≤ ‖x + y‖

is enough for this (no continuity assumption).

Safarik JMAA 2012 gave a full quantitative analysis of

Wittmann’s result.
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Back to the Halpern’s iteration

In K. Adv.Math.2011, a quadratic rate of asymptotic regularity

for ‖xn − Txn‖ → 0 and a primitive recursive rate of

metastability for (xn) were extracted in Hilbert space.

In K./Leuştean Adv.Math.2012, similar results were extracted from a

proof due to Saejung 2010 who had generalized Wittmann’s result

to CAT(0)-spaces.
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Proof mining ergodic theorems in CAT(κ)-space

In Leuştean/Nicolae ETDS 2016, rates of asymptotic regularity and

metastability on (xn) were obtained for CAT(κ)-spaces

(κ > 0, diam(X ) < π/2
√
κ) by generalizing the approach for the

CAT(0)-case thereby also re-proving the generalization of Saejung’s result

itself to CAT(κ)-spaces due to Pia̧tek 2011.

While the rate of metastability extracted in Leuştean/Nicolae ETDS 2016

is very complicated, the rate of asymptotic regularity (for

λn = 1/(n + 1)) is

exp

(
d

1

cos(M
√
κ)
ed

8M

ε
+ 2e ln 4

)
,

where diam(X ) ≤ M < π/2
√
κ.

Note that the rate is exponential in ε while it was quadratic in the

CAT(0)-case.
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In Leuştean/Nicolae ETDS 2016, rates of asymptotic regularity and

metastability on (xn) were obtained for CAT(κ)-spaces

(κ > 0, diam(X ) < π/2
√
κ) by generalizing the approach for the

CAT(0)-case thereby also re-proving the generalization of Saejung’s result

itself to CAT(κ)-spaces due to Pia̧tek 2011.

While the rate of metastability extracted in Leuştean/Nicolae ETDS 2016
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Convex feasibility problems in CAT(κ) spaces

Let X be a CAT(κ)-space (κ > 0) with diam(X) ≤ M < π/(2
√
κ) and

C1, . . . ,Ck ⊆ X be closed convex subsets with
⋂k

i=1 Ci 6= ∅,
T := PCk ◦ . . . ◦ PC1 , where PCi is the metric projection onto Ci.

Then F:= Fix(T)=
k⋂

i=1

Ci (Ariza-Ruiz,López-Acedo,Nicolae JOTA 2015).

Consider perturbed T-iteration: d(xn+1,Txn) < δn with
∑
δn <∞.

Ariza-Ruiz/López-Acedo/Nicolae:

1) (xn) and T are asymptotically regular: d(xn,Txn)→ 0.

2) if X is compact, then (xn) converges to a point in F.
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K., Israel J. Math. 2016: a general approach to rates of asymptotic

regularity and (if a condition of being uniform Fejér monotone is satisfied

by (xn)) metastability are given for so-called strongly quasi-nonexpansive

mappings in metric spaces.

Metric projections in CAT(κ)-spaces X with diam(X ) < π/2
√
κ are

examples for this: hence explicit rate Φ(ε) s.t.

∀x ∈ X∀g ∈ NN ∀ε > 0 ∃n ≤ Φ(ε)∀j ∈ [n, n + g(n)] (
k∧

i=1

xj ∈ Ci,ε),

where Ci,ε := {y ∈ X : ∃z ∈ Ci (d(y, z) < ε)}.

Also: rate of metastability Ψ for (xn) if Ck is a totally bounded.
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These results use that while the metric projection PC is not nonexpansive

(only in CAT(0)) it is

Lipschitzian with Lipschitz constant

λ :=
M
√
κ

2 arcsin(sin(M
√
κ/2) cos(M

√
κ))

, for diam(X) ≤ M < Dκ/2.

Quasi-nonexpansive:

∀x ∈ X∀p ∈ C (d(PC(x),PC(p)) = d(PC(x), p) ≤ d(x, p).

Even uniformly strongly quasi-nonexpansive (Bruck) with modulus

(Kohlenbach)

ω(ε) :=
ε2 · β

2d
with β :=

1

2
(π − 2

√
κδ tan(

√
κδ),

where 0 < δ < Dκ − diam(X ) and d ≥ Dκ, i.e.

∀ε > 0 ∀x ∈ X ∀p ∈ C (d(x, p)−d(PC(x), p) < ω(ε)→ d(x,PC(x)) < ε).
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Formal systems for analysis with abstract spaces X

Types: (i) N,X are types, (ii) with ρ, τ also ρ→ τ is a type.

Functionals of type ρ→ τ map type-ρ objects to type-τ objects.

PAω,X is the extension of Peano Arithmetic to all types.

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Aω[X , d , . . .] results by adding constants dX , . . . with axioms expressing

that (X , d) is a nonempty metric space.
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A warning concerning equality

Extensionality rule (only!):

s =ρ t

r(s) =τ r(t)
,

where only x =N y primitive equality predicate but for ρ→ τ

xX =X yX :≡ dX(x, y) =R 0R,

x =ρ→τ y :≡ ∀vρ(s(v) =τ t(v)).
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A novel form of majorization

y , x functionals of types ρ, ρ̂ := ρ[N/X ] and aX of type X :

xN &a
N yN :≡ x ≥ y

xN &a
X yX :≡ x ≥ d(y, a).

For complex types ρ→ τ this is extended in a hereditary fashion.

Example:

f∗ &a
X→X f ≡ ∀n ∈ N, x ∈ X[n ≥ d(a, x)→ f∗(n) ≥ d(a, f(x))].

f : X → X is nonexpansive (n.e.) if d(f(x), f(y)) ≤ d(x, y).

Then λn.n + b &a
X→X f , if d(a, f (a)) ≤ b.

Normed linear case: a := 0X .
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The formal system Aω[X , d ,W ,CAT (κ)]

We extend Aω[X , d ] by a constant W X→X→NN→X
x satisfying the axioms

∀xX, yX, zX

(W1) ∀λNN(
dX(z,WX(x, y, λ)) ≤R (1−R λ̃) ·R dX(z, x) +R λ̃ ·R dX(z, y)

)
,

(W2) ∀λNN

1 , λ
NN

2

(
dX(WX(x, y, λ1),WX(x, y, λ2)) =R |λ̃1 −R λ̃2|R ·R dX(x, y)

)
,

(W3) ∀λNN (
WX(x, y, λ) =X WX(y, x, 1R −R λ)

)
,

i.e. (X , d ,W ) is a space of hyperbolic type (see Goebel/Kirk, K.) and -

instead of (W4) used in K.2005 to define the class of (W )-hyperbolic

spaces - we now have the axiom

(W5) : ∀xX, yX, zX ∀λNN
(dX(WX(x, z, λ),WX(y, z, λ)) ≤ dX(x, y)),

which expresses that d(W(x, z, λ),W(y, z, λ)) ≤ d(x, y) for all

λ ∈ [0, 1] and x, y, z ∈ X.
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Next we add new constants cκ of type N→ N (written as κ) and Nκ of

type N together with the following axioms

(κ1) κ ≥R
1

Nκ + 1
,

i.e. Nκ is a witness for the strict positivity of κ > 0,

(κ2) ∀xX, yX
(
dX(x, y) ≤R

π

2
√
κ

)
,

expressing that diam(X ) ≤ π/(2
√
κ),

(κ3)



∀aX, bX, pX, qX ∀nN
(

dX(a, p), dX(b, q) >R
1

n+1
→

cos(
√
κdX(p,q))+cos(

√
κdX(a,p)) cos(

√
κdX(b,q))

sin(
√
κdX(a,p)) sin(

√
κdX(b,q))

−
(

cos(
√
κdX(a,p))+cos(

√
κdX(b,p))

)(
cos(
√
κdX(b,q))+cos(

√
κdX(a,q))

)(
1+cos(

√
κdX(a,b)

)
sin(
√
κdX(a,p)) sin(

√
κdX(b,q))

≤R 1

)
,

expressing that X satisfies the ‘upper four point κ-quadrilateral

cos-condition cosqκ condition’ (I.D. Berg, I.G. Nikolaev 2015).
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Proposition (K./Nicolae, to appear in Studia Logica)

Let (X , d) be a metric space, W : X × X × [0, 1]→ X be a mapping,

κ ∈ (0,∞) and Nκ ∈ N.
The full set-theoretic type structure Sω,X is a model of

Aω[X, d,W,CAT(κ)] (in the sense of K.2008) iff (X, d) is a

CAT(κ)-space with κ ≥ 1/(Nκ + 1) and diam(X ) ≤ π/(2
√
κ) and W is

defined via the unique geodesic joining x , y .

We next show that the proof-theoretic bound extraction theorems due to

K. TAMS 2005 for CAT(0)-spaces (among others) can be adapted to the

CAT(κ)-case.

The extraction is based on a monotone version (K.1996) of (an extension

of) Gödel’s functional (‘Dialectica’) interpretation.
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A proof-theoretic bound extraction theorem

Theorem (K./Nicolae, to appear in Studia Logica)

Let σ, ρ be types of degree N→ N and τ be a type of degree (1,X ) (e.g.

τ = X ,N→ N,X → X ).

Let sσ→ρ be a closed term of Aω[X , d ,W ,CAT (κ)] and

A∃(xσ, yρ, zτ , vN) be an ∃-formula containing only x , y , z , u.

If

Aω[X, d,W,CAT(κ)] ` ∀xσ ∀y ≤ρ s(x)∀zτ ∃vNA∃(x, y, z, v),

then one can extract a (subrecursively) computable functional

Φ : Sσ × N× N→ N such that for all x ∈ Sσ and all b,N ∈ N

∀y ≤ρ s(x)∀zτ ∃v ≤ Φ(x, b,N) A∃(x, y, z, v)

holds in any (non-empty) CAT(κ)-space (X , d) with 1/(N + 1) ≤ κ ≤ b

and diam(X ) ≤ π/(2
√
κ).
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The characterization of CAT(κ)-spaces via the quadrilateral cos-condition

due to Berg and Nikolaev is given by a purely universal axiom which is

trivially admissable in the proof-theoretic bound extraction metatheorems

(since it is its own monotone functional interpretation).

However, for actually formalizing proofs it is useful to have direct access

to the usual characterization in terms of comparison triangles.

The monotone functional interpretation of that characterization (which

has the form ∀(∀ → ∀)), however, asks for a uniform quantitative version.

We next show that such a uniform quantitative version already follows

from the seemingly weaker qualitative one.
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Definition

Let (X , d) be a CAT(κ)-space with κ > 0 and diam(X ) ≤ π/(2
√
κ).

Take x1, x2, x3 ∈ X . Having δ > 0, a δ-comparison triangle for

∆(x1, x2, x3) is a triangle ∆(x1, x2, x3) in M2
κ such that∣∣d(xi , xj)− dM2

κ
(xi , xj)

∣∣ ≤ δ√
κ

for i , j ∈ {1, 2, 3}.

Proposition (K./Nicolae, to appear in Studia Logica)

In the setting above, for every ε ∈ (0, 1) there exists δ := ε2

108 sin ε2

36 such

that for every δ-comparison triangle ∆(x1, x2, x3) we have that

∀t ∈ [0, 1]
(
d(x1, (1− t)x2 + tx3) ≤ dM2

κ
(x1, (1− t)x2 + tx3) +

ε√
κ

)
.

This version can be stated as a universal axiom with (1− t)x2 + tx3 to be

understood as WX (x2, x3, t). One easily shows that the comparison

inequality stated just for the geodesic selected by W implies the

uniqueness of the geodesic.
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Since comparison triangles are (up to isometry) unique one could also

state the characterization of CAT(κ)-spaces in the form of a so-called

axiom ∆ which can be freely added to the formal system:

(∗)


∀x1, x2, x3 ∈ X∃x1, x2, x3 ∈ B1(0) ∀t ∈ [0, 1]( ∧

i,j∈{1,2,3}
(‖xi‖E = 1 ∧ d(xi, xj) = dM2

κ
(xi, xj))∧

d(x1, (1− t)x2 + tx3) ≤ dM2
κ

(x1, (1− t)x2 + tx3)
)
.

The quantitative formulation can be viewed as mining the uniqueness

proof by which (∗) implies the official characterization.
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