Computable analysis and reverse mathematics

Keita Yokoyama

joint work with Andre Nies and Marcus Triplett

December 7, 2016

- Results in computable analysis often can be re-understood in reverse mathematics.
- Actually, relativized versions of the statements almost indicate the corresponding reverse math results.

```
X' \Leftrightarrow ACA<sub>0</sub>
PA-degree rel. to X \Leftrightarrow WKL<sub>0</sub>
ML-random rel. to X \Leftrightarrow WWKL
```

- Jordan's decomposition theorem for bounded variation functions.
- Lebesgue's theorem on the differentiability of bounded variation functions.

- Results in computable analysis often can be re-understood in reverse mathematics.
- Actually, relativized versions of the statements almost indicate the corresponding reverse math results.

```
X' \Leftrightarrow ACA_0
PA-degree rel. to X \Leftrightarrow WKL_0
ML-random rel. to X \Leftrightarrow WWKL
```

- Jordan's decomposition theorem for bounded variation functions.
- Lebesgue's theorem on the differentiability of bounded variation functions.

- Results in computable analysis often can be re-understood in reverse mathematics.
- Actually, relativized versions of the statements almost indicate the corresponding reverse math results.

```
X' \Leftrightarrow ACA_0 PA-degree rel. to X \Leftrightarrow WKL_0 ML-random rel. to X \Leftrightarrow WWKL_0
```

- Jordan's decomposition theorem for bounded variation functions.
- Lebesgue's theorem on the differentiability of bounded variation functions.

- Results in computable analysis often can be re-understood in reverse mathematics.
- Actually, relativized versions of the statements almost indicate the corresponding reverse math results.

```
X' \Leftrightarrow ACA_0 PA-degree rel. to X \Leftrightarrow WKL_0 ML-random rel. to X \Leftrightarrow WWKL_0
```

- Jordan's decomposition theorem for bounded variation functions.
- Lebesgue's theorem on the differentiability of bounded variation functions.

Bounded variation functions on [0, 1]

We mainly deal with bounded variation functions on $[0,1] \cap \mathbb{Q}$ coded by the following way.

Definition

A (code for a) rationally presented function is a pair $f = (Z_f, r_f)$ where $Z_f : [0, 1] \cap \mathbb{Q} \times \mathbb{Q} \to 2$ and $r_f \in \mathbb{R}$ such that

- $Z_f(x,p) \le Z_f(x,q)$ for any $p \le q$,
- for any $x \in [0,1] \cap \mathbb{Q}$ there exist $p, q \in \mathbb{Q}$ such that $Z_f(x,p) = 0$ and $Z_f(x,q) = 1$.

 $f:[0,1]_{\mathbb{Q}}\to\mathbb{R}$ is defined as $f(x)=r_f+\sup\{p:Z_f(x,p)=0\}$.

Note that

- if f is computable, then f(x) is computable.
- above definition can be made within RCA₀.

Bounded variation functions on [0, 1]

Definition

A rationally presented function f is said to be of bounded variation if if there is $k \in \mathbb{N}$ such that $S(f,\Pi) \leq k$ for every partition Π of [0,1], where

$$\Pi = \{0 = t_0 \le \dots \le t_n = 1\} \subseteq [0, 1] \cap \mathbb{Q},$$

$$S(f, \Pi) = \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|.$$

We can deal with continuous functions of bounded variation within RCA₀ based on the following.

Proposition (RCA₀)

Every continuous function $f:[0,1]\to\mathbb{R}$ has a rational presentation on $[0,1]\cap\mathbb{Q}$.

Contents

Jordan decomposition theorem

Lebesgue's theorem on differentiability

Theorem

The following are equivalent over RCA₀.

- WKL₀.
- ② For every rationally presented function f of bounded variation, there is a rationally presented non-decreasing function $g:[0,1]_{\mathbb{Q}} \to \mathbb{R}$ such that $f \leq_{\text{slope}} g$.

Here, we let

$$f \leq_{\mathsf{slope}} g \ \textit{iff} \ \forall x, y \in [0, 1]_{\mathbb{Q}}[x < y \rightarrow (f(y) - f(x) \leq g(y) - g(x))].$$

Note that the second clause is the Jordan decomposition theorem: f = g - (g - f) where both of g and g - f are non-decreasing.

Proof of 1 \rightarrow **2**: easy.

It is a straightforward formalization of the following theorem within WKL_0 .

Theorem (essentially Brattka/Miller/Nies 2011)

Let **a** be a PA-degree. Then, for any computable rationally presented function f of bounded variation, there exists a rationally presented function $g \le_T \mathbf{a}$ such that $f \le_{\mathsf{slope}} g$.

- Let k be the bound of the variation of f
- $P := \{g : f \leq_{\text{slope}} g, 0 \leq g \leq k\}$ is a non-empty Π_1^0 -class.
- PA-degree can compute a member of P
 ⇒ one can find a member of P by WKL

Proof of 1 \rightarrow **2**: easy.

It is a straightforward formalization of the following theorem within WKL_0 .

Theorem (essentially Brattka/Miller/Nies 2011)

Let **a** be a PA-degree. Then, for any computable rationally presented function f of bounded variation, there exists a rationally presented function $g \le_T \mathbf{a}$ such that $f \le_{\mathsf{slope}} g$.

- Let k be the bound of the variation of f.
- $P := \{g : f \leq_{\text{slope}} g, 0 \leq g \leq k\}$ is a non-empty Π_1^0 -class.
- PA-degree can compute a member of P.

 \Rightarrow one can find a member of P by WKL.

Proof of 1 \rightarrow **2**: easy.

It is a straightforward formalization of the following theorem within WKL_0 .

Theorem (essentially Brattka/Miller/Nies 2011)

Let **a** be a PA-degree. Then, for any computable rationally presented function f of bounded variation, there exists a rationally presented function $g \le_T \mathbf{a}$ such that $f \le_{\mathsf{slope}} g$.

- Let k be the bound of the variation of f.
- $P := \{g : f \leq_{\text{slope}} g, 0 \leq g \leq k\}$ is a non-empty Π_1^0 -class.
- PA-degree can compute a member of P.
 - \Rightarrow one can find a member of *P* by WKL.

Proof of $2 \rightarrow 1$.

We will formalize the following theorem within RCA₀.

Theorem (Greenberg/Miller/Nies 2013, in preparation)

There exists a computable function f of bounded variation on [0,1] such that any rationally presented function $g \ge_{\text{slope}} f$ computes a PA-degree.

For a given tree $T \subseteq 2^{<\mathbb{N}}$, put $[T] = \{\sum_{n \in X} 2^{-n-1} : X \text{ is a path of } T\}$.

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{slope} f$ and g is continuous on [T], then g computes $\mathbf{0}$ ".
- If g is/is not continuous on [T]...

Proof of $2 \rightarrow 1$.

We will formalize the following theorem within RCA₀.

Theorem (Greenberg/Miller/Nies 2013, in preparation)

There exists a computable function f of bounded variation on [0,1] such that any rationally presented function $g \ge_{slope} f$ computes a PA-degree.

For a given tree $T \subseteq 2^{N}$, put $[T] = \{\sum_{n \in X} 2^{-n-1} : X \text{ is a path of } T\}$.

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes $\mathbf{0}'$ ".
- If *g* is/is not continuous on [*T*]...

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes $\mathbf{0}'$ ". (In fact, any c.e. set can be coded.)
- If g is continuous on [T], then g computes 0', thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members
- Thus, g can computes a member of P, which is a path of T.

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes $\mathbf{0}'$ ". (In fact, any c.e. set can be coded.)
- If g is continuous on [T], then g computes 0', thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members
- Thus, g can computes a member of P, which is a path of T.

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes $\mathbf{0}'$ ". (In fact, any c.e. set can be coded.)
- If g is continuous on [T], then g computes 0', thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a Π₁^{0,g}-class and it only contains finitely many members
- Thus, *q* can computes a member of *P*, which is a path of *T*.

- For a given infinite computable tree T with no computable path, one can construct a computable function f of bounded variation on [0, 1] such that
 - "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes $\mathbf{0}'$ ". (In fact, any c.e. set can be coded.)
- If g is continuous on [T], then g computes 0', thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members.
- Thus, g can computes a member of P, which is a path of T.

Within RCA₀, we can work in a parallel way. (We will directly code $NExt(T) := \{ \sigma \in T : \sigma \text{ is non-extendible} \}$ to computes a path of T.)

- For a given infinite tree T with no path, one can construct a continuous function f of bounded variation on [0, 1] such that "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes NExt(T)".
- If g is continuous on [T], then g computes NExt(T), thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members
- Thus, g can computes a member of P, which is a path of T.
 (?)

Within RCA₀, we can work in a parallel way. (We will directly code $NExt(T) := \{ \sigma \in T : \sigma \text{ is non-extendible} \}$ to computes a path of T.)

- For a given infinite tree T with no path, one can construct a continuous function f of bounded variation on [0,1] such that "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes NExt(T)".
- If g is continuous on [T], then g computes NExt(T), thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members.
- Thus, *g* can computes a member of *P*, which is a path of *T*.

Within RCA₀, we can work in a parallel way. (We will directly code $NExt(T) := \{ \sigma \in T : \sigma \text{ is non-extendible} \}$ to computes a path of T.)

- For a given infinite tree T with no path, one can construct a continuous function f of bounded variation on [0,1] such that "if $g \ge_{\text{slope}} f$ and g is continuous on [T], then g computes NExt(T)".
- If g is continuous on [T], then g computes NExt(T), thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- P is a $\Pi_1^{0,g}$ -class and it only contains finitely many members.
- Thus, g can compute a member of P, which is a path of T.
 (?)

Caution!

We need the following well-known theorem.

Theorem

Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite computable tree. If T has at most finitely many paths, then T has a computable path.

Question

How can we understand this situation in reverse mathematics?

- "Any infinite tree $T \subseteq 2^{<\mathbb{N}}$ which has at most finitely-many paths has a path" is already equivalent to WKL since \neg WKL implies the existence of an infinite tree with no path.
- Thus, we will consider several structural conditions to support the finiteness of paths.

Caution!

We need the following well-known theorem.

Theorem

Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite computable tree. If T has at most finitely many paths, then T has a computable path.

Question

How can we understand this situation in reverse mathematics?

- "Any infinite tree $T \subseteq 2^{<\mathbb{N}}$ which has at most finitely-many paths has a path" is already equivalent to WKL since \neg WKL implies the existence of an infinite tree with no path.
- Thus, we will consider several structural conditions to support the finiteness of paths.

We will consider the following versions of WKL.

- **1** WKL(*ext-bd*): an infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ has a path if there exists $c \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, $|T_{\text{ext}}^{=n}| \le c$, where $T_{\text{ext}}^{=n} = \{\sigma \in T \mid \text{lh}(\sigma) = n \land \sigma \text{ is extendible}\}.$
- ② WKL(w-bd): an infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ has a path if there exists $c \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, $|T^{=n}| \le c$, where $T^{=n} = \{\sigma \in T \mid \text{lh}(\sigma) = n\}$.
- **3** WKL(pf-bd): an infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ has a path if there exists $c \in \mathbb{N}$ such that for any prefix-free set $P \subseteq T$, $|P| \le c$.
 - * For a fixed standard $c \in \omega$, they are all provable within RCA₀.

Note that WKL restricted to a tree with at most finitely many paths are studied in various context, e.g., in Weihrauch degrees, constructive math,...

Non-trivial induction strength

WKL(pf-bd), WKL(w-bd), WKL(ext-bd) are all true in ω -model of RCA₀.

Theorem

- WKL(w-bd) and WKL(ext-bd) are equivalent.
- **2** WKL(w-bd) is provable in RCA₀ + WKL \vee I Σ_2^0
- **③** WWKL₀ does not imply WKL(w-bd).
- WKL(w-bd) plus $\exists X \forall Y (Y \leq_T X)$ implies $I\Sigma_2^0$.

So, WKL(w-bd) is still too strong to use within RCA $_0$ because of the lack of induction.

Theorem

WKL(pf-bd) is provable in RCA₀

Thus, we need to use this version

Non-trivial induction strength

WKL(pf-bd), WKL(w-bd), WKL(ext-bd) are all true in ω -model of RCA₀.

Theorem

- WKL(w-bd) and WKL(ext-bd) are equivalent.
- **2** WKL(w-bd) is provable in RCA₀ + WKL \vee I Σ_2^0 .
- WWKL₀ does not imply WKL(w-bd).
- **④** WKL(w-bd) plus ∃X∀Y(Y ≤_T X) implies I Σ_2^0 .

So, WKL(w-bd) is still too strong to use within RCA_0 because of the lack of induction.

Theorem

WKL(pf-bd) is provable in RCA₀

Thus, we need to use this version

Non-trivial induction strength

WKL(pf-bd), WKL(w-bd), WKL(ext-bd) are all true in ω -model of RCA₀.

Theorem

- WKL(w-bd) and WKL(ext-bd) are equivalent.
- **2** WKL(w-bd) is provable in RCA₀ + WKL \vee I Σ_2^0 .
- WWKL₀ does not imply WKL(w-bd).
- **④** WKL(w-bd) plus ∃X∀Y(Y ≤_T X) implies I Σ_2^0 .

So, WKL(w-bd) is still too strong to use within RCA $_0$ because of the lack of induction.

Theorem

WKL(pf-bd) is provable in RCA₀.

Thus, we need to use this version.

Within RCA₀, we can work in a parallel way.

- For a given infinite tree T with no path, one can construct a continuous function f of bounded variation on [0, 1] such that "if g ≥_{slope} f and g is continuous on [T], then g computes NExt(T)".
- If g is continuous on [T], then g computes NExt(T), thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- We will approximate P by a tree with the size of prefix-free subsets bounded.
 (Find a pf-bounded tree T⁻ < τ α such that [T⁻] ⊆ P.)
- Then, g can computes a member of P

Within RCA₀, we can work in a parallel way.

- For a given infinite tree T with no path, one can construct a continuous function f of bounded variation on [0, 1] such that "if g ≥_{slope} f and g is continuous on [T], then g computes NExt(T)".
- If g is continuous on [T], then g computes NExt(T), thus it computes a path of T.
- If g is not continuous on [T], then there exists q > 0 such that $P := \{z \in [T] : \forall x, y \in [0,1] \cap \mathbb{Q}(x < z < y \rightarrow g(y) g(z) \ge q)\}$ is not empty.
- We will approximate P by a tree with the size of prefix-free subsets bounded.
 - (Find a pf-bounded tree $T^- \leq_T g$ such that $[T^-] \subseteq P$.)
- Then, *g* can computes a member of *P*.

Contents

Jordan decomposition theorem

2 Lebesgue's theorem on differentiability

The <u>upper</u> and <u>lower pseudo-derivatives of *f*</u> are defined by

$$\bar{D}f(x) = \lim_{h \to 0^+} \sup \left\{ \frac{f(b) - f(a)}{b - a} : a \le x \le b \land 0 < b - a < h \right\}, \text{ and}$$

$$\underline{D}f(x) = \lim_{h \to 0^+} \inf \left\{ \frac{f(b) - f(a)}{b - a} : a \le x \le b \land 0 < b - a < h \right\}.$$

A function f is <u>pseudo-differentiable</u> at $z \in (0, 1)$ if $\underline{D}f(z)$ and $\overline{D}f(z)$ are both finite and equal.

Theorem

The following are equivalent over RCA₀.

- WWKL₀
- 2 Every rationally presented function of bounded variation is pseudo-differentiable at some point.
- Severy rationally presented function of bounded variation is pseudo-differentiable almost surely.

Proof of 2 \rightarrow 1: easy.

It is a straightforward formalization of the following within RCA₀.

Theorem (Brattka/Miller/Nies 2011)

There is a computable function f of bounded variation on [0, 1] such that f'(z) exists only for Martin-Löf random reals z.

 Given a ML-test {U_i}_{i∈N}, one can construct a computable function of bounded variation f such that f is not (pseudo-)differentiable at any z ∈ ∩ U_i.

Within RCA_0 , given a tree T such that [T] has a positive measure,

- One can construct a ML-test $\{U_i\}_{i\in\mathbb{N}}$ (rel. to T) so that any $z\in \cap U_i$ computes a path of T.
- Construct a continuous function of bounded variation f such that f is not pseudo-differentiable at any $z \in \bigcap U_i$.

Proof of 2 \rightarrow 1: easy.

It is a straightforward formalization of the following within RCA₀.

Theorem (Brattka/Miller/Nies 2011)

There is a computable function f of bounded variation on [0, 1] such that f'(z) exists only for Martin-Löf random reals z.

• Given a ML-test $\{U_i\}_{i\in\mathbb{N}}$, one can construct a computable function of bounded variation f such that f is not (pseudo-)differentiable at any $z \in \bigcap U_i$.

Within RCA_0 , given a tree T such that [T] has a positive measure,

- One can construct a ML-test $\{U_i\}_{i\in\mathbb{N}}$ (rel. to T) so that any $z\in \bigcap U_i$ computes a path of T.
- Construct a continuous function of bounded variation f such that f is not pseudo-differentiable at any $z \in \bigcap U_i$.

Proof of 2 \rightarrow 1: easy.

It is a straightforward formalization of the following within RCA₀.

Theorem (Brattka/Miller/Nies 2011)

There is a computable function f of bounded variation on [0, 1] such that f'(z) exists only for Martin-Löf random reals z.

• Given a ML-test $\{U_i\}_{i\in\mathbb{N}}$, one can construct a computable function of bounded variation f such that f is not (pseudo-)differentiable at any $z \in \bigcap U_i$.

Within RCA_0 , given a tree T such that [T] has a positive measure,

- One can construct a ML-test $\{U_i\}_{i\in\mathbb{N}}$ (rel. to T) so that any $z\in \bigcap U_i$ computes a path of T.
- Construct a continuous function of bounded variation f such that f is not pseudo-differentiable at any $z \in \bigcap U_i$.

Proof of 1 \rightarrow **2**. (One can show 1 \rightarrow 3 in a similar way.) We will formalize the following theorem within WWKL₀.

Theorem (essentially Brattka/Miller/Nies 2011)

Every computable rationally presented function f of bounded variation is differentiable at any Martin-Löf random real z.

- Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z (actually, computably random is enough).
- z is ML-random iff it is ML-random relative to a PA-degree **a**.
- By Jordan decomposition, there exist non-decreasing functions $g, h \le_T \mathbf{a}$ such that f = g h.
- f is differentiable at z since g and h are differentiable at z.

Within WWKL₀, the proof won't work directly...

- Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z.
 - \Rightarrow this is formalizable within RCA₀.
- z is ML-random iff it is ML-random relative to a PA-degree a.
 - ⇒ want a PA-degree with preserving randomness
- By Jordan decomposition, there exist non-decreasing functions $g, h \leq_T \mathbf{a}$ such that f = g h.
 - \Rightarrow want WKL₀!
- *f* is differentiable at *z* since *g* and *h* are differentiable at *z*.

Can we work within WKL₀ with preserving randomness notion?

Second example

Within WWKL₀, the proof won't work directly...

- Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z.
 - \Rightarrow this is formalizable within RCA₀.
- z is ML-random iff it is ML-random relative to a PA-degree a.
 - ⇒ want a PA-degree with preserving randomness!
- By Jordan decomposition, there exist non-decreasing functions $g, h \le_T \mathbf{a}$ such that f = g h.
 - \Rightarrow want WKL₀!
- f is differentiable at z since g and h are differentiable at z.

Can we work within WKL₀ with preserving randomness notion?

We will first formalize/modify the first and second steps.

 Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z

Lemma

RCA₀ proves the following.

every non-decreasing rationally presented function f_0 is oseudo-differentiable at any Martin-Löf random real z.

• z is ML-random iff it is ML-random relative to a PA-degree a. (Combining this idea with Harrington's forcing argument.)

Lemma (Simpson/Y 2011)

For any countable $(M, S) \models WWKL_0$ there is $\hat{S} \supseteq S$ satisfying

- $(M, \hat{S}) \models WKL_0$, and
- (2) for any A ∈ S there is z ∈ S such that z is Martin-Löf random relative to A.

We will first formalize/modify the first and second steps.

 Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z.

Lemma

RCA₀ proves the following.

every non-decreasing rationally presented function f_0 is pseudo-differentiable at any Martin-Löf random real z.

z is ML-random iff it is ML-random relative to a PA-degree a.
 (Combining this idea with Harrington's forcing argument.)

Lemma (Simpson/Y 2011)

For any countable $(M, S) \models WWKL_0$ there is $\hat{S} \supseteq S$ satisfying

- $(M, \hat{S}) \models WKL_0$, and
- (2) for any A ∈ S there is z ∈ S such that z is Martin-Löf random relative to A.

We will first formalize/modify the first and second steps.

 Every non-decreasing computable rationally presented function f₀ is differentiable at any Martin-Löf random real z.

Lemma

RCA₀ proves the following.

every non-decreasing rationally presented function f_0 is pseudo-differentiable at any Martin-Löf random real z.

z is ML-random iff it is ML-random relative to a PA-degree a.
 (Combining this idea with Harrington's forcing argument.)

Lemma (Simpson/Y 2011)

For any countable $(M, S) \models \mathsf{WWKL}_0$ there is $\hat{S} \supseteq S$ satisfying

- $(M, \hat{S}) \models WKL_0$, and
- ② for any $A \in \hat{S}$ there is $z \in S$ such that z is Martin-Löf random relative to A.

- Let $(M, S) \models WWKL_0$ and $f \in S$.
- Take $\hat{S} \supseteq S$ by the second lemma.
- By Jordan decomposition theorem in WKL₀, we have non-decreasing g, h ∈ Ŝ such that f = g - h.
- By condition 2 of Ŝ take Martin-Löf random real relative to g ⊕ h z from S.
- By the first lemma, g and h are pseudo-differentiable at z, thus f is pseudo-differentiable at z. The latter holds in (M, S)

- Let $(M, S) \models WWKL_0$ and $f \in S$.
- Take $\hat{S} \supseteq S$ by the second lemma.
- By Jordan decomposition theorem in WKL₀, we have non-decreasing $g, h \in \hat{S}$ such that f = g h.
- By condition 2 of Ŝ take Martin-Löf random real relative to g ⊕ h z from S.
- By the first lemma, g and h are pseudo-differentiable at z, thus f is pseudo-differentiable at z. The latter holds in (M, S)

- Let $(M, S) \models WWKL_0$ and $f \in S$.
- Take $\hat{S} \supseteq S$ by the second lemma.
- By Jordan decomposition theorem in WKL₀, we have non-decreasing $g, h \in \hat{S}$ such that f = g h.
- By condition 2 of S take Martin-Löf random real relative to g ⊕ h z from S.
- By the first lemma, g and h are pseudo-differentiable at z, thus f is pseudo-differentiable at z. The latter holds in (M, S)

- Let $(M, S) \models WWKL_0$ and $f \in S$.
- Take $\hat{S} \supseteq S$ by the second lemma.
- By Jordan decomposition theorem in WKL₀, we have non-decreasing $g, h \in \hat{S}$ such that f = g h.
- By condition 2 of \hat{S} take Martin-Löf random real relative to $g \oplus h z$ from S.
- By the first lemma, g and h are pseudo-differentiable at z, thus f is pseudo-differentiable at z. The latter holds in (M, S)

- Let $(M, S) \models WWKL_0$ and $f \in S$.
- Take $\hat{S} \supseteq S$ by the second lemma.
- By Jordan decomposition theorem in WKL₀, we have non-decreasing $g, h \in \hat{S}$ such that f = g h.
- By condition 2 of Ŝ take Martin-Löf random real relative to g ⊕ h z from S.
- By the first lemma, g and h are pseudo-differentiable at z, thus f is pseudo-differentiable at z. The latter holds in (M, S).

Remark

The original proof of the following part actually uses RT^1 . every non-decreasing rationally presented function f_0 is pseudo-differentiable at any Martin-Löf random real z.

To show this within RCA₀, we need a modified proof.

Remark

Rute showed that the existence of the derivative f'(z) already requires ACA₀.

Questions

Question

Is there a reasonable way to interpret (or at least understand) results in computable analysis into reverse mathematics?

Some more technical questions.

Question

Is there some useful conservation between WWKL₀ and WKL₀ derived from the previous model-theoretic argument?

Question

What is the right strength of WKL(w-bd) (or WKL(ext-bd))?

Thank you!

- Vasco Brattka, Joseph S. Miller, and André Nies, Randomness and differentiability, Trans. Amer. Math. Soc., 368(1):581–605, 2016.
- André Nies, Marcus Anthony Triplett and Y., The reverse mathematics of theorems of Jordan and Lebesgue, inpreparation.
- Stephen G. Simpson and Y., Very weak fragments of weak König's lemma, in preparation.
- Noam Greenberg, Joseph S. Miller, and André Neis, Highness properties close to PA-completeness, in preparation.

This work is partially supported by

JSPS KAKENHI grant number 16K17640,

JSPS fellowship for research abroad,

JSPS-NUS Bilateral Joint Research Projects J150000618 (Pl's: K. Tanaka, C. T. Chong), and

JSPS Core-to-Core Program (A. Advanced Research Networks).