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Introduction

Results in computable analysis often can be re-understood in
reverse mathematics.

Actually, relativized versions of the statements almost indicate
the corresponding reverse math results.

X ′ ⇔ ACA0

PA-degree rel. to X ⇔ WKL0

ML-random rel. to X ⇔ WWKL0

Here, we will see some case studies of this in the study of
bounded variation functions.

Jordan’s decomposition theorem for bounded variation
functions.

Lebesgue’s theorem on the differentiability of bounded
variation functions.

Keita Yokoyama Computable analysis and reverse mathematics 2 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Introduction

Results in computable analysis often can be re-understood in
reverse mathematics.

Actually, relativized versions of the statements almost indicate
the corresponding reverse math results.

X ′ ⇔ ACA0

PA-degree rel. to X ⇔ WKL0

ML-random rel. to X ⇔ WWKL0

Here, we will see some case studies of this in the study of
bounded variation functions.

Jordan’s decomposition theorem for bounded variation
functions.

Lebesgue’s theorem on the differentiability of bounded
variation functions.

Keita Yokoyama Computable analysis and reverse mathematics 2 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Introduction

Results in computable analysis often can be re-understood in
reverse mathematics.

Actually, relativized versions of the statements almost indicate
the corresponding reverse math results.

X ′ ⇔ ACA0

PA-degree rel. to X ⇔ WKL0

ML-random rel. to X ⇔ WWKL0

Here, we will see some case studies of this in the study of
bounded variation functions.

Jordan’s decomposition theorem for bounded variation
functions.

Lebesgue’s theorem on the differentiability of bounded
variation functions.

Keita Yokoyama Computable analysis and reverse mathematics 2 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Introduction

Results in computable analysis often can be re-understood in
reverse mathematics.

Actually, relativized versions of the statements almost indicate
the corresponding reverse math results.

X ′ ⇔ ACA0

PA-degree rel. to X ⇔ WKL0

ML-random rel. to X ⇔ WWKL0

Here, we will see some case studies of this in the study of
bounded variation functions.

Jordan’s decomposition theorem for bounded variation
functions.

Lebesgue’s theorem on the differentiability of bounded
variation functions.

Keita Yokoyama Computable analysis and reverse mathematics 2 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Bounded variation functions on [0, 1]

We mainly deal with bounded variation functions on [0, 1] ∩ Q
coded by the following way.

Definition

A (code for a) rationally presented function is a pair f = (Zf , rf )
where Zf : [0, 1] ∩ Q × Q→ 2 and rf ∈ R such that

Zf (x, p) ≤ Zf (x, q) for any p ≤ q,

for any x ∈ [0, 1] ∩ Q there exist p, q ∈ Q such that
Zf (x, p) = 0 and Zf (x, q) = 1.

f : [0, 1]Q → R is defined as f(x) = rf + sup{p : Zf (x, p) = 0}.

Note that

if f is computable, then f(x) is computable.

above definition can be made within RCA0.
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Bounded variation functions on [0, 1]

Definition
A rationally presented function f is said to be of bounded variation
if if there is k ∈ N such that S(f ,Π) ≤ k for every partition Π of
[0, 1], where

Π = {0 = t0 ≤ · · · ≤ tn = 1} ⊆ [0, 1] ∩ Q,

S(f ,Π) =
n−1∑
i=0

|f(ti+1) − f(ti)|.

We can deal with continuous functions of bounded variation within
RCA0 based on the following.

Proposition (RCA0)

Every continuous function f : [0, 1]→ R has a rational presentation
on [0, 1] ∩ Q.
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First example

Theorem

The following are equivalent over RCA0.
1 WKL0.
2 For every rationally presented function f of bounded variation,

there is a rationally presented non-decreasing function
g : [0, 1]Q → R such that f ≤slope g.

Here, we let

f ≤slope g iff ∀x, y ∈ [0, 1]Q[x < y → (f(y) − f(x) ≤ g(y) − g(x))].

Note that the second clause is the Jordan decomposition theorem:
f = g − (g − f) where both of g and g − f are non-decreasing.
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First example

Proof of 1→ 2: easy.
It is a straightforward formalization of the following theorem within
WKL0.

Theorem (essentially Brattka/Miller/Nies 2011)

Let a be a PA-degree. Then, for any computable rationally
presented function f of bounded variation, there exists a rationally
presented function g ≤T a such that f ≤slope g.

Let k be the bound of the variation of f .

P := {g : f ≤slope g, 0 ≤ g ≤ k } is a non-empty Π0
1-class.

PA-degree can compute a member of P.

⇒ one can find a member of P by WKL.
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First example

Proof of 2→ 1.
We will formalize the following theorem within RCA0.

Theorem (Greenberg/Miller/Nies 2013, in preparation)

There exists a computable function f of bounded variation on [0, 1]
such that any rationally presented function g ≥slope f computes a
PA-degree.

For a given tree T ⊆ 2<N, put [T ] = {∑n∈X 2−n−1 : X is a path of T }.
For a given infinite computable tree T with no computable
path, one can construct a computable function f of bounded
variation on [0, 1] such that

“if g ≥slope f and g is continuous on [T ], then g computes 0′”.

If g is/is not continuous on [T ]...
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First example

For a given infinite computable tree T with no computable
path, one can construct a computable function f of bounded
variation on [0, 1] such that

“if g ≥slope f and g is continuous on [T ], then g computes 0′”.
(In fact, any c.e. set can be coded.)

If g is continuous on [T ], then g computes 0′, thus it computes
a path of T.

If g is not continuous on [T ], then there exists q > 0 such that
P := {z ∈ [T ] : ∀x, y ∈ [0, 1]∩Q(x < z < y → g(y)−g(z) ≥ q)}
is not empty.

P is a Π
0,g
1 -class and it only contains finitely many members.

Thus, g can computes a member of P, which is a path of T.
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First example

Within RCA0, we can work in a parallel way.
(We will directly code NExt(T) := {σ ∈ T : σ is non-extendible} to
computes a path of T.)

For a given infinite tree T with no path, one can construct a
continuous function f of bounded variation on [0, 1] such that
“if g ≥slope f and g is continuous on [T ], then g computes
NExt(T)”.
If g is continuous on [T ], then g computes NExt(T), thus it
computes a path of T.
If g is not continuous on [T ], then there exists q > 0 such that
P := {z ∈ [T ] : ∀x, y ∈ [0, 1]∩Q(x < z < y → g(y)−g(z) ≥ q)}
is not empty.
P is a Π

0,g
1 -class and it only contains finitely many members.

Thus, g can computes a member of P, which is a path of T.
(?)
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Caution!

We need the following well-known theorem.

Theorem

Let T ⊆ 2<N be an infinite computable tree. If T has at most finitely
many paths, then T has a computable path.

Question
How can we understand this situation in reverse mathematics?

“Any infinite tree T ⊆ 2<N which has at most finitely-many
paths has a path” is already equivalent to WKL since ¬WKL
implies the existence of an infinite tree with no path.

Thus, we will consider several structural conditions to support
the finiteness of paths.
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We will consider the following versions of WKL.
1 WKL(ext-bd): an infinite binary tree T ⊆ 2<N has a path if

there exists c ∈ N such that for any n ∈ N, |T=n
ext | ≤ c, where

T=n
ext = {σ ∈ T | lh(σ) = n ∧ σ is extendible}.

2 WKL(w-bd): an infinite binary tree T ⊆ 2<N has a path if
there exists c ∈ N such that for any n ∈ N, |T=n | ≤ c, where
T=n = {σ ∈ T | lh(σ) = n}.

3 WKL(pf-bd): an infinite binary tree T ⊆ 2<N has a path if
there exists c ∈ N such that for any prefix-free set P ⊆ T,
|P | ≤ c.

* For a fixed standard c ∈ ω, they are all provable within RCA0.

Note that WKL restricted to a tree with at most finitely many paths
are studied in various context, e.g., in Weihrauch degrees,
constructive math,...
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Non-trivial induction strength

WKL(pf-bd), WKL(w-bd), WKL(ext-bd) are all true in ω-model
of RCA0.

Theorem
1 WKL(w-bd) and WKL(ext-bd) are equivalent.
2 WKL(w-bd) is provable in RCA0 + WKL ∨ IΣ0

2.
3 WWKL0 does not imply WKL(w-bd).
4 WKL(w-bd) plus ∃X∀Y(Y ≤T X) implies IΣ0

2.

So, WKL(w-bd) is still too strong to use within RCA0 because of
the lack of induction.

Theorem

WKL(pf-bd) is provable in RCA0.

Thus, we need to use this version.
Keita Yokoyama Computable analysis and reverse mathematics 13 / 23
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First example

Within RCA0, we can work in a parallel way.

For a given infinite tree T with no path, one can construct a
continuous function f of bounded variation on [0, 1] such that
“if g ≥slope f and g is continuous on [T ], then g computes
NExt(T)”.
If g is continuous on [T ], then g computes NExt(T), thus it
computes a path of T.
If g is not continuous on [T ], then there exists q > 0 such that
P := {z ∈ [T ] : ∀x, y ∈ [0, 1]∩Q(x < z < y → g(y)−g(z) ≥ q)}
is not empty.
We will approximate P by a tree with the size of prefix-free
subsets bounded.
(Find a pf-bounded tree T− ≤T g such that [T−] ⊆ P.)
Then, g can computes a member of P.
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Second example

The upper and lower pseudo-derivatives of f are defined by

D̄f(x) = lim
h→0+

sup
{

f(b)−f(a)
b−a : a ≤ x ≤ b ∧ 0 < b − a < h

}
, and

Df(x) = lim
h→0+

inf
{

f(b)−f(a)
b−a : a ≤ x ≤ b ∧ 0 < b − a < h

}
.

A function f is pseudo-differentiable at z ∈ (0, 1) if Df(z) and D̄f(z)
are both finite and equal.

Theorem
The following are equivalent over RCA0.

1 WWKL0

2 Every rationally presented function of bounded variation is
pseudo-differentiable at some point.

3 Every rationally presented function of bounded variation is
pseudo-differentiable almost surely.

Keita Yokoyama Computable analysis and reverse mathematics 16 / 23
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Second example

Proof of 2→ 1: easy.
It is a straightforward formalization of the following within RCA0.

Theorem (Brattka/Miller/Nies 2011)

There is a computable function f of bounded variation on [0, 1]
such that f ′(z) exists only for Martin-Löf random reals z.

Given a ML-test {Ui}i∈N, one can construct a computable
function of bounded variation f such that f is not
(pseudo-)differentiable at any z ∈ ∩Ui .

Within RCA0, given a tree T such that [T ] has a positive measure,
One can construct a ML-test {Ui}i∈N (rel. to T) so that any
z ∈ ∩Ui computes a path of T.
Construct a continuous function of bounded variation f such
that f is not pseudo-differentiable at any z ∈ ∩Ui .
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Second example

Proof of 1→ 2. (One can show 1→ 3 in a similar way.)
We will formalize the following theorem within WWKL0.

Theorem (essentially Brattka/Miller/Nies 2011)

Every computable rationally presented function f of bounded
variation is differentiable at any Martin-Löf random real z.

Every non-decreasing computable rationally presented
function f0 is differentiable at any Martin-Löf random real z
(actually, computably random is enough).

z is ML-random iff it is ML-random relative to a PA-degree a.

By Jordan decomposition, there exist non-decreasing
functions g, h ≤T a such that f = g − h.

f is differentiable at z since g and h are differentiable at z.

Keita Yokoyama Computable analysis and reverse mathematics 18 / 23
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Second example

Within WWKL0, the proof won’t work directly...

Every non-decreasing computable rationally presented
function f0 is differentiable at any Martin-Löf random real z.

⇒ this is formalizable within RCA0.

z is ML-random iff it is ML-random relative to a PA-degree a.

⇒ want a PA-degree with preserving randomness!

By Jordan decomposition, there exist non-decreasing
functions g, h ≤T a such that f = g − h.

⇒ want WKL0!

f is differentiable at z since g and h are differentiable at z.

Can we work within WKL0 with preserving randomness notion?
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Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Second example

Within WWKL0, the proof won’t work directly...

Every non-decreasing computable rationally presented
function f0 is differentiable at any Martin-Löf random real z.
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We will first formalize/modify the first and second steps.
Every non-decreasing computable rationally presented
function f0 is differentiable at any Martin-Löf random real z.

Lemma
RCA0 proves the following.

every non-decreasing rationally presented function f0 is
pseudo-differentiable at any Martin-Löf random real z.

z is ML-random iff it is ML-random relative to a PA-degree a.
(Combining this idea with Harrington’s forcing argument.)

Lemma (Simpson/Y 2011)

For any countable (M,S) |= WWKL0 there is Ŝ ⊇ S satisfying
1 (M, Ŝ) |= WKL0, and
2 for any A ∈ Ŝ there is z ∈ S such that z is Martin-Löf random

relative to A.
Keita Yokoyama Computable analysis and reverse mathematics 20 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

We will first formalize/modify the first and second steps.
Every non-decreasing computable rationally presented
function f0 is differentiable at any Martin-Löf random real z.

Lemma
RCA0 proves the following.

every non-decreasing rationally presented function f0 is
pseudo-differentiable at any Martin-Löf random real z.
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Model theoretic approach

By completeness theorem, we will show that any countable model
of WWKL0 satisfies the statement.

Let (M,S) |= WWKL0 and f ∈ S.

Take Ŝ ⊇ S by the second lemma.

By Jordan decomposition theorem in WKL0, we have
non-decreasing g, h ∈ Ŝ such that f = g − h.

By condition 2 of Ŝ take Martin-Löf random real relative to
g ⊕ h z from S.

By the first lemma, g and h are pseudo-differentiable at z,
thus f is pseudo-differentiable at z. The latter holds in (M,S).

Keita Yokoyama Computable analysis and reverse mathematics 21 / 23



Jordan decomposition theorem
Lebesgue’s theorem on differentiability

Model theoretic approach

By completeness theorem, we will show that any countable model
of WWKL0 satisfies the statement.

Let (M,S) |= WWKL0 and f ∈ S.
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Take Ŝ ⊇ S by the second lemma.

By Jordan decomposition theorem in WKL0, we have
non-decreasing g, h ∈ Ŝ such that f = g − h.
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Remark

The original proof of the following part actually uses RT1.

every non-decreasing rationally presented function f0 is
pseudo-differentiable at any Martin-Löf random real z.

To show this within RCA0, we need a modified proof.

Remark

Rute showed that the existence of the derivative f ′(z) already
requires ACA0.
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Questions

Question
Is there a reasonable way to interpret (or at least understand)
results in computable analysis into reverse mathematics?

Some more technical questions.

Question
Is there some useful conservation between WWKL0 and WKL0

derived from the previous model-theoretic argument?

Question

What is the right strength of WKL(w-bd) (or WKL(ext-bd))?
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Thank you!
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