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Introduction

Randomness

Paradigm
An element X € 2“ is random if it belongs to no set of measure 0
among a given countable class of sets/.

Which countable class of sets should we pick ?

Class of sets Randomness notion

N9 sets of measure 0 weak-randomness

M9 sets effectively of measure 0 | Martin-Lof randomness

M9 sets of measure 0 weak-2-randomness




Introduction

Effective Hyperarithmetical complexity of sets

We define the effective Borel set by induction over the ordinals:

(Notation : The set of index n is denoted by {n})

Name Definition Indices

¥ sets are | of the form [We] with index (0, e)

MO sets are | of the form {e}¢ where e is an | with index (1, e)
index for a X0 set

30 sets are | of the form | ¢y, {n} where n | with index (2, e)
is an index for a I'I% set with
b <a

Question : What is the level o at which no new set is added in the
hierarchy?
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Computable ordinals

Definition
An ordinal « is computable if there is a c.e. well-order R € w x w
so that |R|, the order-type of R, is equal to .

Definition (Church, Kleene)

The smallest non-computable ordinal is denoted by wfl:k, where the
ck stands for ‘Church-Kleene'.

Proposition

Every effective Borel set is X0 for a < w{k. The hierarchy is strict

before wek.
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Computable ordinals

Definition (Hyperarithmetical sets)
The effective Borel sets are called hyperarithmetical sets.

Every Y9 set for n finite is definable by a first-order formula of
arithmetic. It is not the case anymore with ¥2 and beyond. We can
however define them with second order formulas of arithmetic.
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Analytic and co-analytical sets

Definition (1 sets)

A subset A € 2% (or of w) is X1 if it can be defined by a formula
of arithmetic whose second order quantifiers are only existential.

Definition (N} sets)

A subset A = 2% (or of w) is M} if it can be defined by a formula
of arithmetic whose second order quantifiers are only universal.

v

Definition (Al sets)
A subset A < 2% (or of w) is A} if it is both £} and ].

Theorem (Suslin 1917, Kleene 1955)

A set is hyperarithmetic iff it is Al
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An important example of M} set of sequences

Definition
For a sequence X € 2%, the smallest non-X-computable ordinal is
denoted by wy’.

The set C = {X : w{ > wk} is a M} set with the following
properties:

@ C is of measure 0 (Sacks).
e C is a meager set (Feferman).
e C contains no X1 subset (Gandy).

o Cisa X%, _ setwhichisnot M0, _ (Steel).

w1k+2 w1k+2
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A universal M} set of integers

We denote by O the set of codes for computable ordinals, and OX
the set of X-codes for X-computable ordinals.

We denote by O, the set of codes for computable ordinals, coding
for ordinals strictly smaller than a.

Example : we have O = Ow;k and OX = Ofx
1

The set O, plays the same role as (', but for I'I% predicates:

Theorem (Complete M} set)

A set of integers A is 1 iff there is a computable function f : w — w
so that ne A iff f(n) € O.
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M} sets with Kleene's O

Ais || a set of integers a set of sequences
Nt ||nedo f(neO XeAdoeeOX
for some  computable | for some e

function f
Al || ne Ao f(n)e O, XeAoeeOf

for some  computable
function f and some
computable ordinal «

for some e and some
ordinal «



Introduction
M} sets of integers

Suppose A € w is M} of index e and let us denote
Ax =1{n : @e(n) € Ou}

Then A is an increasing union of A% sets:
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M} is the higher analogue of c.e.

The higher analog of c.e. sets of integers is N1 sets of integers. I

This has been sketched in previous slides : one can think of a M}

set of integers as being given by an enumeration with stages {s|s <
k
wS*}.

Bottom setting | Higher analogue

c.e. I'I%
finite c.e. A%
computable Al

& o
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I_I%—randomness I
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Higher randomness

We can now define higher randomness notions

Definition (Martin-Lof 1970)

A sequence is Al-random if it belongs to no A} set of measure 0.

Definition (Sacks)

A sequence is Mi-random if it belongs to no M} set of measure 0.

What about ¥1-randomness?

Theorem (Sacks)

A sequence is X1-random iff it is Al-random.
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M} randomness

The following theorems make Mi-randomness an interesting notion
of randomness:

Theorem (Kechris 1975, Hjorth, Nies 2007)

There is a universal MM} set of measure 0, that is, one containing all
the others.

The set of {X : w > wEk} is a M} set of measure 0. Therefore if

X is I—I%—random, then w{( = w‘fk. We also have some converse:

Theorem (Chong, Nies, Yu 2008)

A sequence X is Mi-random iff it is Al-random and wi® = w§k.
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Borel complexity of I} randoms

Due to its universal nature, the set of I_I% randoms is expected to
have a higher Borel rank. But surprisingly we have:

Theorem (M.)

The set of M} randoms is a MY set of the form:
U Fam

For each F, m a X} closed set.

where

Definition

A Mi-open set is an open set U so that for a M1 set of strings A
we have U = | J{[o] : o € A}. A Zl-closed set is the complement
of a Mi-open set.
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Sketch of the proof : M} randoms is M3

We define:

Definition (M.)
A sequence X is Y1-Solovay-generic if for every uniform union of ¥1

closed sets | J,, Fn, either X isin | J, F, or X belongs to a £1 closed
set of positive measure, included in the complement of |, Fi.

And we have:

A sequence is ¥ 1-Solovay-generic iff it is Mi-random.
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Lowness for M}-randomness

Definition
We say that A is low for M}-randomness if every M1(A)-random is
also Mi-random.

It is clear that any A} binary sequence is low for M}-randomness.
Are there other sequences which are low for I'I}—randomness?

Theorem (Greenberg, M.)

The Al sequences are the only sequences that are low for Mi-
randomness.

The proof uses the equivalence between I'I%—randomness and
¥ 1-Solovay-genericity.
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Other characterization of Mi-randomness

Theorem (Downey, Nies, Weber and Yu 2006)

A Martin-Lof random binary sequence is weakly-2-random iff it com-
putes no non-computable c.e. binary sequence.

There is an analogue characterization of Mi-randomness, using the
notion of higher Turing reduction.

Theorem (Greenberg, M.)

For a ﬂ%—Martin—Léf random sequence X, the following are equiva-
lent:

e X is I'I%-random.

o X higher Turing computes no (non Al) M} sequence.
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Other characterization of Mi-randomness

Theorem (Yu 2012, Franklin, Ng 2010)

For a sequence X, the following are equivalent:

o Xis ﬂ%—Martin—Léf random and does not higher Turing
compute Kleene's O.

e X isin no set F n (), Un with A(F nU,) < 2" where F a
Y 1-closed set and each U, a M} open set uniformly in n.

Theorem (Greenberg, M.)

For a sequence X, the following are equivalent:

e Xis ﬂ%—random.

e X isin noset F n (), U, with \(F n(),Un) =0 where F a
Y 1-closed set and each U, a M} open set uniformly in n.
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Section 3

Z -genericity |




Z%—genericity

Y 1-genericity

Definition (Greenberg, M.)

A sequence is Al-generic if it is in every dense Al-open set.

Definition (Greenberg, M.)

A sequence is weakly-T1-generic if it is in every dense Mi-open set.
A sequence is I'I}—generic if for every I'I%—open set U, either X is in
U or X is in the interior of the complement of /.

Definition (Greenberg, M.)

A sequence is weakly-Y1-generic if it is in every dense ¥1-open set.
A sequence is X 1-generic if for every ¥ 1-open set U, either X is in
U or X is in the interior of the complement of /.
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Y 1-genericity

Proposition (Greenberg, M.)

For a sequence X the following are equivalent:
o X is Al-generic.
o X is weakly-MNi-generic.

There is a I'I%-generic which is not weakly—l'l%-generic.

Theorem (Greenberg, M.)

For a sequence X the following are equivalent:

o X is X1-generic.

o X is weakly-X1-generic.

o X is Al-generic and wyt = wgk.
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¥ {-genericity (3)

Summary:

weakly—Z%—generic I'I%-generic

g

Z}—generic weakly-i-generic

A

~

Al-generic A wff = w§k Al-generic
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Open questions

What is lowness for ¥1-genericty ?

Definition

An approximation {fs} o of a function f is finite-change if each

Ss<w:
fs(n) changes only finitely often over time.

Does there exists a sequence X such that if X computes a finite-
change approximation of a funtion f, then there is a finite-change
approximation of a function g such that f < g.
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M1-Martin-Lof randomness

Definition
A Mi-open set is an open set U so that for a M1 set of strings A
we have U = | J{[o] : o€ A}

Definition

A Z%—closed set is the complement of a I'I%-open set.

Definition (Hjorth, Nies 2007)

A sequence is M}-Martin-L6f random if it belongs to no set of the
form (1), U, where each U, is a Mi-open set, uniformly in n, with
AUp) <27
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Higher weak-2-randomness

We now transfer to the higher setting the difference between weak-
2-randomness and Martin-Lof randomness.

Definition (Nies 2009)

A set is weakly-M1-random if it is in no set (), U, with A((), Un) = 0
where each U, is a Mi-open set uniformly in n.

The following justifies the terminology weak-MNi-randomness:

Definition (M.)

A set is weakly-X1-Solovay-generic if it is in every uniform union
of ¥i-closed sets which intersects with positive measure every ¥1-
closed sets of positive measure.

A sequence is weakly-X1-Solovay-generic iff it is weakly Mi-random.
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Separation of weak-Ii-randomness from M}-randomness

Theorem (Chong, Yu 2012)

There are sequences which are Mi-Martin-Lf random but not
weakly—l'l%—random.

To prove this theorem, Chong and Yu proved that no sequence
with a left-c.e. approximation is weakly-Mi-random. Also it is well
known that some sequence with a higher left-c.e. approximation is
Mi-Martin-Lof random.

Theorem (Greenberg, Bienvenu, M.)

There are sequences which are weakly-Mi-random but not Mi-
random.

To prove this theorem, we define other restrictions of higher AS
approximations.
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Higher approximations

Definition (Greenberg, Bienvenu, M.)

An approximation { X} o of X'is closed if the set {Xs}

i:kU{X}
is a closed set.

s<w s<w

Theorem (Greenberg, Bienvenu, M.)

No sequence with a closed approximation is weakly-Ii-random.

Definition (Greenberg, Bienvenu, M.)

An approximation {Xs} o of X is collapsing if for every s < w$k,

s<w
the sequence X is not in the closure of {X;}i<s.

Theorem (Greenberg, Bienvenu, M.)

No sequence with a collapsing approximation is I'I%-random. But
such sequences can be weakly-Mi-random.
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Another hierarchy

We can now define another hierarchy, starting with ﬂ%—open sets
and Y1l-closed sets.

The blue sets are M} sets

The are ¥} sets
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Randomness notions along the hierarchy

ck
A sequence is Mi-MLR if it belongs to no I"I;j1 set effectively of
measure 0.

Fact

|

A sequence is weakly—l'l%—random if it belongs to no I"I‘;1 set of
measure 0.

Proposition

| A

For a sequence X, the following are equivalent:

.. wek
e X isin no 5" set of measure 0.

e Xis Ai—random.

A\
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Randomness notions along the hierarchy

Theorem (Greenberg, M.)

For a sequence X, the following are equivalent:
.. wek
@ X isin no ;' set of measure 0.

.. WS
@ X isin no 1,! set of measure 0 for any n.

@ X isin no ﬂ% set of measure 0.

Theorem (Greenberg, M.)

ck
The set of Mi-randoms is M;" .

Question

|

C
Is there some X which is in no £3' set of measure 0 and not Mi-
random?

A\
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Summary

ck ck
I'lz’l -random \ |‘|°2’1 -random

Z%—Solovay generic ﬂ%—random — weakly—l'l%—random
Al-random A wf = wk weakly->1-Solovay generic
I'I‘;Tk-random » M}-ML-random

{

Al-random
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Open questions

ck
Can the set of Mi-random be ¥, set ?

ck
Is there a M5 set which contains only M}-randoms?
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Equivalent characterization for Mi-randomness

The following are equivalent:

e X is Mi-random.

.. wek
X isin no I, -null set.

ck
@ X is not in the largest Z;Jl nullset.

e X is X1-Solovay generic.
o X is Al-random and wyt = wsk.
o Xis I'I%—Martin—Léf random and higher Turing computes no

non trivial M} sequence.

e X isin no set F n(),U, with A(F n(),Un) = 0 where F a
ck
Y1-closed set and (), U, a M5* set.
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Thank youI
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