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Exact real numbers

can be given in different formats:
» Cauchy sequences (of rationals, with Cauchy modulus).
» Infinite sequences (“streams”) of signed digits {—1,0,1}, or
» {—1,1, 1} with at most one L ( “undefined”): Gray code.
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Exact real numbers

can be given in different formats:
» Cauchy sequences (of rationals, with Cauchy modulus).
» Infinite sequences (“streams”) of signed digits {—1,0,1}, or
» {—1,1, 1} with at most one L ( “undefined”): Gray code.
Want formally verified algorithms on reals given as streams.

» Consider formal proofs M and apply realizability to extract
their computational content.

» Switch between different formats of reals by decoration:
VA = V(x €l — A)) (abbreviated V)¢, A).

» Computational content of x € ““/ is a stream representing x.
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Representation of real numbers x € [—1, 1]
Dyadic rationals:

k
D oeir  With ky € {~1,1}.

n<m
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Representation of real numbers x € [—1, 1]
Dyadic rationals:

k
D oeir  With ky € {~1,1}.

n<m

with 1 := —1. Adjacent dyadics can differ in many digits:

LY 1111, LN 1111.
16 16
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Cure: flip after 1. Binary reflected (or Gray-) code.
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Cure: flip after 1. Binary reflected (or Gray-) code.
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9

4/26



Problem with productivity:
1111 +1111--- =7 (or LRLL... + RRRL---=7)

What is the first digit? Cure: delay.
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2:2WH with k, € {—1,0,1}.
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Widely used for real number computation. There is a lot of

redundancy: 11 and 01 both denote —%.
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Problem with productivity:

1111 +1111--- =7 (or LRLL... + RRRL:-- =

What is the first digit? Cure: delay.
» For binary code: add 0. Signed digit code

kn _
2:2WH with k, € {—1,0,1}.

n<m

Widely used for real number computation. There is a lot of

redundancy: 11 and 01 both denote —%.

> For Gray-code: add U (undefined), D (delay), Fin, g (finally

left / right). Pre-Gray code.
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Pre-Gray code
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Pre-Gray code

After computation in pre-Gray code, one can remove Fin, by

UoFin, — aoR, D o Fin,; — Fin, o L.
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RRRLLL. .. RLRLLL. .. RUDDDD...

all denote %
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RRRLLL. .. RLRLLL. .. RUDDDD...

all denote % Only keep the latter to denote % Then, generally,

» U occurs in a context UDDDD ... only, and
» U appears iff we have a dyadic rational.

Result: unique representation, called pure Gray code.
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Average for signed digit streams

Goal: n
X
i (x,y €% = o F e ),
e
Xaye[_lvl] x+y
2 E[—l,l]
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Average for signed digit streams

Goal: n
X
VS (x,y € = oL e ).

————

vae[_lvl] me[_l 1]
2 ?

> Need to accomodate streams in our logical framework.

» Model streams as “cototal objects” in the (free) algebra |
given by the constructor C: SD — | — |

Intuitively, ko, k1, k2 ... represents

o0

kn _
EZEFH' with k, € {—~1,0,1}.
n=0
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q) P T
(X) 1= {x | FocspToex(x = XK
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. . x' + k
O(X) == {x| FhespIvex(x = > )}

Then

| := pux®d(X) least fixed point
“l = vxP(X) greatest fixed point
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. . x' + k
O(X) == {x| FhespIvex(x = > )}

Then

| := pux®d(X) least fixed point
“l = vxP(X) greatest fixed point

satisfy the (strengthened) axioms

P(INX)CTX—=1CX induction
XCO(*ITUuX) =X coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property ®(X) = X).
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Goal: compute the average of two stream-coded reals. Prove

X+Yy
¥ (T € ).

Computational content of this proof will be the desired algorithm.
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X+Yy
¥ (T € ).

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P, Q of averages, @ with a “carry” i € Z:

+ +y+i
—Lixye ), Qi={2—

P:={ | x,y €l i € SDy},

Suffices: Q satisfies the clause coinductively defining /. Then by

the greatest-fixed-point axiom for “°/ we have @ C “°/. Since also
P C @ we obtain P C /, which is our claim.
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Q satisfies the “/-clause:

P Xy
nc vnc Elr Elr Elr (X+y+l _ 4 +k)
i€SDy V x,yecol —jeSDy—keSD—x/,y’€col 4 - 2 :
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Q satisfies the “/-clause:

P Xy
nc vnc Elr Elr Elr (X+y+l _ 4 +k)
i€SDy V x,yecol —jeSDy—keSD—x/,y’€col 4 - 2 :

Proof. Define J,K: Z — Z such that
Vi(i = J(i) +4K(i)) Vi([J()I <2) Vi(lil <6 —[K()[<1)

Then we can relate *:% and X+Y+’ by

N A L) S T
4 2 ‘
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By coinduction we obtain Q C </:

x+y+i

)z e ).

nc(r r _
vz (EliESDgax,yGCOI(Z -
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By coinduction we obtain Q C </:

x+y+i
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By coinduction we obtain Q C </:

x+y+i

)z e ).

nc T r _
vz (EliESDgax,yGCOI(Z -
This gives our claim

X+
g£wc—5¥ecwy

Implicit algorithm. P C @ computes the first “carry” i € SD, and
the tails of the inputs. Then f: SDy x | x | — | defined
corecursively by

f(i> Cd(u)v Ce(v)) = CK(k+I+2i)(f(J(k + 1+ 2i)v u, V))

is called repeatedly and computes the average step by step.
(Here (d, k), (e, 1) € SD").
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Realizability

Define the realizability extension " of ® by

O (Y) == {(u,x) [ g =1 (X=X/+kAu=C(U’))}
: u,x (d,k)eSD" I(v’ x)eY > d

Let

I" ;== py®(Y) least fixed point
(°N"=vyd'(Y) greatest fixed point

satisfying the (strengthened) axioms

I'NY)CY—=I"CY induction
Y CO((“HuY)—=Y (U coinduction.
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From the proof

X+y
M Efyecol(i

cof
26)

extract a term et(M).
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From the proof

xX+y
M: v)r:fyecol(T

extract a term et(M). The Soundness theorem gives a proof of

6 COI)

U(M) 1 o (2 € 1)

Brouwer-Heyting-Kolmogorov interpretation:
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From the proof

X+y
M: foyeco,(T

extract a term et(M). The Soundness theorem gives a proof of

6 COI)

et( M) r V;Cyeco/ (m

€
5 )

Brouwer-Heyting-Kolmogorov interpretation:

Xty €U

ur(xe®)—=vr(ye®)—et(M)(u,v)r( 5

This is a formal verification that et(M) computes the average
w.r.t. signed digit streams.
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Average for pre-Gray code

Method essentially the same as for signed digit streams.
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Average for pre-Gray code

Method essentially the same as for signed digit streams.

> Only need to insert a different computational content to the
predicates expressing how a real x is given.

> Instead of “° for signed digit streams we now need two such
predicates “°G and “°H, corresponding to the two “modes” in
pre-Gray code.
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Algebras G and H

We model pre-Gray codes as “cototal objects” in the
(simultaneously defined free) algebras G and H given by the

constructors
LR,:G— G
U:H—->G
Fin,: G—H
D:H—H
with a € {—1,1}.
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Predicates “°G and “°H
Let

x =1 x'

MG Y) = {x | FoexTaepsplx = —a"—2) V Fey(x = 3 },

. . x'+1 . X'
A(X,Y) == {x| FvexTacpsp(x = aT) V ey (x = E)}

and define

(°G,“°H) := v(x,v)(T(X, Y), A(X, Y)) (greatest fixed point)
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Predicates “°G and “°H

Let
r T X/ - 1 r /
F(X,Y) ={x| FvexTacpsp(x = —a 5 )V Foey(x = 5 )}
. . x'+1 . X'
AX,Y) = 1{x | FoexTaepsp(x = a=5—) VIoey(x = )}

and define
(°G,“°H) := v(x,v)(T(X, Y), A(X, Y)) (greatest fixed point)
Consequences:

/ /
nc x —1 r X

xeeog (T ceogFacpsp(x = —a > )V Feeeon(x = 5))

n r r x'+1 r x'
XECOH(HX’ECOGHaGPSD(X =a 5 ) \% 3X’GCOH(X = E))
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Lemma (CoGMinus)

V(G (—x) — *Gx),
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Lemma (CoGMinus)

VIC(9G (—x) — ©Gx),
VIC(OH(—x) — Hx).

Implicit algorithm. f: G — G and f': H — H defined by

f(LR4(v)) = LR_,(uv), f'(Fina(u)) = Fin_,(u),
F(U(v)) = U(f(v)), F(D(v)) = D(f'(v)).
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Using CoGMinus we prove that °°G and “°H are equivalent.
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Using CoGMinus we prove that °°G and “°H are equivalent.

Lemma (CoHToCoG)

Vil (“Hx — “°Gx),
Vil (€°Gx — “°Hx).
Implicit algorithm. g: H — G and h: G — H:

g(Fins(u)) = LRa(f~(v)),  h(LRa(u)) = Fin,s (£~ (v)),
g(D(v)) = U(v), h(U(v)) = D(v)

where f~ := ¢CoGMinus (cL denotes the function extracted from
the proof of a lemma L). No corecursive call is involved.
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The proof of the existence of the average w.r.t. Gray-coded reals is
similar to the proof for signed digit stream coded reals. To prove

X+Yy
gfyecoc(T € “G)
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The proof of the existence of the average w.r.t. Gray-coded reals is
similar to the proof for signed digit stream coded reals. To prove

X+Yy
gfyeCOG(T € “G)

consider again two sets of averages, the second one with a “carry”:

X+y X+y+/

€%}, Q={——"—|x,y€“G,ieSDy}.

Suffices: @ satisfies the clause coinductively defining “°G. Then by

the greatest-fixed-point axiom for “°G we have @ C “°G. Since also
P C @ we obtain P C °°G, which is our claim.
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Lemma (CoGAvToAvc)

x+y X4y +i
vg?yecocaf:ESDz Eli/,y/ECOG( 2 == 4 )
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Proof needs CoGPsdTimes: V¢ pgpViceog(ax € ©°G). Rest easy,
using CoGClause.
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Lemma (CoGAvToAvc)

x+y X4y +i
vﬁ?yGCOGHfESD2 Hf(/,y/ecoc( 2 == 4 )

Proof needs CoGPsdTimes: V¢ pgpViceog(ax € ©°G). Rest easy,
using CoGClause.

Implicit algorithm.
Write f* for cCoGPsdTimes and s for cCoHToCoG.

f(LRa(u), LRy (4

) = (a+d, f(—a,u), f (-2, u)),
f(LR4(u), U(v)
Ra(u)
)

a, *(—a, u),s(v)),
a,s ( )vf (*av u)),
0,s(v), s(v)).

f(U(v), LR,
F(U(v), U(V

u

~— — — —
~ o~ o~ o~
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Lemma (CoGAvcSatColCl)

. "y’ i
¥ o Ticsm, Thesp T e (YT = Ta K
IGSD2 y€e°G—jeSDr—keSD—x’,y’€°°G 4 - 2 :

(As in ColAvcSatColCl we need functions J, K with
%k + yTH +I B X+y+J(4k+/+2i) + K(k+ I+2/)

4 2
Then CoGClause gives the claim.)
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Lemma (CoGAvcSatColCl)

. "ty +j
¥ o Ticsm, Thesp T e (YT = Ta K
iesD, Vxyecoc JjesD, TkesDIn 7 ecoq 4 = 5 .

(As in ColAvcSatColCl we need functions J, K with
%k + yTH +I B X+y+J(4k+/+2i) + K(k+ I+2/)

4 2
Then CoGClause gives the claim.)

Implicit algorithm.
f(i, LRa(u), LRy (1))
f(i, LRa(u), U(v))
Ra(v))

)

(J(a+3a'+2i), K(a+3a'+2i), f*(—a,u), f* (=&, )
(J(a+2i),K(a+2i),f*(—a,u),s(v)),
(J(
(J(

K
J(a+2i), K(a+2i),s(v), f*(~a,u)),
J(2i), K(2i),s(v), s(v")).

(7, U(v), LRy(u
(7, U(v), U(V

22 /26



Lemma (CoGAvcToCoG)

X+y+i

VEC(H;yGCOGHf€SD2(z = ) = “G(2)),

X+y+i

YD) = H(z).

nc r r —
v (Hx,yECOGHIGSDg(Z =
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Lemma (CoGAvcToCoG)

nc T T X + y + i CO,

vz (Elx,yGCOGzlieSDz(Z = 4 ) - G(Z))a
T r r X + y + i

V2 GayeccTiesp, (2 = ————) = “H(2)).

In the proof we need a lemma:

Here V" is an (inductively defined) variant of \V where only the
content of the right hand side is kept.
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Implicit algorithm.

g(i,u,u") =let (ir, k, uy, uy) = cCoGAveSatColICl(/, u, u') in
case cSdDisj(k) of
0 — U(h(i, u1, uy))
a — LRa(g(—ai, F*(—a,u1), F*(—a, uy))),
h(i,u,u’) =let (i1, k, u1, u}) = cCoGAveSatColCl(i, u, u') in
case c¢SdDisj(k) of
0 — D(h(i1, u1, uy))
a — Fin,(g(—ait, f*(—a, u1), F*(—a, u}))).
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Theorem (CoGAverage)

n Xty
X?yGCOG(T € COG).
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Theorem (CoGAverage)
n Xty
Viyewoe(—— € 76).

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.
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Conclusion

» Want formally verified algorithms on real numbers given as
streams (signed digits or pre-Gray code).

» Consider formal proofs M and apply realizability to extract
their computational content.

» Switch between different representations of reals by

> labelling V as V3¢ and
» relativise x to a coinductive predicate whose computational
content is a stream representing x.

» The desired algorithm is obtained as the extracted term et(M)
of the proof M.

» Verification by (automatically generated) formal soundness
proof of the realizability interpretation.
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