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By ex falso sequitur quodlibet, or simply ex falso for short, we mean
intuitively the idea that we can derive anything from a contradiction. In
slightly more formal terms, we mean a principle that allows us to derive all
formulas of the form

¬C ⊃ (C ⊃ A)

where A and B are arbitrary formulæ.
By tertium non datur we mean a principle that allows us to derive all
formulas of the form

B ∨ ¬B
where A is an arbitrary formula, and by double negation elimination we
mean a principle that allows us to derive all formulas of the form

¬¬D ⊃ D.
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Lemma

Over ML it is equivalent to have → ¬A ⊃ (A ⊃ B) as initial
sequents for all formulas A and B and to have the rule
weakening:right.

Proof.

If we add weakening:right to ML we can prove ex-falso
quodlibet in the following straightforward way:

A→ A
¬A,A→

w:r¬A,A→ B

A,¬A→ B

¬A→ A ⊃ B
→ ¬A ⊃ (A ⊃ B)

Pedro Francisco Valencia Vizcáıno University of Greifswald
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Equivalence between ex falso and weakening right

Perhaps a bit less obvious is the fact that with this form of
ex-falso quodlibet ML proves Weakening-right:

A→ A

A→
→ ¬A

A→ ¬A
A→ A ∧ ¬A

→ ¬A ⊃ (A ⊃ B)

¬A→ ¬A
A→ A B → B

A ⊃ B,A→ B

¬A ⊃ (A ⊃ B),¬A,A→ B
Cut¬A,A→ B

A ∧ ¬A,A→ B

A,A ∧ ¬A→ B

A ∧ ¬A,A ∧ ¬A→ B

A ∧ ¬A→ B
Cut

A→ B

1
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A,Γ→ ∆ ¬A,Γ→ ∆
Γ→ ∆
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Theorem

Cut elimination holds for ML.

Lemma

Let B be an atomic formula. If the sequent Γ→ B is provable
in ML+ then there is a formula F which has B as a subformula
not occurring in the scope of a negation such that F ∈ Γ.

Corollary

If A and B are atomic formulas then

ML 0 ¬A,A→ B
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Russell’s Paradox

A→ A

→ A ⊃ ¬A
A→ A ¬A→ ¬A

A ⊃ ¬A,A→ ¬A
A→ ¬A

A→ A ∧ ¬A

A→ A

¬A,A→
A ∧ ¬A,A→
A,A ∧ ¬A→

A ∧ ¬A,A ∧ ¬A→
A ∧ ¬A→

Cut
A→
→ ¬A
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Russell’s Paradox

→ ¬A ⊃ A

A→ A

¬A,A→
A,¬A→
¬A→ ¬A A→ A

¬A ⊃ A,¬A→ A
Cut

¬A→ A

A→ A

¬A,A→
A,¬A→
¬A→ ¬A

¬A→ A ∧ ¬A

A→ A

¬A,A→
A ∧ ¬A,A→
A,A ∧ ¬A→

A ∧ ¬A,A ∧ ¬A→
A ∧ ¬A→

Cut
¬A→
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Russell’s Paradox

P1 P2→
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Some Other Principles

Usually the principle ¬¬A ∧ ¬¬B ⊃ ¬¬(A ∧B) is considered
intuitionistic, but we can prove it in ML.

Pedro Francisco Valencia Vizcáıno University of Greifswald
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Das nicht nichtet sich selbst

We have been able to separate simple negation, formally, in the
sequent calculus, as follows:

A ⊃ B∧¬B ⇒ ¬¬(A ⊃ B∧¬B)⇒ A ⊃ ¬C∧¬¬C ⇒ ¬¬(A ⊃ ¬C∧¬¬C)⇒ ¬A
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Theorem

The following hold on the basis of minimal logic:

1 Double negation elimination implies Ex falso and Tertium
non datur.

2 Ex falso + Tertium non datur imply Double negation
elimination.

3 Ex falso does not imply Tertium non datur.

4 Tertium non datur does not impy Ex falso.

5 Tertium non datur does not imply Double negation
elimination.

Pedro Francisco Valencia Vizcáıno University of Greifswald
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Omniscience Principles

Corollary

ML+ does not prove ¬∀x¬A(x)→ ∃xA(x) if A is an atomic
formula.

Theorem

¬∀xA(x)→ ∃x¬A(x) is not provable in ML+.

This means in particular that one shouldn’t blame the excluded
middle for the derivability of the omniscience principle, it’s
both excluded middle and ex falso that are responsible for the
omniscience principle, and hence, on the basis of minimal logic,
it is double negation elimination that is responsible for the
omniscience principle and not tertium non datur.
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Definition

A first order formula is geometric if it uses only ∃,∧,∨.
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Lemma (Pulling up the ∃)
Let C be a geometric formula. Then there is a geometric
formula D such that D has all its existential quantifiers from the
top down of its parsing tree and such that D → C and C → D.
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∃x∃y(A(x) ∨B(y))∃x

∃y(A(a) ∨B(y))∃y

∨ A(a) ∨B(b)

A(a) B(b)
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Take

Γ→ ∆

First, we transform each side into an infinitary disjunction.
(Just as in the finitary case except that now we may have
infinitely many disjuncts.)
Next we can write the succeedent ∆ in the desired form (the
only difference being that we might get an infinitary disjunction
instead of a finitary one).
After that we break up the disjunction on the left into
(possibly) infinitely many pieces. And then we deal with each
piece individually. Finally we get the desired canonical form,
because after this, it is just a matter of rearranging the ∃’s and
pulling them out, just like in the finitary case.

Pedro Francisco Valencia Vizcáıno University of Greifswald
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Theorem

The new inference rules scheme for infinitary geometric theories
is equivalent to the addition of initial sequents corresponding to
the infinitary geometric axioms.
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Definition

The infinitary non-geometric degree of a formula is defined as

1 ∂¬G(A) = 0 if A is geometric

2 ∂¬G(∀xA) = ∂¬G(A) + 1

3 ∂¬G(¬A) = ∂¬G(A) + 1

4 ∂¬G(
∨
Ai) = sup({∂¬G(Ai)})

5 ∂¬G(∃xA) = ∂¬A(A)

6 ∂¬G(A ∧B) = sup(∂¬G(A), ∂¬G(B))

7 ∂¬G(A ⊃ B) = sup(∂¬G(A), ∂¬G(B)) + 1
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Lemma

Let C be a formula of infinitary non-geometric degree α > 0 and
P1 and P2 proofs of Γ→ ∆ and Π→ Λ of infinitary
non-geometric degrees less than α. Then we can make a proof of
Γ,Π− C → ∆− C,Λ of infinitary non-geometric degree less
than α.
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Theorem

Let T be an infinitary geometric theory and Γ→ ∆ an infinitary
geometric sequent, such that T proves Γ→ ∆ in classical logic.
Then T proves Γ′ → ∨

∆′ in intuitionistic logic, where Γ′ and
∆′ are alphabetically equivalent to Γ and ∆, respectively, ie,
they may have different free variables, and they do not exhaust
the free variables in the language, in fact they leave infinitely
many free variables unused.
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Operators for Computation over Partially Or-
dered Structures
Strength and Applications

Pedro Francisco Valencia Vizcaı́no
Universität Greifswald
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Basic Concepts
Let A = (UA;D; f1, . . . , fn;R1, . . . , Rm,=,≤) be an algebraic structure with two different constants a, b ∈
D. An A-machine M (see [?]) has registers that may be occupied by elements of UA; index registers which
may only be occupied by positive natural numbers, and M may, according to its program, execute any of the
following types of instructions:

• Computation instructions:
` : Zj := dk (dk ∈ D)
` : Zj := fk(Zj1, . . . , Zjmk

) ( e.g. ` : Zj := Zj1 + Zj2)
• Branching instructions:

` : if Zi = Zj then goto `1 else goto `2
` : if Rk(Zj1, . . . , Zjnk

) then goto `1 else goto `2
` : if Zj1 ≤ Zjnk

then goto `1 else goto `2
• Copy instructions:

` : ZIj := ZIk
For indirect addressing we have the following index instructions:

` : Ij := 1

` : Ij := Ij + 1

` : if Ij = Ik then goto `1 else goto `2

. . . b b a a a a . . .

l0l1

l2

l3 . . .

Halt

l1

...1582
l1

Let f be an A-computable function. Then ν[f ](x1, . . . , xn) is defined as the set

{y ∈ UA | ∃(y2, . . . , ym) ∈ UA∞ [f (x1, . . . , xn, y, y2, . . . , ym) = a]}

A ν-operator instruction in a program takes the form

Zj := y ∈ ν[f ](Z1, . . . , ZI1)

for some (non-deterministically obtained) value of y (see [?]).

x3 − 11x

−5.5−5−4.5−4−3.5−3−2.5−2−1.5−1−0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−40
−30
−20
−10

10
20
30
40

Zj := y ∈ {−2
√

11, 0, 2
√

11}

Definitions

A supremal element

Sideways minimal upper bounds

1

2
3

4
5

If neither x ≤ y nor y ≤ x we write x ⊥ y.
Let Y ⊆ UA. A supremal element in UA for Y is an element p ∈ UA such that

1. Y 6= ∅→ ∃c ∈ Y (c ≤ p)

2. ∀c ∈ Y [(c ≤ p) ∨ (c ⊥ p)]

3. ∀p′ satisfying 1 and 2 above [(p ≤ p′) ∨ (p ⊥ p′)].
Let Y ⊆ UA. A sideways minimal upper bound (smub) element in UA for Y is an element p ∈ P such that

1. Y 6= ∅→ ∃c ∈ Y (c ≤ p)

2. ∀c ∈ Y [(c ≤ p) ∨ (c ⊥ p)]

3. ∀d0 ∈ Y [(d0 < p)→ ∃d1 ∈ Y (d0 < d1 ≤ p)]

4. ∀p′ satisfying 1 to 3 above [(p ≤ p′) ∨ (p ⊥ p′)].

νsmub is an operator which for an (UA,≤)-computable function f returns non-deterministically some side-
ways minimal upper bound element in UA of f−1[{a}]. Analogously νsup returns non-deterministically some
supremal element of f−1[{a}] and νmax returns non-deterministically some maximal element of f−1[{a}].

Sample theorems

Relation between νsup and νmax

S1

p

y = −1
p x+ 1

s−1(p)

(Diagram in GeoGebra)

We note that in Rfield the operators νsup and νsmub coincide: they both just give us the usual supremum of
the zero-set.

Lemma. The stereographic projection’s inverse is νsup-computable in the algebraic structure Rfield.

Lemma. From the stereographic projection’s inverse we can construct a function from R to a bounded νsup-
computable set.

Theorem. Given a νsup-computable bijection between the real line and a νsup-computable bounded set, every
νmax-computable function is νsup-computable.

Lemma. One could utilise the νsmub operator to perform any of the following tasks:

1) Check whether for a computable function f, and a vector ~x, the following equality holds

f (~x) = a.

2) Check whether for a computable function f and an arbitrary prefix vector ~x, there exists a vector ~y such
that

f (~x ? ~y) = a.

3) Construct a function g~x,~c such that
[1.] g~x,~c(~x) = ~c.

[2.] ∀~y ∈ UA∞ [~y 6= ~x→ (g~x,~c(~y) = P(~y))].

Main Results

Theorem. Let minimality be decidable in UA. Then one could search for zeroes without non-halting issues
with a νsup-machine.

Theorem. Let f be an A-computable function such that f−1[{a}] is finite. Then all the elements of f−1[{a}]
can be given algorithmically with νsmub-machines over A.

a b

Applications

Proposition. Let N ⊆ D and f be an A-computable function. Suppose further that ∀i ∈ N(f (i) = a ∨ f (i) =
b). A νmin-oracle machine can determine precisely whether ∀i ∈ N(f (i) = a) or whether ∃j ∈ N such that
f (j) = b. Moreover it can produce such a j in one step.

Proposition. Let ϕ be any sentence of the language of PA. Then a νmax-oracle machine can decide in one step
whether ϕ is a theorem of PA.

References
[1] Blum, L., Shub, M., and Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive funcitons and universal

machine; Bulletin of the Amer. Math. Soc. 21 (1989), 1–46.

[2] Moschovakis, Y. N.: Abstract first order computability; Transactions of the American Mathematical Society 138 (1969), 427–464.
http://dx.doi.org/10.2307/1994926

[3] Gaßner, C.: Computation over Algebraic Structures and a Classification of Undecidable Problems; (2015), accepted in MSCS.

[4] Gaßner, C.: ; (2015), CCA.

[5] Munkres, J. R.: Topology; Second Edition; Prentice Hall (2000), 369–370.

[6] Gaßner: On Relativizations of the P =? NP Question for Several Structures, Electronic Notes in Theoretical Computer Science ENTCS 221 (2008), 71-83.

Pedro Francisco Valencia Vizcáıno University of Greifswald
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Let Y ⊆ UA. A supremal element in UA for Y is an element p ∈ UA such that

1. Y 6= ∅→ ∃c ∈ Y (c ≤ p)

2. ∀c ∈ Y [(c ≤ p) ∨ (c ⊥ p)]

3. ∀p′ satisfying 1 and 2 above [(p ≤ p′) ∨ (p ⊥ p′)].
Let Y ⊆ UA. A sideways minimal upper bound (smub) element in UA for Y is an element p ∈ P such that

1. Y 6= ∅→ ∃c ∈ Y (c ≤ p)

2. ∀c ∈ Y [(c ≤ p) ∨ (c ⊥ p)]

3. ∀d0 ∈ Y [(d0 < p)→ ∃d1 ∈ Y (d0 < d1 ≤ p)]

4. ∀p′ satisfying 1 to 3 above [(p ≤ p′) ∨ (p ⊥ p′)].

νsmub is an operator which for an (UA,≤)-computable function f returns non-deterministically some side-
ways minimal upper bound element in UA of f−1[{a}]. Analogously νsup returns non-deterministically some
supremal element of f−1[{a}] and νmax returns non-deterministically some maximal element of f−1[{a}].

Sample theorems

Relation between νsup and νmax

S1

p

y = −1
p x+ 1

s−1(p)

(Diagram in GeoGebra)

We note that in Rfield the operators νsup and νsmub coincide: they both just give us the usual supremum of
the zero-set.

Lemma. The stereographic projection’s inverse is νsup-computable in the algebraic structure Rfield.

Lemma. From the stereographic projection’s inverse we can construct a function from R to a bounded νsup-
computable set.

Theorem. Given a νsup-computable bijection between the real line and a νsup-computable bounded set, every
νmax-computable function is νsup-computable.

Lemma. One could utilise the νsmub operator to perform any of the following tasks:

1) Check whether for a computable function f, and a vector ~x, the following equality holds

f (~x) = a.

2) Check whether for a computable function f and an arbitrary prefix vector ~x, there exists a vector ~y such
that

f (~x ? ~y) = a.

3) Construct a function g~x,~c such that
[1.] g~x,~c(~x) = ~c.

[2.] ∀~y ∈ UA∞ [~y 6= ~x→ (g~x,~c(~y) = P(~y))].

Main Results

Theorem. Let minimality be decidable in UA. Then one could search for zeroes without non-halting issues
with a νsup-machine.

Theorem. Let f be an A-computable function such that f−1[{a}] is finite. Then all the elements of f−1[{a}]
can be given algorithmically with νsmub-machines over A.

a b

Applications

Proposition. Let N ⊆ D and f be an A-computable function. Suppose further that ∀i ∈ N(f (i) = a ∨ f (i) =
b). A νmin-oracle machine can determine precisely whether ∀i ∈ N(f (i) = a) or whether ∃j ∈ N such that
f (j) = b. Moreover it can produce such a j in one step.

Proposition. Let ϕ be any sentence of the language of PA. Then a νmax-oracle machine can decide in one step
whether ϕ is a theorem of PA.
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Pedro Francisco Valencia Vizcáıno University of Greifswald

Operators for Computation over Partially Ordered Structures



Operators for Computation over Partially Or-
dered Structures
Strength and Applications

Pedro Francisco Valencia Vizcaı́no
Universität Greifswald
Institut für Mathematik und Informatik
p.f.valencia.vizcaino@uni-greifswald.de — +49 3834 86-4663

Basic Concepts
Let A = (UA;D; f1, . . . , fn;R1, . . . , Rm,=,≤) be an algebraic structure with two different constants a, b ∈
D. An A-machine M (see [?]) has registers that may be occupied by elements of UA; index registers which
may only be occupied by positive natural numbers, and M may, according to its program, execute any of the
following types of instructions:

• Computation instructions:
` : Zj := dk (dk ∈ D)
` : Zj := fk(Zj1, . . . , Zjmk

) ( e.g. ` : Zj := Zj1 + Zj2)
• Branching instructions:

` : if Zi = Zj then goto `1 else goto `2
` : if Rk(Zj1, . . . , Zjnk

) then goto `1 else goto `2
` : if Zj1 ≤ Zjnk

then goto `1 else goto `2
• Copy instructions:

` : ZIj := ZIk
For indirect addressing we have the following index instructions:

` : Ij := 1

` : Ij := Ij + 1

` : if Ij = Ik then goto `1 else goto `2

. . . b b a a a a . . .
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l3 . . .

Halt

l1

...1582
l1

Let f be an A-computable function. Then ν[f ](x1, . . . , xn) is defined as the set

{y ∈ UA | ∃(y2, . . . , ym) ∈ UA∞ [f (x1, . . . , xn, y, y2, . . . , ym) = a]}

A ν-operator instruction in a program takes the form

Zj := y ∈ ν[f ](Z1, . . . , ZI1)

for some (non-deterministically obtained) value of y (see [?]).
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We note that in Rfield the operators νsup and νsmub coincide: they both just give us the usual supremum of
the zero-set.

Lemma. The stereographic projection’s inverse is νsup-computable in the algebraic structure Rfield.

Lemma. From the stereographic projection’s inverse we can construct a function from R to a bounded νsup-
computable set.

Theorem. Given a νsup-computable bijection between the real line and a νsup-computable bounded set, every
νmax-computable function is νsup-computable.

Lemma. One could utilise the νsmub operator to perform any of the following tasks:

1) Check whether for a computable function f, and a vector ~x, the following equality holds

f (~x) = a.

2) Check whether for a computable function f and an arbitrary prefix vector ~x, there exists a vector ~y such
that

f (~x ? ~y) = a.

3) Construct a function g~x,~c such that
[1.] g~x,~c(~x) = ~c.

[2.] ∀~y ∈ UA∞ [~y 6= ~x→ (g~x,~c(~y) = P(~y))].

Main Results

Theorem. Let minimality be decidable in UA. Then one could search for zeroes without non-halting issues
with a νsup-machine.

Theorem. Let f be an A-computable function such that f−1[{a}] is finite. Then all the elements of f−1[{a}]
can be given algorithmically with νsmub-machines over A.
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Applications

Proposition. Let N ⊆ D and f be an A-computable function. Suppose further that ∀i ∈ N(f (i) = a ∨ f (i) =
b). A νmin-oracle machine can determine precisely whether ∀i ∈ N(f (i) = a) or whether ∃j ∈ N such that
f (j) = b. Moreover it can produce such a j in one step.

Proposition. Let ϕ be any sentence of the language of PA. Then a νmax-oracle machine can decide in one step
whether ϕ is a theorem of PA.
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Lemma

One could utilise the νsmub operator to perform any of the
following tasks:

1) Check whether for a computable function f, and a vector ~x,
the following equality holds

f(~x) = a.

2) Check whether for a computable function f and an
arbitrary prefix vector ~x, there exists a vector ~y such that

f(~x ? ~y) = a.

3) Construct a function g~x,~c such that [1.] g~x,~c(~x) = ~c.

∀~y ∈ UA∞ [~y 6= ~x ⊃ (g~x,~c(~y) = P(~y))].
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Theorem

Let minimality be decidable in UA. Then one could search for
zeroes without non-halting issues with a νsup-machine.

Theorem

Let f be an A-computable function such that f−1[{a}] is finite.
Then all the elements of f−1[{a}] can be given algorithmically
with νsmub-machines over A.
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Proposition

Let N ⊆ D and f be an A-computable function. Suppose further
that ∀i ∈ N(f(i) = a ∨ f(i) = b). A νmin-oracle machine can
determine precisely whether ∀i ∈ N(f(i) = a) or whether ∃j ∈ N
such that f(j) = b. Moreover it can produce such a j in one
step.

Proposition

Let ϕ be any sentence of the language of PA. Then a
νmax-oracle machine can decide in one step whether ϕ is a
theorem of PA.
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