
Problem Formulation
Monotropic Programming

Preliminaries
Facts

Analysis of Consistency

Convex Feasibility via Monotropic
Programming

R. S. Burachik

∗School of Information Technology and Mathematical Sciences
University of South Australia

Dedicated to Jonathan M. Borwein
Casa Matemática Oaxaca
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The Convex Feasibility Problem

The problem formulation

Let H be a Hilbert space and let Cn,n = 1, ...,m be convex
closed subsets of H. The convex feasibility problem is to find
some point

x ∈
m⋂

n=1

Cn (CFP)

when this intersection is non-empty.
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The Convex Feasibility Problem

The CFP has wide ranging applications:
medical imaging, computerised tomography, signal
processing.
Partial differential equations (Dirichlet problem), complex
analysis (Bergman kernels, conformal mappings);
Subgradient algorithms with application in solution of
convex inequalities, minimization of convex nonsmooth
functions.
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The Convex Feasibility Problem

Fact (Bauschke-Borwein, 1996)

CFP equivalent to problem involving only two convex and
closed sets in Hm = H × . . .× H consisting of m copies of
H,with the additional advantage that one of these sets is a
linear subspace
Hence, from now on we assume that we are dealing with
only two (possibly disjoint) closed convex sets.
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Primal problem
Dual Model

Monotropic Model (Minty, 1960)
(Rockafellar, 1970, 1981, 1998)

min
m∑

i=i

fi(xi) (P)

subject to (x1, . . . , xm) ∈ S,

fi : Hi → R ∪ {+∞} proper, convex,
S ⊆

∏m
i=1 Hi is a closed linear subspace

(P) will be our primal model.
(P) has a very symmetric dual problem:

7—21
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Primal problem
Dual Model

Dual of (P)

max
m∑

i=i

−f ∗i (x∗i ) (D)

subject to (x∗1 , . . . , x
∗
m) ∈ S⊥,

f ∗i : Hi → R ∪+∞ Fenchel conjugate of fi ,
S⊥ ⊆

∏m
i=1 Hi is the subspace orthogonal to S
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Primal problem
Dual Model

Our aim:

Formulate CFP as a monotropic programming problem

Use duality for analysing its consistency (i.e., deduce
whether a solution exists or not).
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Basic Ingredients:

The Fenchel conjugate of f is f ∗ : H → R ∪ {+∞}

f ∗(v) := supx∈H{〈v , x〉 − f (x)}

The subdifferential of f at x is defined by

∂f (x) := {v ∈ H | 〈v , y − x〉 ≤ f (y)− f (x), for all y ∈ H} ,

if f (x) ∈ R, and ∅ otherwise.
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Basic Ingredients (II):

For C ⊂ H, the indicator function of C is ιC(x) := 0 if x ∈ C
and ιC(x) := +∞ otherwise.

The the support function of C is

σC(v) := sup
y∈C
〈v , y〉

for v ∈ H

Easy to check (ιC)∗ = σC �
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Basic Ingredients (III):

For ψ1, ψ2 : H → R ∪ {+∞}, their infimal convolution is defined
by

(
ψ1�ψ2

)
(z) := inf

z1+z2=z

{
ψ1(z1) + ψ2(z2)

}
.

For f : H → R ∪ {+∞} recall that the epigraph is the set

epi f := {(x , r) ∈ H × R : f (x) ≤ r}
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Fact (B.-Jeyakumar, 2005):

C,D ⊂ H closed convex:

C ∩ D 6= ∅ ⇐⇒ (0,−1) 6∈ cl (epiσC + epiσD)
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Primal for CFP:

Our problem is (recall we reduced the problem to 2 sets):

find (x , y) ∈ C1 × C2 ⊂ H × H, such that x = y

which can be formulated as

min
(x ,y)∈S

dC1(x) + dC2(y) (P)

where S = {(x , y) ∈ H 2 : x = y}.

14—21
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Dual for CFP:

Using monotropic formulation we obtain its dual:

sup
(v ,w)∈S⊥

− d∗C1
(v)− d∗C2

(w) (D)

where S⊥ = {(u, v) ∈ H 2 : u + v = 0}.

What do we know about this primal-dual pair?

15—21
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Duality facts:

Pro 15.22 and Theo 19.1 from Bauschke-Combettes book yield:

v(P) = v(D) and (D) always has a solution

In this situation, (x , y) solves (P) and (u, v) solves (D).

m
(x , y) ∈ S, (u, v) ∈ S⊥

u ∈ ∂dC1(x) v ∈ ∂dC2(y)

Proof not very direct!
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Consistency and lsc condition
Consistency in terms of dual solution set
Characterisation of Inconsistency in critical case

d∗C(v) = σC(v) + ıB(v) yields:

sup
v∈H
− d∗C1

(v)− d∗C2
(−v) = �

= −min
t∈[0,1]

t
(

inf
‖v‖≤1

σC1(v) + σC2(−v)

)
︸ ︷︷ ︸

Φ(1)

,

which gives an equivalent reformulation of the dual in terms of
Φ(1). Always Φ(1) ≤ 0. Value Φ(1) gives important
information:

17—21
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Consistency and lsc condition
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Consistency results for CFP:

1. Φ(1) < 0 ⇐⇒ 0 /∈ cl (C2 − C1). So C1 ∩ C2 = ∅.

2. Φ(1) = 0 ⇐⇒ 0 ∈ cl (C2 − C1). This leads to two cases:

2.1 If (σC1�σC2 ) is lsc at 0 , then C1 ∩ C2 6= ∅.

(i.e., 0 ∈ (C2 − C1))

2.2 If (σC1�σC2 ) is not lsc at 0 then C1 ∩ C2 = ∅, ∃ (possibly
improper) closed separating hyperplane.

(i.e., 0 ∈ cl (C2 − C1) \ (C2 − C1))
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Characterization of Consistency:

Assume that (σC1�σC2)(0) > −∞. Then (σC1�σC2) is proper,
and TFSAE:

(i) C1 ∩ C2 6= ∅,

(ii) (σC1�σC2) is lsc at 0,

(iii) {0} × R ∩ epi (σC1�σC2) = {0} × R+

Consequently, if epiσC1 + epiσC2 is closed, then C1 ∩ C2 6= ∅.
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Consistency for CFP in the critical case v(D) = 0:

Recall that (D) always has solutions. Assume v(D) = 0. Then:

(a) If v = 0 is unique solution of (D)⇐⇒ C1 ∩ C2 6= ∅.

(b) (D) has multiple solutions if and only if C1 ∩ C2 = ∅. In this
situation, every nonzero dual solution induces a possibly
improper separation of the sets.
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Inconsistency for CFP in critical case d(C1,C2) = 0.
TFSAE:

(i) (P) has no solution.

(ii) 0 ∈ cl(C1 − C2) \ (C1 − C2).

(iii) σC1�σC2 is not lsc at 0.

(v) {0} × R−− ∩ epi (σC1�σC2) 6= ∅.
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