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Introduction: Square functions

Burkholder—Davis—Gundy inequalities:

stgg\/gb(s )aw(s)| |, = |( [ 1otoRme)

Littlewood—Paley—Stein inequalities:

[l Loray ~ H(/Ooo ‘tAetAflgC;t>1/2

LP(Q)

LP(RY)

@ How to define a square function for ¢ : R? — X, where X is a
Banach space ?

@ Can it be used to find vector-valued generalizations of results in
stochastic and harmonic analysis?
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Preliminaries on UMD spaces

In some parts of the talk we need X to have the UMD property.
@ Introduced by Maurey, Pisier, Burkholder 80’s
@ Connections to harmonic analysis, Bourgain, Burkholder ‘83
@ UMD implies reflexivity X** = X
@ All “classical” reflexive spaces have the UMD property.

For details on this and many of the results of the talk:

Ergebisse der Mathematk und ihrer Grenzgebiete.

s Analysis in Banach spaces Volume I:
i Martingales and Littlewood-Paley theory
Analysis in Tuomas Hyténen, Jan van Neerven,
Banach Spaces Mark Veraar, Lutz Weis, 2016

Volume II: Probabilistic Techniques
and Operator Theory
Preprint available on my webpage

) Springer
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~-radonifying operators

H - separable Hilbert space with ONB (hj)
(vn) - independent standard Gaussian random variables
For T € L(H,X)wesay T € v (H, X) if

< 00.

N
T = Th
[ Tl (1. ?Il;e H ;% " 20

We write T € ~(H, X) if additionally > -, v» Th, converges in L2(Q; X).
The norm does not depend on the choice of the ONB.

Proposition (Operator ideal)

~v(H, X) and v~ (H, X) are Banach spaces. Moreover, for S € L(H),
Re L(X)and T € ~(H, X), [|RTSyHx) < IR Tl H,x) [1S]-

Gel'fand 1955, Segal 1956, Gross 1962, 1967, Kallianpur 1971,
Linde—Pietsch 1974, Figiel-Tomczak-Jaegermann 1979
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Standard lemma for the proof of the right-ideal property.
Lemma

For all m x n matrices A= (ay);;", and all (x;)7_q in X,
| S S @5 g < ]| S 3%

LP(Q:X) LP(2X)

| \

Proof.
We may assume ||A|| = 1 and m = n. Define the 2n x 2n-matrix B by

5 A (1 — AA*)1/2
—\ (1- AA)2 _A* '

Then B is unitary and hence G; = Z,z; vibj, 1 < j < nis a sequence of
independent standard Gaussian random variables and thus

n n o 2n n P n . n o
SO T DSRO LT DOLH B b
=1 =1 =1 j=1 j=1 =

Ol
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Connection to Gaussian measures

Proposition

T € ~(H, X) ifand only if TT* is a Gaussian covariance operator. In
this case TT* is the covariance operator of 3~y vn Thp.

From Hoffmann-Jgrgenson and Kwapien 1974 one obtains:

Proposition (Convergence for free)

Let H be infinite dimensional. Then v-.(H, X) = ~(H, X) if and only if X
does not contain a copy of cy.

v

Example

T :0? — cygivenby Th, = WTWZG” satisfies T € vo0(H, X) but

T & v(H, X). The reason is that > ; 7o Thy is not Radon.
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Generalized square functions Kalton—Weis 2003-2016

For suitable ¢ : RY — X define Ty : L2(RY) — X by

Tyh— / s(t)h(1)at.
Rd
Write ¢ € y(RY; X) whenever T; € v(L2(RY), X) and set

161l (rax) = 11Tl (12(ma).x)-

If ¢ = 2N | 14, %, with (Ap)N_, disjoint and xy, . .., Xy € X, then

N
16l gaixy = | 3 1A (AR 25,
n=1

[2(;X)

7(RY; X) = L2(RY; X) if and only if X = Hilbert space (Kwapien 1972).
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Function space properties

The space v(RY; X) behaves as a function space:
o | 9llyaxy = l[91Ally(ro:x)
@ Versions of dominated convergence and Fatou’s lemma hold
@ Versions of Fubini’s theorem hold.
@ Halder inequality [[{¢, ¥)||11(may < [[@lly(max) 191l (rax7)-
@ A converse holds if and only if X is K-convex (Pisier 1982).

0 ol uoary = || (e tottrat) |

Extension property: Given T € £(L?(R?)) there is a tensor extension
T € L(v(RY; X)). Examples: Fourier transform, singular integrals, etc.

Extensions on LP(RY; X) are usually more difficult to obtain:
e.g. F € L(L?(RY; X)) if and only if X = Hiloert space.
Hilbert transform € £(LP(RY; X)) if and only if X is a UMD space.
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Embeddings under type and cotype conditions

X has type p € [1,2] if

HZ 0| paixy = (ZHX”HP> "

Cotype g € [2, >c]: converse estimate with p replaced by q.
Introduced around 1970. See survey paper Maurey 2003.

@ [5(Q) with s € [1,00) has type min{s, 2} and cotype max{s, 2}.

Theorem (Hoffmann-Jargenson—Pisier 1976,

Rosinski-Suchanecki 1980)
Q L[2(RY; X) — ~(RY; X) if and only if X has type 2.
Q (RY; X) — L?(RY; X) if and only if X has cotype 2

Theorem is false if one replaces the exponent 2 by p or g.
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Embeddings under type and cotype conditions

Proof of L2(RY; X) — ~v(RY; X) if X has type 2:
Proof.

Assume X has type 2. Let ¢ = 32N . 14 x,. Then

N
||¢||f2y(Rd;x) =E| Z%)\(An)1/2Xn

=1

2

N
<723 AAn)xl?

n=1
2 2
=T ||¢||L2(Rd;X)'

By density the result follows.
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Embeddings under type and cotype conditions

Fors e R, p € [1,00], WSP(RY; X) - Sobolev space of fractional order
or Besov space B§ ,(R%; X).

Theorem (Kalton-Neerven-V.-Weis 2008)

Let X be a Banach space, p € [1,2] and g € [2, x].
Q@ Wr 2P(RY X) <5 ~(RY; X) if and only if X has type p.
@ +(RY; X) — Wa2P(RY, X) if and only if X has cotype g.

@ Conditions are dimension dependent exceptif p=2 or g = 2.
@ Version for homogenous function spaces holds as well.
@ Proof based on Littlewood-Paley description of the Besov norm.

@ Improvement to Bessel potential spaces is an open problem.
Partial results for p-convex and g-concave spaces in [V. 2013]
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R-boundedness and ~-boundedness

AsetT C L(X,Y) is called v-bounded if for all finite sequences
(To)M_, in T and (x»)N_, in X we have

HZ% 0 2 gqyy = HZ% n

The least admissible C is denoted by ~(7).
Replacing the (vn),>1 by Rademachers leads to R-boundedness.

L2(2:X)

@ R-boundedness = v-boundedness = uniform boundedness.
@ Uniform boundedness implies R-boundedness if and only if X has
type 2 and Y has cotype 2.

Theorem (Kwapien-V.-Weis 2016)

Let X and Y be Banach spaces. TFAE:
@ ~-boundedness implies R-boundedness.
© X has finite cotype.
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The y-multiplier theorem

Theorem (Kalton—Weis 2003-2016)
Let N :RY — L(X,Y) be strongly measurable and such that

v{N(t) : te R9} < C.

Then for all ¢ € v(RY; X), we have N¢ € v..(RY; Y) and

INoIl e, vy < Clloll e x)

A converse holds for all (strong) Lebesgue points of N.

Open problem: N¢ € 4(RY; Y) in general. True in the following cases:
@ t > N(t)14(t)x € v(RY; X) for all Awith \(A) < co and x € X.
@ Y does not contain a copy of ¢y.

Mark Veraar (TU Delft) ~-radonifying operators June 2017 14/23



e Applications
@ Stochastic integration in Banach spaces
@ Fourier multipliers
@ Other applications
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Application |: Stochastic integration in Banach spaces

W - Brownian motion.
Example (Yor 1974, Rosinski—Suchanecki 1980)
Vp e [1,2), 3¢ € L>°(0, 1; ¢P) such that f01 »dW does not exist.

Example (Neerven-V.-Weis 2007)
Vpe[l1,2),3¢ € C%_%(O, 1; ¢P) such that f01 »dW does not exist.

Proposition (Rosinski—Suchanecki 1980)

Jo #dW exists if and only if ¢ € (0, 1; X).

Further: Brzezniak, Garling, McConnell, Neerven, Ondrejat, V. Weis

Neerven—-V.—Weis AOP07: Sharp estimates in terms of v-norms, UMD
Neerven—-V.—Weis AOP12: Sharp regularity results for SPDEs
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Application |: Stochastic integration in Banach spaces

Next we consider more general martingales:

H separable Hilbert space, X Banach space

M e Mg (H): continuous local martingale with values in H.
[M] : Ry x Q — R: quadratic variation process

gm : Ry x Q — L(H): certain cross variation process

Let X be a Banach space. For ¢ : R, x Q — L(H, X) of the form
& =1p(t)h® & where £ : Q — X is Fp-measurable, let

t
/O SAM = (Mh)pnt — (Mh)an)€

and extend this by linearity and approximation.

Goal: characterize integrable processes and prove LP-estimates ?
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Application |: Stochastic integration in Banach spaces

Theorem (Veraar-Yaroslavtsev EJP16)

Let X be a UMD space and M € M, _(H). For a progressive
measurable ¢: R, x Q — L(H, X) the following are equivalent:

(1) @ is stochastically integrable w.r.t. M.
(2) ®qy® € (R4, [M], H; X) as.
Moreover, for all p € (0, ) the following two-sided estimate holds:

E sup
teR,

1/2,p
/cbdMH ~ Ell®an "Iz, m.qx

@ Result holds for cylindrical M which admit a quadratic variation.

@ Reduction to Brownian case.
@ UMD is necessary Garling '86.

@ Results for more general martingales Dirksen—Yaroslavisev 2017.
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Application Il: Fourier multipliers p = q

Ff =f - Fourier transform of f : R — X.
Under suitable conditions on f: RY — X and m: R — £(X, Y) one

~

can define the Fourier multiplier operator: Tp,f = F~1(mf).

Theorem (Operator-valued Mihlin (Weis 2001))

Let X be a UMD space If {m(t) : t € R} and {tm/(t) : t € R} are
R-bounded, then Ty, : LP(R; X) — LP(R; X) is bounded.

@ Widely used for parabolic PDEs.
@ m scalar valued is due to Bourgain 1986.

Necessity of R-boundedness:

Theorem (Clément-Priiss 2001)

If Tm : LP(R; X) — LP(R; X) is bounded, then {m(t) : t € R} is
R-bounded.
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Application Il: Fourier multipliers p < q

Theorem (Rozendaal-V. JFAA17)

Assume X has type > p € [1,2) and Y has cotype < q € (2,c]. Then
d_d
{lgle"am(¢) : € e RI\ {0}} C L(X,Y)
is v-bounded, then T, : LP(RY; X) — LI(RY; X) is bounded.

@ Motivation: polynomial stability theory for semigroups (RV 2017)
@ Limiting case of Theorem if X is p-convex and Y is g-concave.

@ Converse statements available as well.

@ Scalar case considered by Hérmander 1960 for m € L™

@ Full version of Hérmander 1960 under Fourier type assumptions.
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Sketch of the proof: X type pp > pand Y cotype qp < g

Let s, = ¢ — 9 and K = 7({| - |%Sm}). Then

[ Tmfl Lagra; vy
cotype qp of Y
~-extension of F
~-multiplier
~-extension of F
type po of X
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I TmfllLama,vy S (=) "% Tnf |l yysap 0 (e v
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Sketch of the proof: X type pp > pand Y cotype qp < g
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| Tonf gy S (=) Tnf st ey

SN(=A) "5 T ||, (re; vy
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Sketch of the proof: X type pp > pand Y cotype qp < g
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Other applications

Functional calculus: If A is a sectorial operator with a bounded
holomorphic functional calculus on X, then for many ¢ € H>*(Sector)
one has Littlewood—Paley—Stein inequalities (Kalton—Weis 2016):

(LAY X ||y (re it /1) =~ 11X ]| x-

Useful for PDEs. Originally developed by Mclntosh to solve the Kato
square root problem.

Malliavin calculus: vector-valued version of the Meyer inequalities for
UMD spaces X: (Pisier 1988)

IDF ||t (mx)) S I(=L)2Flleix) S IIDF ety + I1F |-

D : LP(Q; X) — LP(Q;~v(H, X)) is the Malliavin derivative

L is the generator of the Ornstein—Uhlenbeck semigroup on LP(Q; X).
Higher order case: (Maas 2010)

Clark—Ocone formula (Maas—Neerven 2008)
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A deep concept in mathematics is usually not an idea in its pure
form, but rather takes various shapes depending on the uses it is
put to. The same is true of square functions. These appear in a
variety of forms, and while in spirit they are all the same, in actual
practice they can be quite different. Thus the metamorphosis of
square functions is all important.”

—Elias M. Stein 1982

Thank you for your attention!
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