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CHLADNI PLATE EXPERIMENTS

Let us start this talk with a video reproducing Chladni plate
experiments from 1787: if you sprinkle fine sand uniformly over
a drumhead and then make it vibrate, the grains of sand will
collect in characteristic spots, called Chladni patterns.
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CHLADNI PLATE EXPERIMENT

If we speed up the vibration frequency, then the pattern formed
by the grains lacks its structure and becomes diffuse again, until
another mode of pure vibration is reached, so that the sprinkled
salt organizes itself again into a new pattern, which is more
complex than the previous one.
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NODAL SET

? Terminology: the nodal set of an eigenfunction f of the
Laplacian is simply the set of its zeros, that is, f−1(0).

? In original Chladni plate experiments, we actually visual-
ize several nodal sets, corresponding to different eigenfunc-
tions of the Laplacian on the square. (The video corresponds
rather to the bilaplacian, because the vibration is delivered
at the center of the plate, and the boundary is not fixed.)

? Nodal sets are also of interest in quantum mechanics. In this
context, an L2-normalized eigenfunction (that is, ‖f‖L2 = 1)
can be seen as the probability density of a free particle in the
energy state associated with f . The nodal set f−1(0) may be
interpreted as the set of locations where the particle is least
likely to be found.
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EIGENFUNCTIONS OF THE LAPLACIAN

? Fix E > 0 (energy), and consider the eigenspace of the usual
Laplacian ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2

on R2 associated with the eigen-

value −4π2 E, that is, the set of eigenfunctions f : R2 → R

that satisfy
∆f = −4π2E f .

? It is a huge set, that in particular contains any (limit of) linear
combination(s) of

x 7→ e2iπ
√

E〈z,x〉

with z ∈ S1 (unit circle of R2), for instance
N

∑
n=1

{
ane2iπ

√
E〈zn,x〉 + ane−2iπ

√
E〈zn,x〉

}
,

where (zn) ⊂ S1 and (an) ⊂ C.
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OUR RANDOM MODEL – BERRY, 1977

? Fix E > 0. The Berry random wave model on R2 with
parameter E, written BE = {BE(x) : x ∈ R2}, is defined as

BE(x) =
1√
2π

∫
S1

e2iπ
√

E〈z,x〉G(dz),

where G = Hermitian Gaussian measure on the unit circle
S1 ⊂ R2.

? Equivalently, BE is the unique (in law) centered, isotropic
Gaussian field on R2 such that ∆BE = −4π2E BE.

? Equivalently, BE is the unique (in law) centered Gaussian
field on R2 such that

E[BE(x)BE(y)] = J0(2π
√

E‖x− y‖)

where J0 = Bessel function of the 1st kind.
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GEOMETRY OF RANDOM NODAL SETS

In this talk, we are interested in the high-energy (as E→ ∞)
geometry of the random nodal set

B−1
E (0) ∩D = {x ∈ D : BE(x) = 0},

where D is a given compact set with smooth boundary.

Courtesy of D. Belyaev

(B−1
E (0) is the reunion of smooth curves with no intersection.)
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NODAL LENGTH

? More precisely our aim is to study the asymptotic behaviour,
as E→ ∞, of the (random) nodal length LE, defined as

LE := total length{B−1
E (0) ∩D}.

? Can we evaluate E[LE]? Var(LE)? Can we prove a CLT?
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EXPECTATION, VARIANCE AND FLUCTUATIONS

? Berry (J. Phys. A, 2002): semi-rigorous computations lead
first to

E[LE] =
π
√

E√
2

.

? For the order of magnitude of the variance, the natural guess
would be ∼

√
E, since we might legitimately expect that

E1/4
{
LE√

E
− π√

2

}
law→ n.d. limit
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EXPECTATION, VARIANCE AND FLUCTUATIONS

? Berry (J. Phys. A, 2002): semi-rigorous computations lead in
fact to

Var(LE) ∼
areaD
512π

log E as E→ ∞.

? According to Berry himself, such a variance reduction "... re-
sults from a cancellation whose meaning is still obscure..." (Berry
(2002), p. 3032)

? Nothing (rigorous or semi-rigorous) is known for this model
about fluctuations (CLT ?).

? Several other related models have been studied so far. We
cite only two such references: Rudnick and Wigman (Ann.
IHP 2007), Krishnapur, Kurlberg and Wigman (Ann. Math.
2013).
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OUR RESULT

Theorem (Nourdin, Peccati, Rossi) As E→ ∞,
?

E[LE] =
π
√

E√
2

, Var(LE) ∼
areaD
512π

log E.

? A CLT for LE holds:

LE −E[LE]

Var(LE)1/2 → N(0, 1).
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STRATEGY OF PROOF

We use the representation (coarea formula)

LE =
∫
D

δ0(BE(x))‖∇BE(x)‖dx (in L2(P))

to deduce the Wiener chaos expansion of LE.
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A SMALL DIGRESSION: TWO SITUATIONS

? In many instances, second order results for sequences of the
form Fk = E[Fk] + ∑∞

q=1 proj(Fk|Cq) can be deduced from
the behaviour of chaotic projections.

? Situation 1: Fk is dominated by one of its projection, and
it inherits the rigid asymptotic structure of sequences inside
a Wiener chaos (see the next slide).

? Situation 2: no single projection dominates, and interac-
tions have to be dealt with.
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A SMALL DIGRESSION: A RIGID STRUCTURE

Fix q ≥ 2, and let Fk ∈ Cq, k ≥ 1 with variance 1 (say).

? Nourdin and Poly (2013): If Fk
law→ Z, then Z has a density.

? Nualart and Peccati (2005): Fk
law→ N(0, 1) iff EF4

k → 3.
? Peccati and Tudor (2005): componentwise convergence to-

wards Gaussian implies joint convergence.

? Nourdin and Peccati (2009): Fk
law→ (N(0, 1)2− 1)/

√
2 iff EF4

k −
12EF3

k → −36.
? Nourdin and Rosiński (2014) & Nourdin, Nualart and Peccati

(2015): if Hk ∈ Cp (with variance 1), then Fk, Hk are asymp-
totically independent iff Cov(H2

k , F2
k)→ 0.

? In many instances, one can also give a bound for strong
distances, such as the total variation distance.
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CANCELLATION AND DOMINATION PHENOMENON

Theorem (Nourdin, Peccati, Rossi, 2017)
1. (Exact cancellation) For every fixed E > 0,

proj(LE |C2q+1) = 0, q ≥ 0,

and proj(LE |C2) reduces to a “negligible boundary term”
as E→ ∞ (→ Berry obscure cancellation)

2. (4th chaos dominates) Set L̃E = LE−E(LE)
Var(LE)1/2 . Then, as E→ ∞,

L̃E = proj(L̃E |C4) + oP(1).

3. (CLT) L̃E
law→ N(0, 1) as E→ ∞.
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SKETCH OF THE PROOF

What is the chaotic expansion of

LE =
∫
D

δ0(BE(x))‖∇BE(x)‖dx ?
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SKETCH OF THE PROOF: COVARIANCES

For any k ∈ {1, 2} and x 6= y, we have

E[BE(x)BE(y)] = J0(2π
√

E‖x− y‖)

E[BE(x)∂kBE(y)] =
√

2
xk − yk
‖x− y‖ J1(2π

√
E‖x− y‖)

E[∂kBE(x)∂kBE(y)] = J0(2π
√

E‖x− y‖)

+

(
1− 2

(xk − yk)
2

‖x− y‖2

)
J2(2π

√
E‖x− y‖)

E[∂1BE(x)∂2BE(y)] = −2
(x1 − y1)(x2 − y2)

‖x− y‖2 J2(2π
√

E‖x− y‖).

In particular, E[BE(x)2] = 1 and Var(∂kBE(x)) = 2π2E. Due to
this latter fact and because Hermite polynomials behave well
with respect to the standard Gaussian, we introduce the
renormalized gradient as

∇̃ = (∂̃1, ∂̃2) :=
∇√
2π2E

= (
∂1√
2π2E

,
∂2√
2π2E

).
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SKETCH OF THE PROOF: UPDATED EXPRESSION

Using ∇̃, the expression of LE becomes

LE =
√

2π2E
∫
D

δ(BE(x))‖∇̃BE(x)‖dx.

We observe that BE(x), ∂̃1BE(x) and ∂̃2BE(x) are independent
standard Gaussian random variables for each fixed x.
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SKETCH OF THE PROOF: CHAOTIC EXPANSION

? We have

δ(BE(x)) =
∞

∑
l=0

β2lH2l(BE(x)),

where βk =
1
k! E[δ(N)Hk(N)] with N ∼ N(0, 1). In particular,

β0 = 1√
2π

, β2 = − 1
2
√

2π
and β4 = 1

8
√

2π
.
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SKETCH OF THE PROOF: CHAOTIC EXPANSION

? We have

‖∇̃BE(x)‖ =
∞

∑
k,l=0

α2k,2lH2k(∂̃1BE(x))H2l(∂̃2BE(x)),

where α0,0 = E
[
‖N‖

]
=

√
2π

2

α2,0 = α0,2 =
1
2

E
[
‖N‖H2(N1)

]
=

√
2π

8

α4,0 = α0,4 =
1
4!

E
[
‖N‖H4(N1)

]
= −
√

2π

128

α2,2 =
1
4

E
[
‖N‖H2(N1)H2(N2)

]
= −
√

2π

64
,

with N = (N1, N2) ∼ N2(0, I2).
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SKETCH OF THE PROOF: SECOND CHAOS

? The projection LE[2] of LE onto the second chaos is given by

LE[2] =
√

2π2E
{

β2α0,0

∫
D

H2(BE(x))dx + β0α0,2

∫
D

H2(∂̃1BE(x))dx

+β0α2,0

∫
D

H2(∂̃2BE(x))dx
}

=
π

8

√
2E
{
−2

∫
D

BE(x)2dx +
∫
D
‖∇̃BE(x)‖2dx

}
.

? The first Green identity asserts that∫
D
‖∇BE(x)‖2dx = −

∫
D

BE(x)∆BE(x)dx+
∫

∂D
BE(x)〈∇BE(x), n(x)〉dx

where n(x) denotes the outward pointing unit normal at x.
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SKETCH OF THE PROOF: SECOND CHAOS

? As a result,∫
D
‖∇̃BE(x)‖2dx =

1
2π2E

∫
D
‖∇BE(x)‖2dx

= 2
∫
D

BE(x)2dx +
1

2π2E

∫
∂D

BE(x)〈∇BE(x), n(x)〉dx,

implying in turn that

LE[2] =
1

8π
√

2 E

∫
∂D

BE(x)〈∇BE(x), n(x)〉dx.

? We deduce

Var(LE[2]) ≤
1

128π2E

∫
∂D

EBE(x)2dx×
∫

∂D
E‖∇BE(x)‖2dx

=
1

64
perimeter(D)2 = O(1).
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SKETCH OF THE PROOF: FOURTH CHAOS

? We have that LE[4] is given by
√

2π2E
128

{
8
∫
D

H4(BE(x))dx−
∫
D

(
H4(∂̃1BE(x)) + H4(∂̃2BE(x))

)
dx

−2
∫
D

H2(∂̃1BE(x))H2(∂̃2BE(x))dx

−8
∫
D

H2(BE(x))
(
H2(∂̃1BE(x)) + H2(∂̃2BE(x))

)
dx
}

.

? For instance we have, setting a(x) = J0(2π‖x‖),

Var(
∫
D

H4(BE(x))dx) = 24
∫
(
√

ED)2
J0(2π‖x− y‖)4dxdy

= 24
∫
√

ED
dx
∫
−x+

√
ED

J0(2π‖u‖)4du ∼ 9
area(D)

π3 × log E
E

,

since J0(2πr) ∼ 1
π
√

r cos(2πr− π
4 ) as r→ ∞.
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SKETCH OF THE PROOF: CLT

? We use the seminal results of Nualart-Peccati (aka the fourth
moment theorem) and Peccati-Tudor .

? It has strong similarities with Breuer-Major theorem.
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NODAL POINTS

? Another quantity of interest for physicians is the numberNE
of nodal points, that is, the number of intersection points
between BE and an independent copy B̂E on the region D ⊂
R2.

? It is given (coarea formula) by

NE =
∫
D

δ(BE(x))δ(B̂E(x))
∣∣JacBE,B̂E

(x)
∣∣dx.

? Can we characterize the fluctuations of NE as E→ ∞ ?
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EXPECTATION, VARIANCE AND FLUCTUATIONS

? Berry (J. Phys. A, 2002): semi-rigorous computations lead to

Var(NE) ∼
11areaD

32π
E log E.

? Nothing (rigorous or semi-rigorous) is known for this model
about fluctuations (CLT ?).
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OUR RESULT

Theorem (Nourdin, Peccati, Rossi, 2017) As E→ ∞,
?

Var(NE) ∼
11areaD

32π
E log E.

? A CLT for NE holds:

NE −E[NE]

Var(NE)1/2 → N(0, 1).

THE END!
Questions?

27 / 27



OUR RESULT

Theorem (Nourdin, Peccati, Rossi, 2017) As E→ ∞,
?

Var(NE) ∼
11areaD

32π
E log E.

? A CLT for NE holds:

NE −E[NE]

Var(NE)1/2 → N(0, 1).

THE END!
Questions?

27 / 27



OUR RESULT

Theorem (Nourdin, Peccati, Rossi, 2017) As E→ ∞,
?

Var(NE) ∼
11areaD

32π
E log E.

? A CLT for NE holds:

NE −E[NE]

Var(NE)1/2 → N(0, 1).

THE END!
Questions?

27 / 27


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	1.51: 
	1.52: 
	1.53: 
	1.54: 
	1.55: 
	1.56: 
	1.57: 
	1.58: 
	1.59: 
	1.60: 
	1.61: 
	1.62: 
	1.63: 
	1.64: 
	1.65: 
	1.66: 
	1.67: 
	1.68: 
	1.69: 
	1.70: 
	1.71: 
	1.72: 
	1.73: 
	1.74: 
	1.75: 
	1.76: 
	1.77: 
	1.78: 
	1.79: 
	1.80: 
	1.81: 
	1.82: 
	1.83: 
	1.84: 
	1.85: 
	1.86: 
	1.87: 
	1.88: 
	1.89: 
	1.90: 
	1.91: 
	1.92: 
	1.93: 
	1.94: 
	1.95: 
	1.96: 
	1.97: 
	1.98: 
	1.99: 
	1.100: 
	1.101: 
	1.102: 
	1.103: 
	1.104: 
	1.105: 
	1.106: 
	1.107: 
	1.108: 
	1.109: 
	1.110: 
	1.111: 
	1.112: 
	1.113: 
	1.114: 
	1.115: 
	1.116: 
	1.117: 
	1.118: 
	1.119: 
	1.120: 
	1.121: 
	1.122: 
	1.123: 
	1.124: 
	1.125: 
	1.126: 
	1.127: 
	1.128: 
	1.129: 
	1.130: 
	1.131: 
	1.132: 
	1.133: 
	1.134: 
	1.135: 
	1.136: 
	1.137: 
	1.138: 
	1.139: 
	1.140: 
	1.141: 
	1.142: 
	1.143: 
	1.144: 
	1.145: 
	1.146: 
	1.147: 
	1.148: 
	1.149: 
	1.150: 
	1.151: 
	1.152: 
	1.153: 
	1.154: 
	1.155: 
	1.156: 
	1.157: 
	1.158: 
	1.159: 
	1.160: 
	1.161: 
	1.162: 
	1.163: 
	1.164: 
	1.165: 
	1.166: 
	1.167: 
	1.168: 
	1.169: 
	1.170: 
	1.171: 
	1.172: 
	1.173: 
	1.174: 
	1.175: 
	1.176: 
	1.177: 
	1.178: 
	1.179: 
	1.180: 
	1.181: 
	1.182: 
	1.183: 
	1.184: 
	1.185: 
	1.186: 
	1.187: 
	1.188: 
	1.189: 
	1.190: 
	1.191: 
	1.192: 
	1.193: 
	1.194: 
	1.195: 
	1.196: 
	1.197: 
	1.198: 
	1.199: 
	1.200: 
	1.201: 
	1.202: 
	1.203: 
	1.204: 
	1.205: 
	1.206: 
	1.207: 
	1.208: 
	1.209: 
	1.210: 
	1.211: 
	1.212: 
	1.213: 
	1.214: 
	1.215: 
	1.216: 
	1.217: 
	1.218: 
	1.219: 
	1.220: 
	1.221: 
	1.222: 
	1.223: 
	1.224: 
	1.225: 
	1.226: 
	1.227: 
	1.228: 
	1.229: 
	1.230: 
	1.231: 
	1.232: 
	1.233: 
	1.234: 
	1.235: 
	1.236: 
	1.237: 
	1.238: 
	1.239: 
	1.240: 
	1.241: 
	1.242: 
	1.243: 
	1.244: 
	1.245: 
	1.246: 
	1.247: 
	1.248: 
	1.249: 
	1.250: 
	1.251: 
	1.252: 
	1.253: 
	1.254: 
	1.255: 
	1.256: 
	1.257: 
	1.258: 
	1.259: 
	1.260: 
	1.261: 
	1.262: 
	1.263: 
	1.264: 
	1.265: 
	1.266: 
	1.267: 
	1.268: 
	1.269: 
	1.270: 
	1.271: 
	1.272: 
	1.273: 
	1.274: 
	1.275: 
	1.276: 
	1.277: 
	1.278: 
	1.279: 
	1.280: 
	1.281: 
	1.282: 
	1.283: 
	1.284: 
	1.285: 
	1.286: 
	1.287: 
	1.288: 
	1.289: 
	1.290: 
	1.291: 
	1.292: 
	1.293: 
	1.294: 
	1.295: 
	1.296: 
	1.297: 
	1.298: 
	1.299: 
	1.300: 
	1.301: 
	1.302: 
	1.303: 
	1.304: 
	1.305: 
	anm1: 


