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Outline of the talk

Gaussian case
» Talagrand's inequality and representation formula of the variance
with semigroup.
> Another representation formula of the variance and Talagrand's
inequality at order 2.
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Outline of the talk

Gaussian case

» Talagrand's inequality and representation formula of the variance
with semigroup.

> Another representation formula of the variance and Talagrand's
inequality at order 2.

Discrete case
» Talagrand's inequality on the discrete cube.

> Influence in Boolean analysis and KKL's Theorem.

» Talagrand's inequality at order 2 : from the Gaussian case to the
discrete case.

» KKL's Theorem of order 2.
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Talagrand’s inequality

~n standard Gaussian measure on R”.

[Talagrand]
f : R” — R smooth enough

Var (1) < CZ L
l 1+Iog‘ ”2

Improves upon Poincaré’s inequality.
proof 7
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Semigroup tools

Ornstein-Uhlenbeck

P:(f) = / f(xe "+ V1—e2ty)dv,(y) t>0,x€cR"
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Semigroup tools

Ornstein-Uhlenbeck

P:(f) = / fxe™ + V1—e2y)dy(y) t=0,x€R”

Few properties
> Integration by parts [p, f(—Lf)dv, = [ [VF[?dy,  with
L=A—x-V and |-| Euclidean norm.
» Ergodicity P:(f) — E,,[f] t — oo.
» Commutation VP; = e tP,V t>0.

» Hypercontractivity,

1Pefllg < Iflloey,  P(£) = (g —1)e* +1,£>0

Note : p(t) < g (improves upon Jensen's inequality).
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Representation formula

Interpolation by semigroup

Var,, (f) = PtVf dyndt
o
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Representation formula

Interpolation by semigroup

Var,, (f) = / / |P:Vf|2dy,dt
2 / e‘2tZHPt(8;f)H§dt
0 i=1
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Representation formula

Interpolation by semigroup

Var,, (f) = / / |P:Vf|2dy,dt
_ 2/ _2t2||Pt ()| dt
0

=1l

Hypercontractivity
Fori=1,...,n

1Pe(@if)ll2 < 10ifllpey P(t) =1+e7%, ¢ >0.

Yields Talagrand’s inequality (after some Holder interpolation
arguments)
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Application

Xl,...,Xn ii.d. N(O,l), Mn = maX;=1 ,,X,‘

goeey
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C
log n

Var(M,) <
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C
log n

Var(M,) <

Proof :

f(x) = max x; =
i=1,...,n
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C

<
Var(M,) < iog n

Proof :

i=1,...,n

n
f(x) = max x; = ZXilAi’ Ai = {xi > x; ¥}
i=1
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C
log n

Var(M,) <

Proof :
f(x) = max x, = ZX,].A . Ai={x > xVj}

Apply Talagrand'’s inequality
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C

<
Var(M,) < iog n

Proof :
f(x) = max x, = ZX,].A . Ai={x > xVj}

Apply Talagrand'’s inequality
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C
log n

Var(M,) <

Proof :
f(x) = max x, = ZX,].A . Ai={x > xVj}

Apply Talagrand'’s inequality

0i(f) =14, NI0:f13 = 0:fllL = B(X; = X;VJ)
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Application

Xl, e ,Xn i.i.d. N(O, 1), Mn = maX;=1,...,n X,‘

Superconcentration

C
log n

Var(M,) <

Proof :
f(x) = max x, = ZX,].A . Ai={x > xVj}

Apply Talagrand'’s inequality

0i(f) =14, 1013 = 0:f |l = P(X; = X;¥)) = ~
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Superconcentration

Talagrand's inequality (and some variants) useful tool in
superconcentration theory to get subdiffusive variance bounds
(cf. Chatterjee's book).

Examples
» First passage percolation.
» Gaussian polymers.

» maximum of stationary Gaussian sequences.

D

(Roughly superconcentration = classical concentration tools gives
sub-optimal bounds)
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Question :
Alternative variance representation formula

4

Talagrand’s inequality of order 2 7
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Representation formula, order one

f : R” — R smooth enough, || Euclidean norm.

Theorem [Tanguy 2017]

2

Var,, (f) = Vfdy,

L,
+ 2/ e—2“(1—e—2“)/ |Pu(V2F)|? dyndu
0 n
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Representation formula, order one

f : R” — R smooth enough, || Euclidean norm.

Theorem [Tanguy 2017]

2

Var,, (f) = Vfdy,

L,
+ 2/ e—2“(1—e—2“)/ |Pu(V2F)| dyndu
0 n

» L2 decomposition (Hermite polynomials) + remainder with
Ornstein-Uhlenbeck semi-group.
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Representation formula, order one

f : R” — R smooth enough, || Euclidean norm.

Theorem [Tanguy 2017]

2

Var,, (f) = Vfdy,

L,
+ 2/ e—2“(1—e—2“)/ |Pu(V2F)| dyndu
0 n

» L2 decomposition (Hermite polynomials) + remainder with
Ornstein-Uhlenbeck semi-group.

» Notice : inverse Poincaré’s inequality immediate.
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Start with

Var., (f) = 2 / e 2t / |PeVf|2dy,dt J
0 Rn
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Start with

Var., (f) = 2 / e 2t / |PeVf|2dy,dt J
0 Rn

Set K(t) = [gn|PeVF|?dyn, t>0
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Start with

Var., (f) = 2 / e 2t / |PeVf|2dy,dt J
0 Rn

Set K(t) = [gn|PeVF|?dyn, t>0

K(s) — K(t) = /t K'(u)du J
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Start with

Var., (f) = 2 / e 2t / |PeVf|2dy,dt J
0 Rn

Set K(t) = [gn|PeVF|?dyn, t>0

K(s) — K(t) = /t K'(u)du J

s — oo by ergodicity K(o0) = [ Vfdy,,f.
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By integration by parts ([ f(—LF)dvn = [gn [VFI2d7n)

and commutation property (VP; = e 'P;V)

d
K'(u) = @ Ji |P,Vf2dy, =
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By integration by parts ([ f(—LF)dvn = [gn [VFI2d7n)

and commutation property (VP; = e 'P;V)

d
K(v)=—- | |PVFPdyn= — 2/ e | P,V2fPdyn
u Jgrn Rn
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By integration by parts ([ f(—LF)dvn = [gn [VFI2d7n)

and commutation property (VP; = e 'P;V)

d
K'(u)=— [ |P.Vf|Pdy, = —2/ e 24|P,V2f2dy, |
dU Rr Rn
Finally
2 0
K(t) = /vfd% +2/ e—2“/ e Y|P, V?f|?dvy,du J
Rn t iz
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Recall

Var%(f):2/ e—2f/ |P:V 2 dy,dt =
0 R
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Recall

o0 o
Var., (f) = 2 / e 2t / |Pe V| dy,dt =2 / e 2tK(t)dt
0 R 0
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Recall

Var%(f):2/ e—2f/ |th|2d%dt:2/ e 2tK(t)dt
0 R 0

Then

2

Var,,(f) = 2/ e 2t dt
0

R
- 4/ e_2t/ e—2“/ |P,V2f|?dv,dudt
0 t R”

Conclude with Fubini's Theorem

Vidy,
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First iteration

2
Var,, (f) = ‘/ V fdvyn
RI‘I

+ 2/ e_2”(1—e_2”)/ |Pu(V2F)| dyndu
0 n
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First iteration

Var,, (f) = ‘/ Vfd’y,,

+ / e_2”(1—e_2”)/ |Pu(V2F)|? dyndu
0 n

Note : iterate the procedure (set Kp(t fR,, sz)‘dey,,. )
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First iteration

2
Var,, (f) =

/ Vid,

+ 2/ e—2“(1—e—2“)/ |Pu(V2F)| dyndu
0 Rn

Note : iterate the procedure (set Kp(t fR” sz)fd%. )
Théoreme [T. 2017]
p=>1
P 1 2
k
Var,,(f) = > o nv fd~y,
k_
+ 2 / e (1 —e 2P }P (VL) Pdrndt
p!
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Talagrand’s inequality at order 2
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Talagrand’s inequality at order 2

Use hypercontractivity to bound the remainder term

R — o EN: /OOO e2u(1 — e—zu)/n [Pu(a,jf)rdfyndu

ij=1

n 0o
_ 22/0 e2(1 — 2| P, (85 ) |Bdu

ij=1
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Talagrand’s inequality at order 2

Use hypercontractivity to bound the remainder term

R — o EN: /OOO e2u(1 — e—zu)/n [Pu(a,jf)rdfyndu

ij=1

n 0o
_ 22/0 e2(1 — 2| P, (85 ) |Bdu

ij=1

Same proof as Talagrand's inequality with an improvement thanks to
the additional factor 1 — e~
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Talagrand order 2

Theorem [T. 2017]

Var,, (f) < Vidy,

Rn

2 n 2
dyf
P L
A B;:f
= [1 + log HafH
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Talagrand order 2

Theorem [T. 2017]

2 n 2
oy f

D e L

1051 |2

Varn, () <
v [1 - log ||a:-jf||1}

/ Vidy,

Open questions
» Comparison between Talagrand’s inequalities of order 1 and 2 7

» Application in superconcentration theory 7
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Boolean analysis

Historically Talagrand’s inequality on C, = {—1,1}" with
" = (%571 + %51)®n_
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Boolean analysis

Historically Talagrand’s inequality on C, = {—1,1}" with
" = (%571 + %51)®n.

Theorem [Talagrand]
f: Gy {0,1}
1Dif 3

n
Var#n(f) S CZ T DAl
i 7
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Boolean analysis

Historically Talagrand’s inequality on C, = {—1,1}" with
" = (%571 + %51)®n.

Theorem [Talagrand]
f: Gy {0,1}

| Dif |3
Var(f) < ¢S — 1202
Z 1D
im1 1+ log pp;

(Can also be proven by semi group argument)

with D;f(x) = M Ti(x) = (X105 oy —Xiy. oy Xn), X € Cp.
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Influence and KKL's Theorem

f:Cp—{0,1}, p"=(36_1+ 561)%"
Influence

Li(f) =P(f(X) # f(m(X))), L(X)=p"
Probability that coordinate i is pivotal for input X
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Influence and KKL's Theorem

f:Cp—{0,1}, p"=(36_1+ 561)%"
Influence

Li(f) =P(f(X) # f(m(X))), L(X)=p"
Probability that coordinate i is pivotal for input X

Theorem [Kalai-Kahn-Linial]

|
VF i Cp— {0,1}, Ji e {1,...,n} Ii(f) > c—2"

(optimal on Tribes functions)
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Influence and KKL's Theorem

f:Cp—{0,1}, p"=(36_1+ 561)%"
Influence

Li(f) =P(f(X) # f(m(X))), L(X)=p"
Probability that coordinate i is pivotal for input X

Theorem [Kalai-Kahn-Linial]

|
VF i Cp— {0,1}, Ji e {1,...,n} Ii(f) > c—2"

(optimal on Tribes functions)

KKL's theorem can be proved by Talagrand's inequality
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Link with Talagrand's inequality

f: Cy— {0,1}

Li(f) = |1Dif | = IDifll3, i=1,....n

(up to numerical constants)
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Link with Talagrand's inequality

f: Cy— {0,1}

li(f) = ||Dif|ly = |Dif||3, i=1,....n

(up to numerical constants)

Talagrand inequality in terms of influence
Ii(f)
1+1 l_-
MRV

n
Vary(f) < C)
i=1

application : KKL's Theorem
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KKL's Theorem

If 3ie{l,....,n} st. [i(f)>
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KKL's Theorem

If3ie{l,....n} st [(f)> 5 then  [(f) > CE".

Assume that Vi € {1,...,n} [(f) < % (1) J

Talagrand’s inequalities implies

Jie{l,...,n} s.t. %glﬁi_ (2) J

Talagrand'’s inequalities of higher order and KKL’s Theorem
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KKL's Theorem

f3ie{l....n} st [(f)>%  then  [(f)> Clen
Assume that Vi € {1,...,n}  [i(f) < % (1) J
Talagrand’s inequalities implies
Jief{l,...,n} st. S< O __ (9
1+|ogW

Use assumption (1) to deduce =< Io(gfr)7 from (2).

Talagrand'’s inequalities of higher order and KKL’s Theorem

Kevin Tanguy



Influence of order 2

f:{-1,1}" - {0,1}  define

Influence of order 2
(’7]) € {1,...,[7}2.

i jy(F) = P((i,))is pivotal)
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Influence of order 2

f:{-1,1}" - {0,1}  define

Influence of order 2
(’7]) € {1,...,[7}2.

i jy(F) = P((i,))is pivotal)

Beware /; j)(f) = Ii(f) !
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Influence of order 2

f:{-1,1}" - {0,1}  define

Influence of order 2
(’7]) € {1,...,!7}2.

I(,-’j)(f) = IP’((i,j) is pivotal)

Beware /(; j(f) = /;(f) ! Similarly (up to numerical constants)

lig)(F) = 1D5f15 = 1Dfll1,  (with Dy = Djo D)) ]
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Influence of order 2

f:{-1,1}" - {0,1}  define

Influence of order 2
(’7]) € {1,...,!7}2.

i jy(F) = P((i,))is pivotal)

Beware /(; j(f) = /;(f) ! Similarly (up to numerical constants)

lip)(F) = I1D5113 = 1D5f s, (with Dy = D; o D)) ]

Talagrand of order 2 on the cube 7
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Semigroup proof ?

Similarities with Gaussian setting

Bonami-Beckner semigroup

n

Qf(x) = | ) J[(A+ e xiyi)du"(y)

Ch i=1
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Semigroup proof ?

Similarities with Gaussian setting

Bonami-Beckner semigroup

n

Quf(x) = /C Fy) [Tt + e xivi)dn(y)

i=1

Few properties
> Integration by parts [ f(—Lf)du" = [ |Df|?du"
with L= 33", D;.
» Ergodicity Q:(f) = Je, fdu".

> (Qt)e>0 hypercontractive [Bonami-Beckner].
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Representation formula

Variance representation formula [Bobkov-Gotze-Houdré]

Var,»(f) :2/0002/ [Qs(Dif)]zd#nds
i=1 "
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Representation formula

Variance representation formula [Bobkov-Gotze-Houdré]

Var,»(f) :2/0002/ [Qs(Dif)]zd,unds
i=1 Z

Difference with Gaussian setting
> Dii:DiODf:Di'

» DiQs = QsD;, (no e~* with commutation).
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Representation formula

Variance representation formula [Bobkov-Gotze-Houdré]

Var,»(f) :2/0002/ [Qs(Dif)]zd,unds
i=1 Z

Difference with Gaussian setting
> Dii:DiODf:Di'

» DiQs = QsD;, (no e~* with commutation).

Same proof as Gaussian case 7
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Some issues

Issue |
D;Qs = QsDj, (no e~* with commutation) J

Solution : u" satisfies Poincaré inequality = exponentiel decay for the
variance along (Qt)¢>0.

Var,(Q:f) < e 2|3, t>0 ]
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Issue |

First step

» D;f is centered :
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Issue |

First step

» D;f is centered :
2 [¢. Difdu" = [ f(x)du"(x) — [¢ f(mix)dp"(x) = 0.
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Issue |

First step
» D;f is centered :
2 [¢. Difdu" = [ f(x)du"(x) — [¢ f(mix)dp"(x) = 0.
> Exponential decay || Qu(D;if)|3 < e*2”||D,-f||2 Yu>0
(Poincaré)
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Issue |

First step
> D;f is centered :
2 [¢. Difdu" = [ f(x)du"(x) — [¢ f(mix)dp"(x) = 0.
> Exponential decay || Qu(D;if)|3 < e*2”||D,f||2 Yu>0
(Poincaré)

Double the time + Poincaré inéquality

Var,n(f) = 4/002/ [Qs 0 Qs(D;f)]*dp"ds
0 iIJG
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Issue |

First step
> D;f is centered :
2 [¢. Difdu" = [ f(x)du"(x) — [¢ f(mix)dp"(x) = 0.
> Exponential decay || Qu(D;if)|3 < e*2”||D,f||2 Yu>0
(Poincaré)

Double the time + Poincaré inéquality

Var,n(f) = 4/0002/ [Qs 0 Qs(D;f)]*dp"ds

< / Ze*s / [Qs(D;f)]du"ds
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Follow the Gaussian case

Set K(s) = [ |Qs(Df)Pdu”  with Df = (Dif, ..., Dyf).

Proceed as the Gaussian case, use Poincaré’s trick again

Varq(f) < 8/ e (1 —e ™) Z/ Q2(D;f)du"ds
0

ij=1
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Follow the Gaussian case

Set K(s) = [ |Qs(Df)Pdu”  with Df = (Dif, ..., Dyf).
Proceed as the Gaussian case, use Poincaré’s trick again

Varq(f) < 8/ e (1 —e ™) Z/ Q2(D;f)du"ds
0

IJ].

_ s/ e=25(1 ZHQS £)|2ds.
0

ij=1

Hypercontractive estimates 7
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Follow the Gaussian case

Set K(s) = [ |Qs(Df)Pdu”  with Df = (Dif, ..., Dyf).
Proceed as the Gaussian case, use Poincaré’s trick again

Varq(f) < 8/ e (1 —e ™) Z/ Q2(D;f)du"ds
0

IJ].

_ s/ e=25(1 ZHQS £)|2ds.
0

ij=1

Hypercontractive estimates 7

Issue Il
On the diagonal : D;; = D;. J
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Issue Il

For i # j apply same proof as Talagrand's inequality
(Hypercontractivity, Holder's interpolation,. . .) J
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Issue Il

For i # j apply same proof as Talagrand's inequality
(Hypercontractivity, Holder's interpolation,. . .) J

On the diagonal, introduce a parameter sy > 0 and cut the integral in
two : /5% and /2%,
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Issue Il

For i # j apply same proof as Talagrand's inequality
(Hypercontractivity, Holder's interpolation,. . .) J

On the diagonal, introduce a parameter sy > 0 and cut the integral in
two : /5% and /2%,

[S% = 8]050 e B(l—-e %)X, an Q2(D;f)du"ds J

and
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Issue Il

For i # j apply same proof as Talagrand's inequality
(Hypercontractivity, Holder's interpolation,. . .) J

On the diagonal, introduce a parameter sy > 0 and cut the integral in
two : /5% and /2%,

[S% = 8f05° e B(l—-e %)X, an Q2(D;f)du"ds J

and

170 =8 [e (1 —e*) X, [, Q2(Dif)du"ds. J
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Deal with /=%

S0 n
[S%0 = 8/ e-25(1—e45)2/ Q2(D;f)du"ds
0 i=17Cn
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Deal with /=%

S0 n
[S%0 = 8/ e-25(1—e45)2/ Q2(D;f)du"ds
0 - Cn

< 8><450/ Z Qszd;L"ds
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Deal with /=%

S0 n
[S%0 = 8/ e-25(1—e45)2/ Q2(D;f)du"ds
0 -

< 8><450/ Z Qszd;L"ds

IN

3259 / Z / Q2(D;f)du"ds
0 i=1/G
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Deal with /=%

S0 n
[S%0 = 8/ e-25(1—e45)2/ Q2(D;f)du"ds
0 p

8><450/ Z Qsz dp"ds

IA

IN

3259 / Z / Q2(D;f)du"ds
0 ji=17/G

= 165y x Vars(f)

Choose sg s.t. 165y < %

Kevin Tanguy Talagrand'’s inequalities of higher order and KKL’s Theorem



Update estimates

So far

| D;if I3

Var(F) < 1S9O 41224+ C ) 5
i#j |:1 + log ||Dijf||2:|

1 Dji |2
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Update estimates

So far

| D;if I3

Var(F) < 1S9O 41224+ C )

2
. D;f

With 165y < 5, we obtain /<% < ZVar,(f).
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Update estimates

So far

| D;if I3

Var(F) < 1S9O 41224+ C )

2
T D;:f

With 165y < %, we obtain /=% < 1Var,.(f). Thus

1D5£ 13

1
5 Varn(f) < 1224+ CY

2
i#j 1Dy |2
[1 108 5,71,
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Deal with /=%

For the other term

1290 =857, [Xe2(1—e %) [ QXD;f)du"ds. J
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Deal with /=%

For the other term

1290 =857, [Xe2(1—e %) [ QXD;f)du"ds. J
Setfori=1,...,n
77 =8 [ e (1 - e ) [, QD) ds. )

That is to say : /2% =37 [7%.
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Deal with /=%

Use hypercontractivity : [|QuDif[|3 < [|Dif ||, ,—2u, u >0,

> .
on [F%, Vi=1,...,n
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Deal with /=%

Use hypercontractivity : [|QuDif[|3 < [|Dif ||, ,—2u, u >0,

> .
on [F%, Vi=1,...,n

=g / e 25(1—e*) / [Qss 0 Quy(Dif)]*dp"ds
Cn

So
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Deal with /=%

Use hypercontractivity : ||Q,Dif||3 < ||D; fH1+e 2wy  U>0.

> .
on [F* Vi=1,...,n

Z% = 8 / e 25(1— e ) / [Qsy s © Qs (D;f)]*dpu"ds

< C / e 25| DiF |2, 2 ds
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Deal with /=%

Use hypercontractivity : ||Q,Dif||3 < ||D; fH1+e 2wy  U>0.

> .
on [F%, Vi=1,...,n

Z% = 8 / e 25(1— e ) / [Qsy s © Qs (D;f)]*dpu"ds

< C / e 25| DiF |2, 2 ds

< CIDHFIR, o 2ods

Conclusion : [Z% =31 [Z% < CY 7 ||D; f‘|1+ef2so
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Conclusion of the proof

Finally, we have proven

Talagrand inequality of order 2 [T. 2017]

n IDyf 3
i=1 i# i
7 [1+'°g ||D,§-f||1]
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Conclusion of the proof

Finally, we have proven

Talagrand inequality of order 2 [T. 2017]

n IDyf 3
i=1 i# i
7 [1+'°g ||D,§-f||1]

Application : KKL of order 2
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KKL of order 2

f:C —{0,1}

KKL of order 2
Either 3i € {1,..., n}
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KKL of order 2

f:C —{0,1}

KKL of order 2
Either 3i € {1,..., n}

Ordi#jed{l,...,n}

log n 2

Same proof as original KKL's Theorem.
Tribes functions optimal for the 2nd alternative.
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Open questions and research projects

Open questions

Prove superconcentration for
> First passage percolation ?
» Branching random walk ?
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Open questions and research projects

Open questions
Prove superconcentration for
> First passage percolation ?

» Branching random walk ?

Research projects

Threshold phenomenon 7
(Russo/Margulis’s Lemma for biased measure i on {—1,1}" +
Talagrand of order 2 7).

(Talagrand and Russo/Margulis of order 2 okay for
Pp = (p5_1 + q5+1)®n with0<p<1l, ¢g=1-p)
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Thank you for your attention
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