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Empirical optimal transportation & matching

Empirical transportation cost

P, Q probabilities on R? and c(z,y) = ||z — y||?, p > 1.

wh Pa = i - Pd )
2P.Q) = min | o= ylPdn(z.y)
II(P, Q) probabilities on X x Y with marginals P and Q

W, is a metric on F,, probabilities on R¢ with finite p-th moment

X17,,,7Xn€Rd, Pn:%Z;Lzl(SXi

Empirical transportation cost: WP(P,,, Q)
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Empirical optimal transportation & matching

Empirical transportation cost

P, Q probabilities on R? and c(z,y) = ||z — y||?, p > 1.

WpP.Q) = min [ o~ ylPdn(e.y
II(P, Q) probabilities on X x Y with marginals P and Q

W, is a metric on F,, probabilities on R¢ with finite p-th moment
Xi,..., X, eRY, P, =150 6y,

Empirical transportation cost: WP(P,,, Q)

What is the transportation cost from a (large) set of points to a fixed target?

Assume Xq,..., X, i.id. P
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Empirical optimal transportation & matching

Optimal matching

Xi,...,Xp,eR Y, Y, € R?
Cost of matching X; to Yj: || X; —Y;|]?

Optimal matching minimizes L 37" | || X; — Y, (||
o permutation of {1,...,n}.

Optimal matching cost = W}f(Pn, Qn),

P, = %Zaxi, Qn = %25%
=1 i=1
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Optimal matching

Xi,...,Xp,eR Y, Y, € R?
Cost of matching X; to Yj: || X; —Y;|]?
Optimal matching minimizes L 37" | || X; — Y, (||

n
o permutation of {1,...,n}.

Optimal matching cost = W}f(Pn, Qn),
P, = L En:d Q . ZH:CS
n n — Xis n n — Y;

What is the cost of matching two (large) sets of points?
Assume Xq,..., X, i.id. P, Yy,...,Y, iid. @, independent of X;'s
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Empirical optimal transportation & matching

Wy(P,, P) = 0 iff P, — P and [ |z||PdP, — [ ||z|[?dP.

P with finite p-th moment, P,, empirical measure = W,(P,, P) = 0 a.s.

Hence, W, (P, Q) = Wy(P, Q) a.s., Wy(Pr, Qn) = W, (P, Q) as.
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The case P = ()

For d = 2, (Ajtai-Komlos-Tusnady, 1984; Talagrand & Yukich, 1993)

() (1"5”)1/2 < E(W,(Pa,U((0,11%))) < C(p) (bi")l/z'

For d > 3, Talagrand, Yukich, 1992-1994

1

EWp(Pa, U([0,1]%)) < Cld,p) —7g-

Extensions to compactly supported P with ‘regular’ density

lfd=1and P~ fst. [} (“17%) dt < oo

VIW(Pa P) o (72 ) dtr/p,

B(t) Brownian bridge on [0, 1]
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Empirical optimal transportation & matching

No results for P # Q

An exception: Sommerfeld and Munk (2016) for the case P, @ with finite
support; possibly nonnormal limits

Here CLTs for W2(P,, Q) and W2(P,,,Q,,) for general P, Q and d
Valid CLTs, with normal limits under moment assumptions (4 + d) and a bit of

smoothness (on Q) asymptotic variances easily described in terms of dual
formulation of OT

Eustasio del Barrio CLTs for transportation cost 7/ 24



Empirical optimal transportation & matching

No results for P # Q

An exception: Sommerfeld and Munk (2016) for the case P, @ with finite
support; possibly nonnormal limits

Here CLTs for W2(P,, Q) and W2(P,,,Q,,) for general P, Q and d

Valid CLTs, with normal limits under moment assumptions (4 + d) and a bit of
smoothness (on Q) asymptotic variances easily described in terms of dual
formulation of OT

Beyond theoretical interest,

[the transportation cost distance] is an attractive tool for data analysis
but statistical inference is hindered by the lack of distributional limits

Sommerfeld and Munk (2016)
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. Usinperesandsebily of opinel Gensperetion peesels |
The Kantorovich duality

Denote
fa) = [ oydn(oy),
Rd x R4

D = {(p,) € L1(P) x L1(Q) : v(x) +¥(y) > x -y for all z,y}, and

Hew) = [ wap+ [ vao.

Then,

min J(p,¥) = max In
(ph)e® (%) mell(P,Q) g

Maximizing pair for J can be chosen as pair of Isc, proper convex conjugate
functions p(z) = ¥*(z) sup,epa(z - y — ¥(y))

By Kantorovich duality, (¢*,1) is a minimizer of J and 7 is a maximizer of I iff

/ (4" (@) + () — - y)dn(z,y) = 0,
Re x R4

iff ¢*(x) + ¢¥(y) — x - y vanishes m-almost surely
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Now v*(z) + ¢¥(y) —z -y =0 < x € (y) < y € I*(x),

(y) ={z e R Y(y) —v(y) >z (¥ —y) forall y € RY}

O (y) nonempty if y € int(dom(v))); if ¢ differentiable at y, 9 (y) = {Vy(y)}

From this (Knott, Smith, Brenier,...) (¢/*,v) a minimizing pair for J iff
Qo (V)= = P; then 7 = Q o (V, Id)~! maximizes I.

T = V1 optimal transportation map from @ to P; it is Q-a.s. unique:

Optimal transportation potential: Isc convex ¢ s.t. (¢*, 1) minimizes J
(equivalently, Isc convex 1 s.t. such that Q o (V¢)~t = P

Optimal transportation potentials not unique (J(¢v* — C,¢ + C) = J(¥*,9))

Lemma

Assume 1)1 and vy finite convex functions on nonempty convex, open A C R? s.t.
Vi1 (x) = Vapo(x) forae z € A.

Then 11 (z) = 2(x) + C for all z € A
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Uniqueness and stability of optimal transportation potentials Uniqueness

As a consequence

Corollary
Assume P, Q € F5 and

Q@ has a positive density in the interior of its convex support. (1)

Then, if 11, ¥ are Isc convex and J(5,¢1) = J(¥3,12) = min, yycao J (@, ¥)
o = 1 + C inint(supp(Q)). In particular, 15 = 1 + C Q-a.s..

Uniqueness of optimal transportation potential fails without (1)

(Take P = 26_1 + 161 Q. is the uniform on (— 5— 1,—e)U(e,14¢),e>0;
Ver(@)=-z, 0<% ¢ (z) =2+ L, 2>-L 0< L <e, are optimal
transportation potentlals but ¥ 1, # Yer, + C)
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Uniqueness and stability of optimal transportation potentials stability

Stability of optimal transportation potentials

Assume @ with a density, Wh(P,,, P) — 0,
If Vi, is o.t.p. from Q to P,, V¢ is o.t.p. from Q) to P, then

Vi, - VY @Q —a.s.
How about 1,7

Approach based on Painlevé-Kuratowski convergence: if C,, subsets of R?

limsup C,, = {a: eRY: = lim z,,; for some z,,, € an},

n—00 j—o0

n—oo n—oo

liminf C,, = {x eR?: z = lim x, with 2, € C,, if n > no}

C, — Cin P-K sense if C = liminf,,_,~ C), = limsup,,_,., Cyn
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Uniqueness and stability of optimal transportation potentials stability

If T multivalued map from R¢ to R? (for each x € RY, T'(z) is a subset of R%),
gph(T) = {(a:,t) cRIXRY: te T(:z:)}.

Multivalued maps identified with subsets of R? x R¢

If T,,, T multivalued maps, T,, — T graphically if gph(T;,) — gph(T) in P-K
sense

Some useful results

Theorem

(a) Assume that for some € > 0 and some subsequence {n;} Cp, N B(0,¢) # ()
for every j > 1. Then there exists a subsequence {nj, } and a nonempty
subset C' C R? such that Cn,, — C in P-K sense.

(b) Assume {T),},>1 multivalued maps such that for some bounded sets
C,D C R* and some subsequence {n;} there exist z,,, € C' with
Ty, (xn,) N D # 0 for all j > 1. Then there exists a subsequence {n;, } and
a multivalued map, T, from R? to R4, with nonempty domain s.t. Tnjk
converges graphically to T .
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Uniqueness and stability of optimal transportation potentials stability

Recall that = optimal (a maximizer of I) iff supp(w) C gph(9v) for some Isc
convex 1

Subgradients of convex maps characterized in terms of cyclical monotonicity:
T monotone if (t1 — tg) - (x1 — xg) > 0 whenever t; € T'(z;), i =0, 1.
T cyclically monotone if for every choice of m > 1, points g, ..., x, and
t; ET(.’Ki),i:O,...,m
to- (x1 —x0) +t1 - (w2 —21) + -+t - (T0 — Tm) < 0.

Rockafellar's Theorem: T' = 0t for some Isc convex % iff T maximal cyclically
monotone

Theorem

If T,, cyclically monotone maps {T,,} and T,, — T graphically then T is cyclically
monotone. If T,, are maximal cyclically monotone then T is also maximal
cyclically monotone.

If {1, } Isc, convex maps s.t. for some bounded C, D C R? and some {n;} there
exist z,,, € C with Oy, (xn,) N D # 0 for all j > 1, then there exist {n;, } and a
Isc convex i with dom(9t) # 0 s.t. Oy, — Oy graphically
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Uniqueness and stability of optimal transportation potentials stability

If O, — Ov graphically and for some (x,,,t,) with ¢, € 0w, (x,) and (zg, to)
with ¢y € 0y (xo)

(Znytn) = (20,t0) and Yn(x,) — P(x0),

then

lim_ 1y, (Z5) = ()

n—oo

if z € int(dom(z)))

Theorem (Stability of optimal transportation potentials)

Assume Q) satisfies (1) and Wa(Py,, P) — 0 and Wa(Qn, Q) — 0. If ), (resp. ¢)
optimal transportation potentials from Q,, to P,, (resp. from Q) to P) then there
exist constants a,, such that if 1¥,, = ¥, — a,, then ¥, (x) — (x) for every x in
the interior of the support of Q (hence, for Q-almost every x)

Proof: If 7, 7 o.t.plans m, —,, 7; supp(m,) C gph(9¢y,)
supp(m) C gph(dv) = 9, — Jp graphically (along subsequences); p = ¥ (+C)
in int(dom(¢))); re-center to conclude.
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Uniqueness and stability of optimal transportation potentials stability

If Q, = @ and (1) holds ¥, differentiable at a.e. x € A; from graphical
convergence of dv,, to dp with p = in A conclude

Vi () = Vip(x) at ae. z € A

Vi, — Vi Q-a.s
Recover known stability of o.t.maps

Theorem

Assume Q, P,{P,},>1 € Fu and @ satisfies (1); 1y, optimal transportation
potentials s.t. ¢, — 1 Q-a.s. Then

Y — ¥ in La(Q)
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Variance bounds

Efron-Stein inequality

Assume X1,..., X, independent r.v.’s; (X71,..., X ) independent copy of
(X1...,X5)
If Z=f(X1,...,X,) then

DN | =
NE
&
N
I
N
o
I
g
&
N
N
£~

Var(Z) <

Il
—
.
Il
-

with Z; = f(X1,..., X/,..., Xp)
If f symmetricin z1,...,2z, and X1,..., X, i.i.d. then
Var(Z) < nE(Z — Z1)2

Control of (one-sided) decrease of Z when X replaced by X enough for control
of Var(Z)

Perfect for minimization functionals of empirical measure
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Variance bounds for W2(P,, Q)

If Q smooth W3(P,,Q) =" ;|12dQ(y) with

Ci={y: Vénly) = X},

1, optimal transportation potential from @ to P,

P! empirical measure on X7, Xo, ..., X,,; ¢!, optimal transportation potential
from @ to P},

Set T(y) = X; if VYl (y) = X;, i =2,...,n, T(y) = X1 if Vi, (y) = X
T suboptimal, but maps @ to P,; hence,

W2(P,,Q) - WE(PL,Q) < / ly - T()|dQy / ly - Ve, (0)IPdQ(w)

/C, (Ihy = 221 = lly = X1 d(w)
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Variance bounds

Consequence:

Theorem

If P,Q € F4 and Q has a density

VarW2(P,, @) < Q)

n

)

where
1/2
C(P,Q) = 8(B(IX1 — X2 X1]12) + (BlIX1 = Xol )2 (fya IwlldQw)) ).
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Variance bounds

Alternative bound: if (@, 1,) minimizers of J

WP Q) = [ (ol = 20n(e)dPa(o) + [ (ol = 26, 0))0Q()
Similar for W2(P!,Q); by optimality,
WHPLQ) = [ (el = 2eu(@)dPi@) + [ (ol =26, ().

Hence,

W3 (P, Q) — W3 (P, Q)

IN

[ (el = 20 )P
- / (2])? — 200 (2))dP, ()
Rd

U2~ on(X)) = (17112 ~ (X))

Consequence,

n n

Var(W2(P,, Q) < E([(IX1]]> = en(X1)) = (IXT11* — ¢n(X1])))? es
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Variance bounds

C,, harder to control; however, if P,Q € F4.s5 and satisfy (1) C,, —» C < o0
(sharp constants)

More important, linearization bounds:

Theorem

If P,Q € Fais and satisfy (1), po o.t. potential from P to Q) and

Ro = W3(PwiQ) = [ (el = 2p0(@))dPy(a),

then
nVar(R,) — 0
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CLTs for empirical transportation cost

CLTs for empirical transportation cost

Theorem

If P,@Q € Fyis and satisfy (1), @o o.t. potential from P to Q and P, empirical
measure on X1,...,X,, i.id. P r.v.'s then

nVarW2(P,,Q)) — 02(P,Q)

with

(P.Q) = [ (lel? = 200(@)aP(@) - ( [ (ol - 200())dP(a))

and

V(W3 (Po, Q) = EW3 (P, Q)) = N(0,0%(P,Q))
Furthermore, if Q., empirical measure on Y1, ...,Y,, i.i.d. Q r.v.'s, independent
of the X;'s, n — oo, m — oo with 2 — A € (0,1), then

2 N\/ar(W3(Pr, Qm)) — (1 — N)o?(P, Q) + Mo*(Q, P)

n+m
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CLTs for empirical transportation cost

@ Limiting variances well-defined (independent of choice of o.t. potentials)
@ Covers optimal matching setup
@ Dimension free (but dimension plays a role on centering constants)

@ No assumption of compact support

e If P=Q, o?(P,P)=0;
Vi (Ws (P, P) = EW3(P,, P)) = 0
in probability
@ Smoothness of P not really important; with a different approach

Theorem

If P has finite support, Q € F4 and satisfies (1) then

V(W3 (Pa, Q) ~ WE(P.Q)) = N(0,0°(P,Q))
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Open problems

@ Most of approach works for other costs ¢(z,y) = || — y||”, p > 1; need for
stability results for optimal c-concave potentials

@ What if ¢ not stricly convex? If ¢(x,y) = ||z — y|| nonnormal limits may
happen (d = 1)

@ Related functionals: optimal partial transportation and matching, variation
around empirical Wasserstein barycenters
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