Central limit theorems for transportation cost in general dimension

Eustasio del Barrio

Universidad de Valladolid. IMUVA.

Oaxaca, May, 2017

joint work with Jean-Michel Loubes

Outline

- Empirical optimal transportation & matching
- Uniqueness and stability of optimal transportation potentials
- Variance bounds
- 4 CLTs for empirical transportation cost

Empirical transportation cost

P, Q probabilities on \mathbb{R}^d and $c(x,y) = ||x-y||^p$, $p \ge 1$.

$$W_p^p(P,Q) = \min_{\pi \in \Pi(P,Q)} \int ||x - y||^p d\pi(x,y)$$

 $\Pi(P,Q)$ probabilities on $X\times Y$ with marginals P and Q

 \mathcal{W}_p is a metric on \mathcal{F}_p , probabilities on \mathbb{R}^d with finite p-th moment

$$X_1,\ldots,X_n\in\mathbb{R}^d$$
, $P_n=rac{1}{n}\sum_{i=1}^n\delta_{X_i}$

Empirical transportation cost: $\mathcal{W}_p^p(P_n,Q)$

Empirical transportation cost

P, Q probabilities on \mathbb{R}^d and $c(x,y) = ||x-y||^p$, $p \ge 1$.

$$W_p^p(P,Q) = \min_{\pi \in \Pi(P,Q)} \int ||x - y||^p d\pi(x,y)$$

 $\Pi(P,Q)$ probabilities on $X\times Y$ with marginals P and Q

 \mathcal{W}_p is a metric on \mathcal{F}_p , probabilities on \mathbb{R}^d with finite p-th moment

$$X_1,\ldots,X_n\in\mathbb{R}^d$$
, $P_n=rac{1}{n}\sum_{i=1}^n\delta_{X_i}$

Empirical transportation cost: $\mathcal{W}_p^p(P_n,Q)$

What is the transportation cost from a (large) set of points to a fixed target?

Assume X_1, \ldots, X_n i.i.d. P

Optimal matching

$$X_1,\ldots,X_n\in\mathbb{R}^d$$
, $Y_1,\ldots,Y_n\in\mathbb{R}^d$

Cost of matching X_i to Y_j : $||X_i - Y_j||^p$

Optimal matching minimizes $\frac{1}{n} \sum_{i=1}^{n} \|X_i - Y_{\sigma(i)}\|^p$ σ permutation of $\{1, \ldots, n\}$.

Optimal matching cost $=\mathcal{W}_p^p(P_n,Q_n)$,

$$P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$$

Optimal matching

$$X_1, \ldots, X_n \in \mathbb{R}^d, Y_1, \ldots, Y_n \in \mathbb{R}^d$$

Cost of matching X_i to Y_j : $||X_i - Y_j||^p$

Optimal matching minimizes $\frac{1}{n} \sum_{i=1}^{n} \|X_i - Y_{\sigma(i)}\|^p$ σ permutation of $\{1, \ldots, n\}$.

Optimal matching cost $=\mathcal{W}_p^p(P_n,Q_n)$,

$$P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$$

What is the cost of matching two (large) sets of points?

Assume X_1, \ldots, X_n i.i.d. P, Y_1, \ldots, Y_n i.i.d. Q, independent of X_i 's

$$\mathcal{W}_p(P_n,P) \to 0 \text{ iff } P_n \xrightarrow[w]{} P \text{ and } \int \|x\|^p dP_n \to \int \|x\|^p dP.$$

Hence,
$$\mathcal{W}_p(P_n,Q) o \mathcal{W}_p(P,Q)$$
 a.s., $\mathcal{W}_p(P_n,Q_n) o \mathcal{W}_p(P,Q)$ a.s.

$$\mathcal{W}_p(P_n, P) \to 0 \text{ iff } P_n \xrightarrow{w} P \text{ and } \int \|x\|^p dP_n \to \int \|x\|^p dP.$$

Hence,
$$\mathcal{W}_p(P_n,Q) o \mathcal{W}_p(P,Q)$$
 a.s., $\mathcal{W}_p(P_n,Q_n) o \mathcal{W}_p(P,Q)$ a.s.

How fast? Rates of convegence

$$\mathcal{W}_p(P_n, P) \to 0 \text{ iff } P_n \xrightarrow{w} P \text{ and } \int \|x\|^p dP_n \to \int \|x\|^p dP.$$

Hence,
$$\mathcal{W}_p(P_n,Q) o \mathcal{W}_p(P,Q)$$
 a.s., $\mathcal{W}_p(P_n,Q_n) o \mathcal{W}_p(P,Q)$ a.s.

How fast? Rates of convegence

Description of fluctuation?

$$\mathcal{W}_p(P_n, P) \to 0 \text{ iff } P_n \xrightarrow{w} P \text{ and } \int \|x\|^p dP_n \to \int \|x\|^p dP.$$

Hence,
$$\mathcal{W}_p(P_n,Q) o \mathcal{W}_p(P,Q)$$
 a.s., $\mathcal{W}_p(P_n,Q_n) o \mathcal{W}_p(P,Q)$ a.s.

How fast? Rates of convegence

Description of fluctuation?

The case P = Q

For d=2, (Ajtai-Komlos-Tusnady, 1984; Talagrand & Yukich, 1993)

$$c(p) \left(\frac{\log n}{n}\right)^{1/2} \leq E(\mathcal{W}_p(P_n, U([0,1]^2))) \leq C(p) \left(\frac{\log n}{n}\right)^{1/2}.$$

For $d \geq 3$, Talagrand, Yukich, 1992-1994

$$E(\mathcal{W}_p(P_n, U([0,1]^d))) \le C(d,p) \frac{1}{n^{1/d}}.$$

Extensions to compactly supported P with 'regular' density

If
$$d=1$$
 and $P\sim f$ s.t. $\int_0^1 \left(\frac{(t(1-t))^{1/2}}{f(F^{-1}(t))}\right)^p dt <\infty$

$$\sqrt{n}\mathcal{W}_p(P_n, P) \to_w \left[\int_0^1 \left(\frac{B(t)}{f(F^{-1}(t))} \right)^p dt \right]^{1/p},$$

B(t) Brownian bridge on [0,1]

No results for $P \neq Q$

An exception: Sommerfeld and Munk (2016) for the case P,Q with finite support; possibly nonnormal limits

Here CLTs for $\mathcal{W}^2_2(P_n,Q)$ and $\mathcal{W}^2_2(P_n,Q_m)$ for general P, Q and d

Valid CLTs, with normal limits under moment assumptions $(4 + \delta)$ and a bit of smoothness (on Q) asymptotic variances easily described in terms of dual formulation of OT

No results for $P \neq Q$

An exception: Sommerfeld and Munk (2016) for the case P,Q with finite support; possibly nonnormal limits

Here CLTs for $\mathcal{W}^2_2(P_n,Q)$ and $\mathcal{W}^2_2(P_n,Q_m)$ for general P, Q and d

Valid CLTs, with normal limits under moment assumptions $(4 + \delta)$ and a bit of smoothness (on Q) asymptotic variances easily described in terms of dual formulation of OT

Beyond theoretical interest,

[the transportation cost distance] is an attractive tool for data analysis but statistical inference is hindered by the lack of distributional limits

Sommerfeld and Munk (2016)

The Kantorovich duality

Denote

$$I[\pi] = \int_{\mathbb{R}^d \times \mathbb{R}^d} x \cdot y d\pi(x, y),$$

 $\Phi = \{ (\varphi, \psi) \in L_1(P) \times L_1(Q) : \varphi(x) + \psi(y) \ge x \cdot y \text{ for all } x, y \}, \text{ and } y \in \mathcal{Y}$

$$J(\varphi, \psi) = \int_{\mathbb{R}^d} \varphi dP + \int_{\mathbb{R}^d} \psi dQ.$$

Then.

$$\min_{(\varphi,\psi)\in\Phi}J(\varphi,\psi)=\max_{\pi\in\Pi(P,Q)}\tilde{I}[\pi]$$

Maximizing pair for J can be chosen as pair of lsc, proper convex conjugate functions $\varphi(x)=\psi^*(x)\sup_{u\in\mathbb{R}^d}(x\cdot y-\psi(y))$

By Kantorovich duality, (ψ^*,ψ) is a minimizer of J and π is a maximizer of \tilde{I} iff

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} (\psi^*(x) + \psi(y) - x \cdot y) d\pi(x, y) = 0,$$

iff $\psi^*(x) + \psi(y) - x \cdot y$ vanishes π -almost surely

Now
$$\psi^*(x) + \psi(y) - x \cdot y = 0 \iff x \in \partial \psi(y) \iff y \in \partial \psi^*(x)$$
,

$$\partial \psi(y) = \{z \in \mathbb{R}^d : \psi(y') - \psi(y) \geq z \cdot (y'-y) \text{ for all } y' \in \mathbb{R}^d\}$$

 $\partial \psi(y)$ nonempty if $y \in \operatorname{int}(\operatorname{dom}(\psi))$; if ψ differentiable at y, $\partial \psi(y) = \{\nabla \psi(y)\}$

From this (Knott, Smith, Brenier,...) (ψ^*, ψ) a minimizing pair for J iff $Q \circ (\nabla \psi)^{-1} = P$; then $\pi = Q \circ (\nabla \psi, Id)^{-1}$ maximizes \tilde{I} .

 $T = \nabla \psi$ optimal transportation map from Q to P; it is Q-a.s. unique:

Optimal transportation potential: Isc convex ψ s.t. (ψ^*, ψ) minimizes J (equivalently, Isc convex ψ s.t. such that $Q \circ (\nabla \psi)^{-1} = P$

Optimal transportation potentials not unique $(J(\psi^* - C, \psi + C) = J(\psi^*, \psi))$

Lemma

Assume ψ_1 and ψ_2 finite convex functions on nonempty convex, open $A\subset \mathbb{R}^d$ s.t.

$$\nabla \psi_1(x) = \nabla \psi_2(x)$$
 for a.e. $x \in A$.

Then $\psi_1(x) = \psi_2(x) + C$ for all $x \in A$

As a consequence

Corollary

Assume P, $Q \in \mathcal{F}_2$ and

Q has a positive density in the interior of its convex support. (1)

Then, if ψ_1 , ψ_2 are lsc convex and $J(\psi_1^*,\psi_1)=J(\psi_2^*,\psi_2)=\min_{(\varphi,\psi)\in\Phi}J(\varphi,\psi)$ $\psi_2=\psi_1+C$ in $\operatorname{int}(\operatorname{supp}(Q))$. In particular, $\psi_2=\psi_1+C$ Q-a.s..

Uniqueness of optimal transportation potential fails without (1) (Take $P=\frac{1}{2}\delta_{-1}+\frac{1}{2}\delta_{1},\ Q_{\varepsilon}$ is the uniform on $(-\varepsilon-1,-\varepsilon)\cup(\varepsilon,1+\varepsilon),\ \varepsilon>0$; $\psi_{\varepsilon,L}(x)=-x,\ x\leq -\frac{L}{2},\ \psi_{\varepsilon,L}(x)=x+L,\ x\geq -\frac{L}{2},\ 0< L<\varepsilon,$ are optimal transportation potentials, but $\psi_{\varepsilon,L_{2}}\neq \psi_{\varepsilon,L_{1}}+C)$

Stability of optimal transportation potentials

Assume Q with a density, $\mathcal{W}_2(P_n, P) \to 0$,

If $\nabla \psi_n$ is o.t.p. from Q to P_n , $\nabla \psi$ is o.t.p. from Q to P, then

$$\nabla \psi_n \to \nabla \psi \quad Q - \text{a.s.}$$

How about ψ_n ?

Approach based on Painlevé-Kuratowski convergence: if C_n subsets of \mathbb{R}^d

$$\limsup_{n\to\infty} C_n = \Big\{x\in\mathbb{R}^d:\, x=\lim_{j\to\infty} x_{n_j} \text{ for some } x_{n_j}\in C_{n_j}\Big\},$$

$$\liminf_{n \to \infty} C_n = \left\{ x \in \mathbb{R}^d : x = \lim_{n \to \infty} x_n \text{ with } x_n \in C_n \text{ if } n \ge n_0 \right\}$$

 $C_n \to C$ in P-K sense if $C = \liminf_{n \to \infty} C_n = \limsup_{n \to \infty} C_n$

If T multivalued map from \mathbb{R}^d to \mathbb{R}^d (for each $x \in \mathbb{R}^d$, T(x) is a subset of \mathbb{R}^d),

$$\mathsf{gph}(T) = \Big\{ (x,t) \in \mathbb{R}^d \times \mathbb{R}^d : t \in T(x) \Big\}.$$

Multivalued maps identified with subsets of $\mathbb{R}^d \times \mathbb{R}^d$ If T_n , T multivalued maps, $T_n \to T$ graphically if $gph(T_n) \to gph(T)$ in P-K sense Some useful results

Theorem

- (a) Assume that for some $\varepsilon>0$ and some subsequence $\{n_j\}$ $C_{n_j}\cap B(0,\varepsilon)\neq\emptyset$ for every $j\geq 1$. Then there exists a subsequence $\{n_{j_k}\}$ and a nonempty subset $C\subset\mathbb{R}^d$ such that $C_{n_{j_k}}\to C$ in P-K sense.
- (b) Assume $\{T_n\}_{n\geq 1}$ multivalued maps such that for some bounded sets $C,D\subset\mathbb{R}^d$ and some subsequence $\{n_j\}$ there exist $x_{n_j}\in C$ with $T_{n_j}(x_{n_j})\cap D\neq\emptyset$ for all $j\geq 1$. Then there exists a subsequence $\{n_{j_k}\}$ and a multivalued map, T, from \mathbb{R}^d to \mathbb{R}^d , with nonempty domain s.t. $T_{n_{j_k}}$ converges graphically to T.

Recall that π optimal (a maximizer of I) iff $\mathrm{supp}(\pi)\subset\mathrm{gph}(\partial\psi)$ for some lsc convex ψ

Subgradients of convex maps characterized in terms of cyclical monotonicity:

T monotone if $(t_1 - t_0) \cdot (x_1 - x_0) \ge 0$ whenever $t_i \in T(x_i)$, i = 0, 1.

T cyclically monotone if for every choice of $m \geq 1$, points x_0, \ldots, x_m and $t_i \in T(x_i)$, $i=0,\ldots,m$

$$t_0 \cdot (x_1 - x_0) + t_1 \cdot (x_2 - x_1) + \dots + t_m \cdot (x_0 - x_m) \le 0.$$

Rockafellar's Theorem: $T=\partial \psi$ for some lsc convex ψ iff T maximal cyclically monotone

Theorem

If T_n cyclically monotone maps $\{T_n\}$ and $T_n \to T$ graphically then T is cyclically monotone. If T_n are maximal cyclically monotone then T is also maximal cyclically monotone.

If $\{\psi_n\}$ Isc, convex maps s.t. for some bounded $C,D\subset\mathbb{R}^d$ and some $\{n_j\}$ there exist $x_{n_j}\in C$ with $\partial\psi_{n_j}(x_{n_j})\cap D\neq\emptyset$ for all $j\geq 1$, then there exist $\{n_{j_k}\}$ and a lsc convex ψ with $\mathrm{dom}(\partial\psi)\neq\emptyset$ s.t. $\partial\psi_{n_{j_k}}\to\partial\psi$ graphically

If $\partial \psi_n \to \partial \psi$ graphically and for some (x_n,t_n) with $t_n \in \partial \psi_n(x_n)$ and (x_0,t_0) with $t_0 \in \partial \psi(x_0)$

$$(x_n, t_n) \to (x_0, t_0)$$
 and $\psi_n(x_n) \to \psi(x_0)$,

then

$$\lim_{n \to \infty} \psi_n(\tilde{x}_n) = \psi(x)$$

if $x \in \operatorname{int}(\operatorname{dom}(\psi))$

Theorem (Stability of optimal transportation potentials)

Assume Q satisfies (1) and $\mathcal{W}_2(P_n,P) \to 0$ and $\mathcal{W}_2(Q_n,Q) \to 0$. If ψ_n (resp. ψ) optimal transportation potentials from Q_n to P_n (resp. from Q to P) then there exist constants a_n such that if $\tilde{\psi}_n = \psi_n - a_n$ then $\tilde{\psi}_n(x) \to \psi(x)$ for every x in the interior of the support of Q (hence, for Q-almost every x)

Proof: If π_n, π o.t.plans $\pi_n \to_w \pi$; $\operatorname{supp}(\pi_n) \subset \operatorname{gph}(\partial \psi_n)$ $\operatorname{supp}(\pi) \subset \operatorname{gph}(\partial \psi) \Rightarrow \partial \psi_n \to \partial \rho$ graphically (along subsequences); $\rho = \psi(+C)$ in $\operatorname{int}(\operatorname{dom}(\psi))$; re-center to conclude.

stability

If $Q_n=Q$ and (1) holds ψ_n differentiable at a.e. $x\in A$; from graphical convergence of $\partial\psi_n$ to $\partial\rho$ with $\rho=\psi$ in A conclude

$$\nabla \psi_n(x) \to \nabla \psi(x)$$
 at a.e. $x \in A$

 $\nabla \psi_n \to \nabla \psi \ Q$ -a.s Recover known stability of o.t.maps

Theorem

Assume $Q, P, \{P_n\}_{n\geq 1} \in \mathcal{F}_4$ and Q satisfies (1); ψ_n, ψ optimal transportation potentials s.t. $\psi_n \to \psi$ Q-a.s. Then

$$\psi_n \to \psi$$
 in $L_2(Q)$

Efron-Stein inequality

Assume X_1,\ldots,X_n independent r.v.'s; (X_1',\ldots,X_n') independent copy of $(X_1\ldots,X_n)$ If $Z=f(X_1,\ldots,X_n)$ then

$$Var(Z) \le \frac{1}{2} \sum_{i=1}^{n} E(Z - Z_i)^2 = \sum_{i=1}^{n} E(Z - Z_i)_+^2,$$

with $Z_i = f(X_1, \ldots, X_i', \ldots, X_n)$

If f symmetric in x_1, \ldots, x_n and X_1, \ldots, X_n i.i.d. then

$$Var(Z) \le nE(Z - Z_1)_+^2$$

Control of (one-sided) decrease of Z when X_1 replaced by X_1' enough for control of ${\rm Var}(Z)$

Perfect for minimization functionals of empirical measure

Variance bounds for $W_2^2(P_n, Q)$

If Q smooth $\mathcal{W}_2^2(P_n,Q) = \sum_{i=1}^n \int_{C_i} \|y - X_i\|^2 dQ(y)$ with

$$C_i = \{ y : \nabla \psi_n(y) = X_i \},$$

 ψ_n optimal transportation potential from Q to P_n

 P'_n empirical measure on X'_1, X_2, \ldots, X_n ; ψ'_n optimal transportation potential from Q to P'_n

Set
$$T(y) = X_i$$
 if $\nabla \psi_n'(y) = X_i$, $i = 2, ..., n$, $T(y) = X_1$ if $\nabla \psi_n'(y) = X_1'$

T suboptimal, but maps Q to P_n ; hence,

$$\mathcal{W}_{2}^{2}(P_{n}, Q) - \mathcal{W}_{2}^{2}(P'_{n}, Q) \leq \int \|y - T(y)\|^{2} dQ(y) - \int \|y - \nabla \psi'_{n}(y)\|^{2} dQ(y)$$
$$= \int_{C'_{1}} \left(\|y - X_{1}\|^{2} - \|y - X'_{1}\|^{2} \right) dQ(y)$$

Consequence:

Theorem

If $P, Q \in \mathcal{F}_4$ and Q has a density

$$\operatorname{Var}(\mathcal{W}_2^2(P_n,Q)) \le \frac{C(P,Q)}{n},$$

where

$$C(P,Q) = 8\Big(E(\|X_1 - X_2\|^2 \|X_1\|^2) + (E\|X_1 - X_2\|^4)^{1/2} \Big(\int_{\mathbb{R}^d} \|y\|^4 dQ(y)\Big)^{1/2}\Big).$$

Alternative bound: if (φ_n, ψ_n) minimizers of J

$$W_2^2(P_n, Q) = \int_{\mathbb{R}^d} (\|x\|^2 - 2\varphi_n(x)) dP_n(x) + \int_{\mathbb{R}^d} (\|y\|^2 - 2\psi_n(y)) dQ(y)$$

Similar for $\mathcal{W}_2^2(P_n',Q)$; by optimality,

$$\mathcal{W}_{2}^{2}(P_{n}',Q) \geq \int_{\mathbb{R}^{d}} (\|x\|^{2} - 2\varphi_{n}(x)) dP_{n}'(x) + \int_{\mathbb{R}^{d}} (\|y\|^{2} - 2\psi_{n}(y)) dQ(y).$$

Hence,

$$\mathcal{W}_{2}^{2}(P_{n}, Q) - \mathcal{W}_{2}^{2}(P'_{n}, Q) \leq \int_{\mathbb{R}^{d}} (\|x\|^{2} - 2\varphi_{n}(x)) dP_{n}(x)$$

$$- \int_{\mathbb{R}^{d}} (\|x\|^{2} - 2\varphi_{n}(x)) dP'_{n}(x)$$

$$= \frac{1}{n} [(\|X_{1}\|^{2} - \varphi_{n}(X_{1})) - (\|X'_{1}\|^{2} - \varphi_{n}(X'_{1}))]$$

Consequence,

$$\mathsf{Var}(\mathcal{W}_2^2(P_n,Q)) \leq \frac{E(\left[(\|X_1\|^2 - \varphi_n(X_1)) - (\|X_1'\|^2 - \varphi_n(X_1')))^2}{n} := \frac{C_n}{n}$$

 C_n harder to control; however, if $P,Q\in\mathcal{F}_{4+\delta}$ and satisfy (1) $C_n\to C<\infty$ (sharp constants)

More important, linearization bounds:

Theorem

If $P,Q \in \mathcal{F}_{4+\delta}$ and satisfy (1), φ_0 o.t. potential from P to Q and

$$R_n = \mathcal{W}_2^2(P_n, Q) - \int_{\mathbb{D}^d} (\|x\|^2 - 2\varphi_0(x)) dP_n(x),$$

then

$$n\mathsf{Var}(R_n)\to 0$$

CLTs for empirical transportation cost

Theorem

If $P,Q \in \mathcal{F}_{4+\delta}$ and satisfy (1), φ_0 o.t. potential from P to Q and P_n empirical measure on X_1, \ldots, X_n , i.i.d. P r.v.'s then

$$n\mathsf{Var}(\mathcal{W}_2^2(P_n,Q)) \to \sigma^2(P,Q)$$

with

$$\sigma^{2}(P,Q) = \int_{\mathbb{R}^{d}} (\|x\|^{2} - 2\varphi_{0}(x))^{2} dP(x) - \left(\int_{\mathbb{R}^{d}} (\|x\|^{2} - 2\varphi_{0}(x)) dP(x)\right)^{2}$$

and

$$\sqrt{n}(\mathcal{W}_2^2(P_n,Q) - E\mathcal{W}_2^2(P_n,Q)) \xrightarrow{w} N(0,\sigma^2(P,Q))$$

Furthermore, if Q_m empirical measure on Y_1,\ldots,Y_m i.i.d. Q r.v.'s, independent of the X_i 's, $n\to\infty$, $m\to\infty$ with $\frac{n}{n+m}\to\lambda\in(0,1)$, then

$$\frac{nm}{n+m} \mathsf{Var}(\mathcal{W}_2^2(P_n,Q_m)) \to (1-\lambda)\sigma^2(P,Q) + \lambda \sigma^2(Q,P)$$

- Limiting variances well-defined (independent of choice of o.t. potentials)
- Covers optimal matching setup
- Dimension free (but dimension plays a role on centering constants)
- No assumption of compact support
- If P = Q, $\sigma^2(P, P) = 0$;

$$\sqrt{n}(\mathcal{W}_2^2(P_n, P) - E\mathcal{W}_2^2(P_n, P)) \to 0$$

in probability

ullet Smoothness of P not really important; with a different approach

Theorem

If P has finite support, $Q \in \mathcal{F}_4$ and satisfies (1) then

$$\sqrt{n} \left(\mathcal{W}_2^2(P_n, Q) - \mathcal{W}_2^2(P, Q) \right) \xrightarrow{\text{\tiny N}} N(0, \sigma^2(P, Q))$$

Open problems

- Most of approach works for other costs $c(x,y) = ||x-y||^p$, p > 1; need for stability results for optimal c-concave potentials
- What if c not stricly convex? If $c(x,y) = \|x-y\|$ nonnormal limits may happen (d=1)
- Related functionals: optimal partial transportation and matching, variation around empirical Wasserstein barycenters

References

Ajtai , M., Komlós , J. and Tusnády , G. (1984). On optimal matchings. *Combinatorica*, **4** 259–264.

del Barrio, E. and Loubes, J.-M. (2017). Central limit theorems for the empirical transportation cost in general dimension. *Submitted*.

Dobrić, V. and Yukich , J. E. (1995). Asymptotics for transportation cost in high dimensions. *J. Theoret. Probab.*, **8**, 97–118.

Sommerfeld, M. and Munk, A. (2016). Inference for Empirical Wasserstein Distances on Finite Spaces. *Preprint*. https://arxiv.org/abs/1610.03287v1

Talagrand, M. (1992). Matching random samples in many dimensions. *Ann. Appl. Probab.*, **2**, 846–856.

Talagrand , M. (1994). The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3 . Ann. Probab., **22**, 919–959.