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Supervised learning

Traditional supervised learning

I We want to learn predictor such that
y ≈ f(x).

I Actual P(X,Y ) unknown.

I We have access to training dataset
(xi, yi)i=1,...,n (P̂(X,Y )).

I We choose a loss function L(y, f(x)) that
measure the discrepancy.

Empirical risk minimization

We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y, f(x)) =

∑
j

L(yj , f(xj))

}
(1)

I Well known generalization results for predicting on new data.

I Loss is usually L(y, f(x)) = (y − f(x))2 for least square regression and is
L(y, f(x)) = max(0, 1− yf(x))2 for squared Hinge loss SVM.
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Domain Adaptation problem

Our context

I Classification problem with data coming from different sources (domains).

I Distributions are different but related.

Problem

I Labels only available in the source domain, and classification is conducted in the
target domain.

I Classifier trained on the source domain data performs badly in the target domain
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problem

I Labels only available in the source domain, and classification is conducted in the
target domain.

I Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

I Distribution change between domains.

I Reweigh samples to compensate this change.

Subspace methods

I Data is invariant in a common latent subspace.

I Minimization of a divergence between the
projected domains [Si et al., 2010].

I Use additional label information
[Long et al., 2014b].

Gradual alignment

I Alignment along the geodesic between source
and target subspace
[R. Gopalan and Chellappa, 2014].

I Geodesic flow kernel [Gong et al., 2012].
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

I There exist a transport in the feature space T between the two domains.

I The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy [Courty et al., 2016a]

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

I Works very well in practice and handle large class of transformation.

I Step 1 and 2 can be fused by estimating the mapping [Perrot et al., 2016].

But

I Model transformation only in the feature space.

I Requires the same class proportion between domains [Tuia et al., 2015].

I Barycentric mapping is an approximation.

I In the end we search for a classifier f : Rd → R, mapping is much more complex.
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Joint distribution and classifier estimation

Objectives of JDOT

I Model the transformation of labels (allow change of proportion/value).

I Learn an optimal target predictor with no labels on target samples.

I Approach theoretically justified.

Joint distributions and dataset

I We work with the joint feature/label distributions.

I Let Ω ∈ Rd be a compact input measurable space of dimension d and C the set
of labels.

I Let Ps(X,Y ) ∈ P(Ω× C) and Pt(X,Y ) ∈ P(Ω× C) the source and target joint
distribution.

I We have access to an empirical sampling P̂s = 1
Ns

∑Ns
i=1 δxs

i ,y
s
i

of the source

distribution defined by Xs = {xsi}Ns
i=1 and label information Ys = {ysi }Ns

i=1.

I The target domain is defined only by an empirical distribution in the feature
space with samples Xt = {xti}Nt

i=1.
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Joint distribution OT (JDOT)

Proxy joint distribution

I Let f be a Ω→ C function from a given class of hypothesis H.

I We define the following joint distribution that use f as a proxy of y

Pft = (x, f(x))x∼µt (2)

and its empirical counterpart P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,f(xt
i) .

Learning with JDOT

We propose to learn the predictor f that minimize :

min
f

{
W1(P̂s, P̂t

f
) = inf

γ∈∆

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))γij

}
(3)

I ∆ is the transport polytope.

I D(xsi ,y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

I We search for the predictor f that better align the joint distributions.

I Objective value is Transportation Lp [Thorpe et al., 2016], we optimize f .

10 / 20



Generalization bound (1)

Expected loss

The target expcted loss for a given predictor f is defined as

errT (f)
def
= E

(x,y)∼Pt

L(y, f(x)).

Similary we have on the target domain errT (f, g) = E(x,y)∼Pt L(g(x), f(x)) and the
inter function loss errT (f, g) = E(x,y)∼Pt L(g(x), f(x)).

Probabilistic Lipschitzness [Urner et al., 2011, Ben-David et al., 2012]

Let φ : R→ [0, 1]. A labeling function f : Ω→ R is φ-Lipschitz with respect to a
distribution P over Ω if for all λ > 0

Prx∼P [∃y : [|f(x)− f(y)| > λd(x, y)]] ≤ φ(λ).
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Generalization bound (2)

Theorem 1
Let f∗T and f∗S be the two optimal labeling functions that verifies the φ-probabilistic
Lipschitzness assumption. Let L be any loss function bounded by M , symmetric,
k-lipschtiz and that satisfies the triangle inequality. Consider a sample of Ns labeled
source instances drawn from Ps and Nt unlabeled instances drawn from µt, and any
f ∈ H, then for all λ > 0, with α = kλ, we have with probability at least 1− δ that:

errT (f) ≤ W1(P̂s, ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
NS

+
1√
NT

)
+errS(f∗S) + errT (f∗S , f

∗
T ) + errT (f∗T ) + k ∗M ∗ φ(λ).

I First term is JDOT objective function.

I Second term is an empirical sampling bound.

I Last terms are usual in DA [Mansour et al., 2009, Ben-David et al., 2010].
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Optimization problem

min
f∈H,γ∈∆

∑
i,j

γi,j
(
αd(xsi ,x

t
j) + L(ysi , f(xtj))

)
+ λΩ(f) (4)

Optimization procedure

I Ω(f) is a regularization for the predictor f

I We propose to use block coordinate descent (BCD)/Gauss Seidel.

I Provably converges to a stationary point of the problem.

γ update for a fixed f

I Classical OT problem can be solved by network simplex.

I Regularized OT can also be used (just adds a term to problem (4))

f update for a fixed γ

min
f∈H

∑
i,j

γi,jL(ysi , f(xtj)) + λΩ(f) (5)

I Weighted loss from all source labels.

I γ performs label propagation.
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Regression with JDOT

Least square regression with quadratic regularization

For a fixed γ the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (6)

I ŷj = nt
∑
j γi,jy

s
i is a weighted average of the source target values.

I Note that this problem is linear instead of quadratic.

I Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT
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Multiclass classification with Hinge loss

For a fixed γ the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (7)

I P̂ is the class proportion matrix P̂ = 1
Nt

γ>Ps.

I Ps and Ys are defined from the source data with One-vs-All strategy as

Y si,k =

{
1 if ysi = k

−1 else
, P si,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.
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Caltech-Office classification dataset
Domains Base SurK SA OT-IT OT-MM JDOT

caltech→amazon 92.07 91.65 90.50 89.98 92.59 91.54
caltech→webcam 76.27 77.97 81.02 80.34 78.98 88.81

caltech→dslr 84.08 82.80 85.99 78.34 76.43 89.81
amazon→caltech 84.77 84.95 85.13 85.93 87.36 85.22
amazon→webcam 79.32 81.36 85.42 74.24 85.08 84.75

amazon→dslr 86.62 87.26 89.17 77.71 79.62 87.90
webcam→caltech 71.77 71.86 75.78 84.06 82.99 82.64
webcam→amazon 79.44 78.18 81.42 89.56 90.50 90.71

webcam→dslr 96.18 95.54 94.90 99.36 99.36 98.09
dslr→caltech 77.03 76.94 81.75 85.57 83.35 84.33
dslr→amazon 83.19 82.15 83.19 90.50 90.50 88.10
dslr→webcam 96.27 92.88 88.47 96.61 96.61 96.61

Mean 83.92 83.63 85.23 86.02 86.95 89.04
Avg. rank 4.50 4.75 3.58 3.00 2.42 2.25

Numerical experiments

I Classical dataset [Saenko et al., 2010] is dedicated to visual adaptation.

I Feature extraction by convolutional neural network [Donahue et al., 2014].

I Comparison with Surrogate Kernel [Zhang et al., 2013], Subspace Alignment
[Fernando et al., 2013] and OT Domain Adaptation [Courty et al., 2016b].

I Parameter selected via reverse cross-validation [Zhong et al., 2010].

I SVM (Hinge loss) classifiers with linear kernel.

I Best ranking method and 2% accuracy gain in average.
16 / 20



Amazon Review Classification dataset

Domains NN DANN JDOT (mse) JDOT (Hinge)

books→dvd 0.805 0.806 0.794 0.795
books→kitchen 0.768 0.767 0.791 0.794

books→electronics 0.746 0.747 0.778 0.781
dvd→books 0.725 0.747 0.761 0.763

dvd→kitchen 0.760 0.765 0.811 0.821
dvd→electronics 0.732 0.738 0.778 0.788
kitchen→books 0.704 0.718 0.732 0.728
kitchen→dvd 0.723 0.730 0.764 0.765

kitchen→electronics 0.847 0.846 0.844 0.845
electronics→books 0.713 0.718 0.740 0.749
electronics→dvd 0.726 0.726 0.738 0.737

electronics→kitchen 0.855 0.850 0.868 0.872

Mean 0.759 0.763 0.783 0.787

Numerical experiments

I Dataset aim at predicting reviews across domains [Blitzer et al., 2006].

I Comparison with Domain adversarial neural network [Ganin et al., 2016].

I Classifier f is a neural network with same architecture as DANN.

I JDOT has better accuracy, classification loss is better than mean square error.
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Wifi localization regression dataset

Domains KRR SurK DIP DIP-CC GeTarS CTC CTC-TIP JDOT

t1 → t2 80.84±1.14 90.36±1.22 87.98±2.33 91.30±3.24 86.76 ± 1.91 89.36±1.78 89.22±1.66 93.03 ± 1.24
t1 → t3 76.44±2.66 94.97±1.29 84.20±4.29 84.32±4.57 90.62±2.25 94.80±0.87 92.60 ± 4.50 90.06 ± 2.01
t2 → t3 67.12±1.28 85.83 ± 1.31 80.58 ± 2.10 81.22 ± 4.31 82.68 ± 3.71 87.92 ± 1.87 89.52 ± 1.14 86.76 ± 1.72

hallway1 60.02 ±2.60 76.36 ± 2.44 77.48 ± 2.68 76.24± 5.14 84.38 ± 1.98 86.98 ± 2.02 86.78 ± 2.31 98.83±0.58
hallway2 49.38 ± 2.30 64.69 ±0.77 78.54 ± 1.66 77.8± 2.70 77.38 ± 2.09 87.74 ± 1.89 87.94 ± 2.07 98.45±0.67
hallway3 48.42 ±1.32 65.73 ± 1.57 75.10± 3.39 73.40± 4.06 80.64 ± 1.76 82.02± 2.34 81.72 ± 2.25 99.27±0.41

Numerical experiments

I Objective is to predict position of a device on a discretized grid
[Zhang et al., 2013].

I Same experimental protocol as [Zhang et al., 2013, Gong et al., 2016].

I Comparison with domain-invariant projection and its cluster regularized version
([Baktashmotlagh et al., 2013], DIP and DIP-CC), generalized target shift
([Zhang et al., 2015], GeTarS), and conditional transferable components, with its
target information preservation regularization ([Gong et al., 2016], CTC and
CTC-TIP).

I JDOT solve the adaptation problem for transfer across device (10% accuracy
gain on Hallway).
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Conclusion

Joint distribution optimal transportation for domain adaptation

I General framework for domain adaptation.

I Model transformation of the joint distribution.

I Theoretical justification with generalization bound

I Similar in scope to [Long et al., 2014a] but use Wasserstein instead of MMD.

I Do not depend on the function hypothesis class (linear, kernel, neural network).
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Thank you
Python code available on GitHub:
https://github.com/rflamary/POT

I OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

I Domain adaptation with OT.

I Barycenters, Wasserstein unmixing.

Papers available on my website:
https://remi.flamary.com/
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Generalization error in domain adaptation

Theoretical bounds [Ben-David et al., 2010]

The error performed by a given classifier in the target domain is upper-bounded by the
sum of three terms :

I Generalization error of the classifier in the source domain;

I Divergence measure between the densities the two domains (W1 in
[Redko et al., 2016]);

I A third term measuring how much the classification tasks are related to each
other.

Optimal transport for domain adaptation [Courty et al., 2016a]

I Model the discrepancy between the distribution through a general transformation.

I Use optimal transport to estimate the transportation map between the two
distributions.

I Use regularization terms for the optimal transport problem that exploits labels
from the source domain.
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OT for domain adaptation : Step 1Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 1 : Estimate optimal transport between distributions.

I Choose the ground metric (squared euclidean in our experiments).

I Using regularization allows

I Large scale and regular OT with entropic regularization [Cuturi, 2013].
I Class labels in the transport with group lasso [Courty et al., 2016a].

I Efficient optimization based on Bregman projections [Benamou et al., 2015] and

I Majoration minimization for non-convex group lasso.
I Generalized Conditionnal gradient for general regularization (cvx. lasso,

Laplacian).

28 / 20



OT for domain adaptation : Steps 2 & 3Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 2 : Transport the training samples onto the target distribution.

I The mass of each source sample is spread onto the target samples (line of γ0).

I We estimate the transported position for each source [Ferradans et al., 2014] :

x̂si = argmin
x

∑
j

γ0(i, j)c(x,xtj). (8)

I Can be computed efficiently for a quadratic loss.

Step 3 : Learn a classifier on the transported training samples

I Classic ML problem when samples are well transported.
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Efficient regularized optimal transport

Transportation cost matric C Optimal matrix γ (Sinkhorn)

Entropic regularization [Cuturi, 2013]

γλ0 = argmin
γ∈P

〈γ,C〉F − λh(γ), (9)

where h(γ) = −
∑
i,j γ(i, j) log γ(i, j) computes the entropy of γ.

I Entropy introduces smoothness in γλ0 .

I Sinkhorn-Knopp algorithm (efficient implementation in parallel, GPU).

I General framework using Bregman projections [Benamou et al., 2015].
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