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Motivation: computer models

Computer models have become essential in science and industry!

For clear reasons: cost reduction, possibility to explore hazardous

or extreme scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R

x 7→ f (x)

x : tunable simulation parameter (e.g. geometry)

f (x): scalar quantity of interest (e.g. energetic efficiency)

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x)

=⇒ black box model
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Gaussian process (Kriging model)

Modeling the black box function as a single realization of a

Gaussian process ξ(x) on the domain X ⊂ Rd
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Usefulness :Predicting the continuous realization function,

from a finite number of observation points 5



Gaussian processes

Definition: A stochastic process ξ : X→ R is Gaussian if for any

x1, ..., xn ∈ X, the vector (ξ(x1), ..., ξ(xn)) is a Gaussian process

The distribution of a Gaussian process is characterized by

Its mean function: x 7→ m(x) = E(ξ(x)). Can be any function

X→ R
Its covariance function

(x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2))

The covariance function

The function k : X2 → R, defined by

k1(x1, x2) = cov(ξ(x1), ξ(x2))

In most classical cases:

Stationarity: k(x1, x2) = k(x1 − x2)

Continuity: k(x) is continuous ⇒ continuous realizations 6



Role of the covariance function

Covariance on metric space We say that a random process X

indexed by a metric space (E , d) is stationary if it has constant

mean and for every isometry g of the metric space we have

Cov(Xg(x),Xg(y)) = Cov(Xx ,Xy ). (1)

We will say that X has stationary increments starting in o ∈ E if X

is centred, Xo = 0 almost surely, and for every isometry g we have

Cov
(
Xg(x) − Xg(o)

)
= Cov (Xx − Xo) . (2)
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The covariance function : some conditions are required

The covariance function

k : (x1, x2)→ k(x1, x2) = cov(ξ(x1), ξ(x2))

k must me symmetric non-negative definite

∀n ∈ N,∀x1, ..., xn ∈ Rd ,∀λ1, ..., λn ∈ R :
∑n

i ,j=1 λiλjk(xi , xj) ≥ 0

=⇒ the covariance matrix [k(xi , xj)]i ,j=1,...,n must be non-negative

definite

Often, we require the covariance function to be positive definite:

if (x1, ..., xn) are 2-by-2 distinct and (λ1, ..., λn) 6= (0, ..., 0):∑n
i ,j=1 λiλjk(xi , xj) > 0

=⇒ the covariance matrix [k(xi , xj)]i ,j=1,...,n must be positive

definite
8



Role of the covariance function

Covariance function characterizes the correlations between values

of the process at different observation points. As the notion of

similarity between data points is crucial, i.e. close location inputs

are likely to have similar target values, covariance functions are the

key ingredient in using Gaussian processes, since they define

nearness or similarity. In order to obtain a satisfying model one

need to chose a covariance function (i.e. a positive definite kernel)

that respects the structure of the index space of the dataset.

Huge litterature(Cuturi et al. , Kolouri et al . ....)
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Conditional mean as a predictor

Consider a partitioned random vector (Y1,Y2)t of size

(n1 + 1)× 1, with conditional probability density function of Y2

given Y1 = y1 given by fY2|Y1=y1
(y2).

Then the conditional mean of Y2 given Y1 = y1 is

E(Y2|Y1 = y1) =

∫
R

y2fY2|Y1=y1
(y2)dy2

Optimality

The function y1 → E(Y2|Y1 = y1) is the best prediction of Y2 we

can make, when observing only Y1. That is, for any function

f : Rn1 → R:

E
{

(Y2 − f (Y1))2
}
≥ E

{
(Y2 − E(Y2|Y1))2

}
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Conditional variance

Let a random vector (Y1,Y2)t of size (n1 + 1)× 1, with

conditional density Y2|Y1 = y1 given by fY2|Y1=y1
(y2).

Then the conditional variance of Y2 given Y1 = y1 is

var(Y2|Y1 = y1) =

∫
R

(y2 − E(Y2|Y1 = y1))2 fY2|Y1=y1
(y2)dy2

Summary

The conditional mean E(Y2|Y1) is the best possible prediction

of Y2 given Y1

The conditional probability density function

y2 → fY2|Y1=y1
(y2) can give the probability density function of

the corresponding error (⇒ most probable value, probability of

threshold exceedance...)

The conditional variance var(Y2|Y1 = y1) summarizes the

order of magnitude of the prediction error
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Gaussian conditioning theorem

Theorem

Let (Y1,Y2)t be a (n1 + 1)× 1 Gaussian vector with mean vector

(mt
1, µ2)t and covariance matrix(

R1 r1,2

r t1,2 σ2
2

)

Then, conditionaly on Y1 = y1, Y2 is a Gaussian vector with mean

E(Y2|Y1 = y1) = µ2 + r t1,2R−1
1 (y1 −m1)

and variance

var(Y2|Y1 = y1) = σ2
2 − r t1,2R−1

1 r1,2
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Kriging prediction

We let Y be the Gaussian process, on Rd . Y is observed at

x1, ..., xn ∈ Rd . We consider here that we know the covariance

function C of Y , and that the mean function of Y is zero

Notations

Let Yn = (Y (x1), ...,Y (xn))t be the observation vector. It is a

Gaussian vector

Let R be the n× n covariance matrix of Yn: (R)i ,j = C (xi , xj).

Let xnew ∈ Rd be a new input point for the Gaussian process

Y . We want to predict Y (xnew ).

Let r be the n × 1 covariance vector between y and Y (xnew ):

ri = C (xi , xnew )
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Kriging prediction

Then the Gaussian conditioning theorem gives the conditional

mean of Y (xnew ) given the observed values in Yn:

ŷ(xnew ) := E(Y (xnew )|Yn) = r tR−1Yn

We also have the conditional variance:

σ̂2(xnew ) := var(Y (xnew )|Yn) = C (xnew , xnew )− r tR−1r
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GP indexed by distributions



Distribution as entries of a numeric code

Data:

(µi , yi )
n
i=1,

where the µi are distributions on R.

Motivations

functional entries.

code to model different kind of variations : probabilities as

entries

Model different kind of uncertainties

Choice of a proper distance through the choice of the kernel
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Monge Kantorovich a.k.a Wasserstein distance

Assumptions : second moment W2(R).

Quadratic transportation cost between µ and ν is defined by

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
|x − y |2 dπ(x , y)

)1/2

, (3)

where Π(µ, ν) is the set of probabilities on R2 with marginals

distributions µ and ν.

Problem : finding stationnary kernels non negative on W2(R).
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Negative Kernels

Theorem

For all H ∈ [0, 1],

K : (µ, ν) 7→W2(µ, ν))2H (4)

is a negative definite kernel if and only if 0 ≤ H ≤ 1 :

∀µ1, · · · , µn ∈ W2(R), ∀c1, · · · , cn ∈ R t.q.
∑n

i=1 ci = 0,

n∑
i ,j=1

cicjW2(µi , µj))2H ≤ 0. (5)

The fractional exponent βW2(R) of the Wasserstein space is

equal to 2.
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Applications

Theorem (Fractionnary Brownian Field)

For all 0 ≤ H ≤ 1 µ and σ ∈ W2(R),

KH,σ(µ, ν) =
1

2

(
W 2H

2 (σ, µ) + W 2H
2 (σ, ν)−W 2H

2 (µ, ν)
)

(6)

is a proper covariance function on W2(R). It is non degenerate if

and only if 0 < H < 1.

We can define with this covariance function a fractional

brownian field W2(R). non stationary but stationary

increments.
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The centered Gaussian process (Xµ)µ∈W2(R) such that{
EXµ = 0,

Cov(Xµ,Xν) = KH,σ(µ, ν)
(7)

is the H-fractional Brownian motion with index space W2(R) and

origin in σ. It is the only Gaussian random process such that
EXµ = 0,

E(Xµ − Xν)2 = W 2H
2 (µ, ν),

Xσ = 0 almost surely.

(8)

It is a generalization of the seminal fractional Brownian motion on

the real line.

Yµ := X(µ−m(µ)) + m(µ), m(µ) :=

∫
xdµ(x).
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Applications 2

Theorem (Schoenberg)

Let F : R+ → R+ be a completely monotone function, and K a

negative definite kernel. Then (x , y) 7→ F (K (x , y)) is a positive

definite kernel.

Recall that F : R+ → R+ is fully monotone if and only if it is

indefinitely derivable such that (−1)nF (n) is positive for any

n ∈ N.
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Parametric Gaussian mode

Theorem (Stationary Processes )

For any F : R+ → R+ fully monotone and for 0 < H ≤ 1,

K : (µ, ν) 7→ F
(
W 2H

2 (µ, ν)
)

(9)

is the covariance function of a staionnary Gaussian process indexed

by W2(R).

In very particular

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
, (10)

H ∈ [0, 1], σ > 0, l > 0,

provides a parametric model of stationary Gaussian processes

indexed by W2(R).
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Estimation of outputs of a Gaussian

process



Model estimation

Lθ =
1

n
ln(det Rθ) +

1

n
y tR−1

θ y , (11)

where Rθ = [Kθ(µi , µj)]1≤i ,j≤n

Consistency of maximum likelihood estimator

θ̂ML ∈ argmin
θ∈Θ

Lθ

Theorem

Under the conditions 2 to 5

θ̂ML
P−→

n→∞
θ0.
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Ideas of proof

sup
θ∈Θ
‖Lθ − E(Lθ)‖ = oP(1). (12)

So we obtain the existence of a positive a such that

E(Lθ)− E(Lθ0) ≥ c
1

n
‖Rθ − Rθ0‖

2.

Hence we have ∀α > 0,

P
(∥∥∥θ̂ML − θ0

∥∥∥ ≥ α) −→
n→∞

0

and so

θ̂ML
P−→

n→∞
θ0.
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Assumptions

Condition (1)

Data is a triangular array W2(R) {µ1, ..., µn} = {µ(n)
1 , ..., µ

(n)
n }

such that for all n ∈ N and 1 ≤ i ≤ n, µi as support in [i , i + K ],

where K <∞.

Condition (2)

The covariance functions {Kθ, θ ∈ Θ ⊂ Rp} are such that

∀θ ∈ Θ,Kθ(µ, ν) = Fθ (W2(µ, ν)) and sup
θ∈Θ
|Fθ(t)| ≤ A

1 + |t|1+τ

where A <∞ and τ > 1 are constant.
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Condition (3)

Observations yi = Y (µi ), i = 1, · · · , n are drawn from a Gaussian

process Y , centered with covariance Kθ0 for a θ0 ∈ Θ.

Condition (4)

The sequence of matrices Rθ = (Kθ(µi , µj))1≤i ,j≤n is such that

λinf(Rθ) ≥ c for a constant c > 0, with λinf(Rθ) the smallest

eigenvalue of Rθ.

Condition (5)

∀α > 0, lim inf
n→∞

inf
‖θ−θ0‖≥α

1
n

∑n
i ,j=1 [Kθ(µi , µj)− Kθ0(µi , µj)]2 > 0.
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Lemma (expansion model)

sup
µ∈W2(R)

sup
θ∈Θ

n∑
i=1

|Kθ(µi , µj)|

is bounded as n→∞.

Lemma

Under Conditions 2 to 5,

sup
θ∈Θ

λmax(Rθ)

and

sup
θ∈Θ

max
i=1···p

λmax

(
∂

∂θi
Rθ

)
are bounded as n→∞.
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Asymptotic behavious of MLE

Theorem

Let MML a matrix p × p defined by

(MML)i ,j =
1

2n
Tr

(
K−1
θ0

∂Kθ0

∂θi
K−1
θ0

∂Kθ0

∂θj

)
.

Under Conditions 2 to 9, we get

√
nM

1/2
ML

(
θ̂ML − θ0

)
L−→

n→∞
N (0, Ip).

Moreover

0 < lim infn→∞ λmin(MML) ≤ lim supn→∞ λmax(MML) < +∞.

Hence the parametric process is fitted to the model.
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Condition (6)

∀t ≥ 0, Fθ(t) is of class C1 w.r.t θ and satisfies

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂∂θi Fθ(t)

∣∣∣∣ ≤ A

1 + t1+τ
, with A, τ defined in Condition

3.

Condition (7)

For all t ≥ 0, Fθ(t) is C3 w.r.t θ e and ∀q ∈ {2, 3},
∀i1 · · · iq ∈ {1, · · · p},

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂∂θi1 · · · ∂

∂θiq
Fθ(t)

∣∣∣∣ ≤ A

1 + |t|1+τ
.
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Condition (8)

∀(λ1 · · · , λp) 6= (0, · · · , 0),

lim inf
n→∞

1

n

n∑
i ,j=1

(
p∑

k=1

λk
∂

∂θk
Kθ0 (µi , µj)

)2

> 0.
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Forecast using GP modeling

Ŷθ(µ) = r tθ (µ)R−1
θ y (13)

and

rθ(µ) =

 Kθ(µ, µ1)
...

Kθ(µ, µn)

 .
Ŷθ(µ) is the conditional expectation of Y (µ) given y1, ..., yn, when

Y is a centered Gaussian process with covariance Kθ.

Theorem

Under Conditions 2 to 9, the Kriging estimator built using the

parameter θ̂ML is asymptotically optimal in the sense

∀µ ∈ W2(R),
∣∣∣Ŷθ̂ML

(µ)− Ŷθ0(µ)
∣∣∣ = oP(1).
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Simulations



Simulated Data

Let mk(ν) the k order moment of ν and set F :W2(R)→ R
such that

F (ν) =
m1(ν)

0.05 +
√

m2(ν)−m1(ν)2
, (14)

standing for the code to be forecast

Entries : ν1, · · · , ν100 random Gaussian

Maximum likelihood σ̂2, ˆ̀, Ĥ for Gaussian parametric model

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
. (15)
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Simulated Data

Test dataset (νt,i )i=500

RMSE 2 =
1

500

500∑
i=1

(
F (νt,i )− F̂ (νt,i )

)2
,

CIRα = 1
500

∑nt
i=1 1

{∣∣∣F (νt,i )− F̂ (νt,i )
∣∣∣ ≤ qασ̂(νt,i )

}
,

Model RMSE CIR0.9

“distribution” 0.094 0.92

“Legendre” ordre 5 0.49 0.92

“Legendre” ordre 10 0.34 0.89

“Legendre” ordre 15 0.29 0.91

“PCA” ordre 5 0.63 0.82

“PCA” ordre 10 0.52 0.87

“PCA” ordre 15 0.47 0.93
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Next ...

Not working directly in dimension ≥ 2

Extension using copulas ...

Not working great in practice for the moment

Real datasets from CEA
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