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Objective
We aim to solve the martingale optimal transport (MOT) problem:

P(µ, ν) := sup
π∈M(µ,ν)

Eπ
[
c(X, Y)

]
D(µ, ν) := inf

(φ,ψ,h)∈D

{∫
φdµ +

∫
ψdν

}

• The first scheme considers the approximation of marginal distributions, i.e.
P(µ, ν)⇝ P(µ′, ν′);

• The second one consists of solving D(µ, ν) = infψ J(ψ).
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Primal problem
Let X(x, y) := x and Y(x, y) := y for all (x, y) ∈ R2. For (suitable) probability
measures µ and ν, define

P(µ, ν) := sup
π∈M(µ,ν)

Eπ
[
c(X, Y)

]
,

where

M(µ, ν) :=
{
π : X π∼ µ, Y π∼ ν and (X, Y) is π −martingale

}
.

M(µ, ν) ̸= ∅ iff
∫
|x|dµ,

∫
|y|dν < +∞ and

∫
ψdµ ≤

∫
ψdν for all convex ψ.

Such a pair (µ, ν) is called PCOC.
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Dual problem
Let Λ be the space of Lipschitz functions on R, andD ⊂ Λ× Λ× L0(R) be the
collection of triplets (φ,ψ, h) s.t.

φ(x) + ψ(y)︸ ︷︷ ︸
static trading

+ h(x)(y− x)︸ ︷︷ ︸
dynamic trading

≥ c(x, y), for all (x, y) ∈ R2.

Define

D(µ, ν) := inf
(φ,ψ,h)∈D

[∫
φdµ +

∫
ψdν

]
.



Duality

Theorem (Beiglböeck, Henry-Labordère and Penkner)
Let c : R2 → R be u.s.c. and dominated from above by some affine function, i.e.

sup
(x,y)∈R2

c(x, y)
1 + |x|+ |y|

< +∞.

Then

(i) there exists π∗ ∈ M(µ, ν) s.t. P(µ, ν) = Eπ∗ [c];

(ii) the duality P(µ, ν) = D(µ, ν) holds.



Questions

• Dependency (µ, ν) 7→ P(µ, ν). Continuous? Lipschitz?

• Existence and characterization of the dual optimizer (φ∗, ψ∗, h∗).
Monge-Ampère equation?

• Numerical computation of P(µ, ν) = D(µ, ν).
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A heuristic idea
P(µ, ν) reduces to be a linear optimization problem if supp(µ) and supp(ν)
are finite.

How to approximate (µ, ν) by another PCOC (µ′, ν′)?

How to estimate |P(µ, ν)− P(µ′, ν′)|?

• Take an arbitrary π ∈ M(µ, ν);

• Consider the optimal transport plans T : µ⇝ µ′ and S : ν ⇝ ν′;

• Construct π′ by means of π, T and S;

• |Eπ[c]− Eπ′ [c]| is “small” if (µ, ν) is “close” to (µ′, ν′);

• In general π′ /∈ M(µ′, ν′).
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A relaxed optimization problem
For ε ∈ R+, define

Mε(µ, ν) :=

{
π : X π∼ µ, Y π∼ ν and sup

∥h∥∞≤1

Eπ
[
h(X)(Y− X)

]
≤ ε

}
,

and consider the corresponding optimization problem

Pε(µ, ν) := sup
π∈Mε(µ,ν)

Eπ
[
c(X, Y)

]
.

DenoteW⊕
1

(
(µ, ν), (µ′, ν′)

)
:= W1(µ, µ

′) + W1(ν, ν
′).
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A stability result

Proposition
Let (µ′, ν′) be another PCOC. If c is Lipschitz, then one has C > 0 s.t.

Pε(µ, ν) ≤ Pε+d(µ
′, ν′) + Cd, with d := W⊕

1

(
(µ, ν), (µ′, ν′)

)
.

Corollary
Let

(
(µn, νn)

)
n≥1

be a sequence of PCOCs converging to (µ, ν) underW⊕
1 . Set

dn := W⊕
1

(
(µn, νn), (µ, ν)

)
, then one has C > 0 s.t.

P(µ, ν) ≤ Pdn(µn, νn) + Cdn ≤ P2dn(µ, ν) + 2Cdn.
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Stability: continuation...

Proposition
(i) Let c be u.s.c. Then limε→0 Pε(µ, ν) = P(µ, ν).

(ii) Let (µ, ν) be boundedly supported, with a = inf(supp(µ)) and
b = sup(supp(µ)). Assume further c ∈ C2(R2) and∫

[a,b]

(
1

x− a
+

1

b− x

)
dµ < +∞.

Then one has C > 0 s.t. 0 ≤ Pε(µ, ν)− P(µ, ν) ≤ Cε and∣∣P(µ, ν)− Pdn(µn, νn)
∣∣ ≤ Cdn.



An explicit construction
Define

µn
({

k/n
})

:=

∫
[(k−1)/n,k/n)

(nx+ 1− k)dµ +

∫
[k/n,(k+1)/n)

(1 + k− nx)dµ,

νn
({

k/n
})

:=

∫
[(k−1)/n,k/n)

(nx+ 1− k)dν +

∫
[k/n,(k+1)/n)

(1 + k− nx)dν.

Lemma
(i) µn and νn are probability measures.

(ii) (µn, νn) are PCOCs and dn ≤ 2/n.
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A linear optimization problem
Set αk := µn

({
k/n

})
and βk := νn

({
k/n

})
. Then

Pdn(µn, νn) = sup
p=(pi,j)i,j∈Z

∑
i,j∈Z

pi,jc(i/n, j/n)

s.t.
∑
i,j∈Z

pi,j = 1 and pi,j ≥ 0, for all i, j ∈ Z,

∑
j∈Z

pk,j = αk and
∑
i∈Z

pi,k = βk, for all k ∈ Z,

∑
j∈Z

pk,jj/n ≤ (≥)
(∑

j∈Z

pk,j
)(

k/n ± dn
)
, for all k ∈ Z.
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µ = U([−1, 1]), ν = U([−2, 2]), c(x, y) = |x− y|. Then P(µ, ν) = 1.

• α−n = αn = 1/4n, αk = 1/2n, for −n < k < n;

• β−2n = β2n = 1/8n, βk = 1/4n, for −2n < k < 2n;

• dn ≤ 2/n (set w.l.o.g. dn = 2/n).
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Remarks

• Find the sufficient and necessary conditions forMε(µ, ν) ⊃ M(µ, ν) ̸= ∅;

• Generalize the numerical solver for optimal transport;

• Estimate the convergence rate Pε(µ, ν)− P(µ, ν) under more general
conditions;

• This approach can apply for the multi-dimensional case.
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An alternative formulation

Proposition
One has

D(µ, ν) = inf
ψ∈Λ

{∫
vψdµ +

∫
ψdν

}
, with vψ(x) :=

(
c(x, ·)− ψ

)c
(x).

Here
(
c(x, ·)− ψ

)c
denotes the concave envelope of y 7→ c(x, y)− ψ(y). In

addition, see Obermann,
(
c(x, ·)− ψ

)c
is the viscosity solution of

max
(
c(x, y) − ψ(y) − u(y), u′′(y)

)
= 0.



First approximation
Define

J(ψ) :=

∫
vψdµ +

∫
ψdν,

Set DL(µ, ν) := infψ∈ΛL J(ψ), where ΛL ⊂ Λ consists of L−Lipschitz functions ψ
with ψ(0) = 0. Then

Proposition
J : Λ → R is convex and

D(µ, ν) = lim
L→+∞

DL(µ, ν).



Further approximation
Let (µ, ν) be supported on a finite interval, e.g. [0, 1]. Consider the set
ΛL(n) ⊂ ΛL of functions ψ which are affine on [(k− 1)/n, k/n] for k = 1, · · · n.

Remark
Let UL(n) ⊂ Rn be the set of vectors (uk)1≤k≤n s.t. |uk| ≤ L, then there exists a
bijection between UL(n) and ΛL(n). Denote by Φ : UL(n) → ΛL(n) this bijection.

Define

cn(x, y) :=
(
1 + ⌊ny⌋ − ny

)
c
(
⌊nx⌋/n, ⌊ny⌋/n

)
+
(
ny− ⌊ny⌋

)
c
(
⌊nx⌋/n, (1 + ⌊ny⌋)/n

)
,
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Define similarly Jn(ψ) by replacing c by cn.

Lemma
If c is Lipschitz, then one has C > 0 s.t.

0 ≤ inf
ψ∈ΛL(n)

J(ψ) − DL(µ, ν) ≤ C
n
,∣∣∣∣ inf

ψ∈ΛL(n)
Jn(ψ) − inf

ψ∈ΛL(n)
J(ψ)

∣∣∣∣ ≤ C
n
.

We have

inf
ψ∈ΛL(n)

Jn(ψ) = inf
u∈UL(n)

Jn(u), with Jn := Jn ◦ Φ.

Notice UL(n) ⊂ Rn is convex and compact, and the map Jn is convex.
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More...
For any numerical solver for Jn(u), e.g. Boyd & Vandenberghe, we may
compute infu∈UL(n) Jn(u) by the following gradient projection algorithm.

Letting (γi)i≥0 ⊂ R+ be a sequence satisfying
∑

i≥0 γi = +∞:

1. Let u0 := 0.

2. Given ui, compute the sub-gradient∇Jn(ui) of Jn at ui.

3. Let ui+1 := ProjUL(n)(u
i + γi∇Jn(ui)).

4. Go back to Step 2.
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Remarks

• Estimate the convergence rate DL(µ, ν)− D(µ, ν);

• Is there some necessary condition for the optimizer argmin Jψ∈Λ(ψ) (if
exists) or argmin Jψ∈ΛL(ψ)?
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Thank you very much !
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