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Problem setting 1 i
| .

Given:
» M samples zf from a RV Zf with PDF f(z) (prior)

» normalized importance weights w; « n(yobslz,f) (likelihood)
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Given:
» M samples zf from a RV Zf with PDF f(z) (prior)

» normalized importance weights w; « n(yobslz,f) (likelihood)

Desired:
» M samples z? from a RV Z2 with PDF (posterior)

°(2)  M(Yobs|2z) T (2).

» typically achieved by sampling from a discrete RV

with P[22 (w) = z,f] = w; (resampling with replacement).
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Given:
» M samples zf from a RV Zf with PDF f(z) (prior)

» normalized importance weights w; « n(yobslz,f) (likelihood)

Desired:
» M samples z? from a RV Z2 with PDF (posterior)

n°(2) o T(Yobs|2) '(2).
» typically achieved by sampling from a discrete RV
with P[22 (w) = z,f] = w; (resampling with replacement).

Q: How to make this work for high-dimensional problems and relatively
small sample sizes M.
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Numerical Weather Prediction

“od

» Model: highly nonlinear discretized partial differential equations
» Data: heterogeneous mix of ground-, airborne-, satellite-based and
radar data
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Numerical Weather Prediction «v il

/ N
4 I Assimilation 4-

Model /'
‘ Improved

Model Results

» Model: highly nonlinear discretized partial differential equations

» Data: heterogeneous mix of ground-, airborne-, satellite-based and
radar data

» 24/7 data assimilation service for optimal weather prediction

» non-traditional particle filters (PF) with M = ©(102) particles for
models with dimension of state space N = ©(10’) being used
operationally
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Gridpoint being
updated

State variable on
grid points

Observations outside
localization radius

Observations inside
localization radius




Classic PF: Resampling with replacement 1 T
%m 25
—— oL SavRe

Resampling interpreted as discrete Markov chain
P e RM*M

s.t. pjj =0 and
1
Ei pU:]_, M ji pU:WI

and
z]"." = z‘; with probability pj.
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Classic PF: Resampling with replacement 1 T
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Resampling interpreted as discrete Markov chain
P e RM*M

s.t. pjj =0 and
1
Ei pU:]_, M ji pU:WI

and
z]"." = z‘; with probability pj.

Example. Monomial resampling

Wl Wl eee Wl
0 W2 W2 Y W2
P =wel=

WM WM e Wa
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Sinkhorn approximation | 1 T
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Define resampling Markov chain P?:

1 py
P* = argmin Az =2z 2+ = In—
9 ,-Z,-p”{"’ LR

for given A > 0 subject to

1
pij =0, Zpij =1, o Zpij =Ww;.
i i
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Sinkhorn approximation | o

Define resampling Markov chain P?:
P* = argmin > pj ||zf—zf||2+lln&
—armin 2P 1= 1+ 50 o
if if

for given A > 0 subject to

1
pij =0, Zpij =1, o Zpij =Ww;.
i i

Remark.
» A—0: PO =we® 1 (monomial resampling).
» A — o0: P% solves the optimal coupling/transport problem.
» Effective iterative solvers are available [Cuturi, 2013].

Universitat Potsdam/ University of Reading 6



Sinkhorn approximation Il 1 @ﬁ@

Prior and posterior means:

zZ' = %sz z° :waz,f

i i

Mean value for each column of the resampling Markov chain:

—a _ f .
z/ = Zzipu
]
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Sinkhorn approximation Il 1 T
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Prior and posterior means:
Sf .~ f za _ of
z 7MZzi, z 7Zw,z,.
]

Mean value for each column of the resampling Markov chain:

= Z z,fp/j
i

Reformulated Sinkhorn cost:

:—ZZ(Z -7 z —z Zp,jln +constant

Remark. Monomial resampling:

—2Z(Ef—ia)-(zjf—if):o
j
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Non-classic PF: Transformation approach o
——

Non-classic particle filters (PFs) [Reich and Cotter, 2015]:
f
z}"?‘ = Zzid,-j
]

with transformation matrix D = {djj} subject to

M 1 M
dejzl Mdej:VAV,'.
-1 =1
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Non-classic PF: Transformation approach 1 T
—— :

Non-classic particle filters (PFs) [Reich and Cotter, 2015]:
f
z}"?‘ = Zzid,-j
]

with transformation matrix D = {djj} subject to
M 1 M
dejzl Mdej:VAV,'.
i=1 j=1

Remark.
» Non-classic PFs been pioneered in the EnKF community.

» Mostly developed for Gaussian likelihood functions and Gaussian
approximations to the prior distribution.

> Entries dj can take negative values.
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First-order accuracy -3, [
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Definition. A LETF is called first-order if

XA
1

1
MZd,-,-:w,' & D1l=Mw
j
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First-order accuracy 3,
e :

Definition. A LETF is called first-order if

1
—Zz.azia
M
1
MZd,-j:w,' & D1l=Mw
j

Result.
D-P

is first-order for any A > 0.
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Second-order accuracy -z I
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Definition A first-order LETF is called second-order if
D-=wel+S=P°+S
with S such that S1 =0 and
SST=M(W-wew)
where W = diag (w).
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Second-order accuracy -z [

|
Definition A first-order LETF is called second-order if
D-=wel+S=P°+S
with S such that S1 =0 and
SST=M(W—-we w)
where W = diag (w).

Remark.

» The posterior samples reproduce the covariance matrix defined
through the importance weights.

» D =P is not second-order accurate for any A. In fact, the posterior
samples underestimate the covariance.
» But the first-order D = P*® leads to @ — m@ as M — oo (ETPF,
[Reich, 2013]) with
e (2) = 26 27 —z).
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General form of second-order LETFs - O
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Result. Any second-order accurate LETF is of the form
D=P°+SQ, S:=vMW-wew)?

with Q being an orthogonal matrix s.t. Q1 = 1.
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General form of second-order LETFs ‘s R
|

Result. Any second-order accurate LETF is of the form
D=P°+SQ, S:=VMW-wew)¥?

with Q being an orthogonal matrix s.t. Q1 = 1.

Remark.

» Second-order accurate LETFs have been proposed by
[Xiong et al., 2006] and [Todter and Ahrens, 2015] corresponding to
Q =1or Q randomly chosen.

» D satisfies 1
Ddi=1,  =>dj=w;
i M=

but entries can take negative values contrary to the resampling
Markov chains P,
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Optimal second-order LETF o

Find Q in
P=P°+SQ, S:=vVMW-wew)"?
such that the Sinkhorn cost (A = o)

JQ)==22 (2 ~7)- ([ -2
J

is minimized.
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Optimal second-order LETF o

Find Q in
P=P°+SQ, S:=vVMW-wew)"?
such that the Sinkhorn cost (A = o)
_ a__ 53\, (5 _
J(Q) = 2;(21- 2)- (2

P2
is minimized.
Proposition [de Wiljes et al., 2016]

The optimal Q is given by
Q=uv’

with orthogonal matrices U and V obtained from the SVD of
s(z"HTz = unv'.
with

Zf:(zg—if,z‘;—if,...,z;,,—if)GIRNZXM.
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Second-order corrected LETF ‘s R

Alternatively: Second-order accurate LETF through a correction to the
Sinkhorn approximation [de Wiljes et al., 2016]:

D-P*"+C=P°+B+C

with
B—=P'-PC.

and symmetric C subject to C1 =0.
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Second-order corrected LETF ‘s R

Alternatively: Second-order accurate LETF through a correction to the
Sinkhorn approximation [de Wiljes et al., 2016]:

D-P*"+C=P°+B+C
with
B =P)—PO.
and symmetric C subject to C1 =0.

Requires solution of a continuous-time algebraic Riccati equation in
C:
M(W—w e w)—BB' =CC+BC+CB'

Remark. Fully “observable”, hence solutions exist.
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Numerical example | «v @ﬁ@
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| D=4

Gaussian prior, non-Gaussian likelihood:

Prior and Posterior Distribution

jor
sterior

0 1 2 3 4
z variable

Figure: Prior and posterior distribution for the single Bayesian inference step
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Numerical example |
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standard ETPF

0.12 T - - T T second-order accurate ETPF
—e— first moment 012 ! ! i i
0.1 —e— second moment —e— first moment
third moment 0.1 —e— second moment
0.08 —e— fourth moment third moment
) 0.08 - —e—fourth moment  _
0 0% 0.06
S 0.04 0
5] ug) 0.04
[}
g o2 \\,l S 002 |
o 0 =2
2 5}
| g 0
-0.02 e |
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-0.04 - d
-0.06
-0.06 - g
.0.0810 éO 30 4b 5b éO 7‘0 80 Qb 100 -0.08 y y L .
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ensemble size

Figure: Absolute errors in the first four moments of the posterior distribution as
obtained from the standard Sinkhorn LETF (A = oo) (left panel) and the
second-order corrected Sinkhorn LETF (right panel).




Numerical example Il
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Lorenz-63 model, first component observed infrequently (At =0.12) and

with large measurement noise (R = 8):
ensemble transform filters

8
) —%—ETPF
—&— symmetric NETF| |
7 random NETF
—©— optimal NETF
6l —r—2nd order ETPF | |
ESRF
= === S|R benchmark
25
[}
S
o 4
SN
2

1 ‘ ‘
15 20 25 30 35

ensemble size
Figure: RMSEs for various second-order accurate LETFs compared to the ETPF, the

ESRF, and the SIR PF as a function of the sample size, M.

Universitat Potsdam/ University of Reading



wVersigy,

am 25

od

Numerical example Il
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Hybrid filter: P := Pesrr(a) PeTPr(1 — O).
hybrid 2nd order accurate ETPF-ESRF

31| M=15 1
-©—-M=20
M=25

2.8 |~*M=30 i
—¥—M=35

RMS error

18 . . .
0 0.2 0.4 0.6 0.8 1

bridging parameter «
Figure: RMSEs for hybrid ESRF (a = 0) and 2nd-order corrected LETF/ETPF (a =1)
as a function of the sample size, M.
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Numerical example lIl ~= T
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Lorenz-96 model, discretized nonlinear advection equation, 40 grid
points, every second observed.
Hybrid filter P := P eTkr (@) PeTPr(1 — a) + localization.

hybrid 2nd order (Sinkhorn) ETPF-LETKF

1.85
——M=20
-©-M=25
181 M=30
1.75
g
5
g 1.7¢
T [¢
1.65
161
1.55 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

bridging parameter «

Figure: RMSE for hybrid LETKF (a = 0) and 2nd-order corrected LETF/ETPF (a = 1).
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» The resampling step of a SIR particle filter can be replaced by a
deterministic transformation step - variance reduction, increase
in bias.
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» The resampling step of a SIR particle filter can be replaced by a

deterministic transformation step - variance reduction, increase
in bias.

» There is a systematic family of options: ETPF, NETF, Sinkhorn +
2nd order correction, ... all with pros and cons; currently being
implemented into DWD DA test system
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Conclusions S5 I

» The resampling step of a SIR particle filter can be replaced by a
deterministic transformation step - variance reduction, increase
in bias.

» There is a systematic family of options: ETPF, NETF, Sinkhorn +
2nd order correction, ... all with pros and cons; currently being
implemented into DWD DA test system

» All these methods allow for localization and hybridization with an
EnKF [Chustagulprom et al., 2016] and, hence, application to
spatially extended systems.
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Conclusions . [am
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» The resampling step of a SIR particle filter can be replaced by a

deterministic transformation step - variance reduction, increase
in bias.

» There is a systematic family of options: ETPF, NETF, Sinkhorn +
2nd order correction, ... all with pros and cons; currently being
implemented into DWD DA test system

» All these methods allow for localization and hybridization with an
EnKF [Chustagulprom et al., 2016] and, hence, application to
spatially extended systems.

» All these methods can be applied to non-Gaussian likelihoods and
combined with optimal proposal steps of all flavors.
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» The resampling step of a SIR particle filter can be replaced by a

deterministic transformation step - variance reduction, increase
in bias.

» There is a systematic family of options: ETPF, NETF, Sinkhorn +
2nd order correction, ... all with pros and cons; currently being
implemented into DWD DA test system

» All these methods allow for localization and hybridization with an
EnKF [Chustagulprom et al., 2016] and, hence, application to
spatially extended systems.

» All these methods can be applied to non-Gaussian likelihoods and
combined with optimal proposal steps of all flavors.

» Approach is applicable to any problem which requires coupling of
samples from different distributions (e.g. multi-level MC,
pseudo-marginal MCMC, approximation of the Barycenters in the
Wasserstein space etc.)
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