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© PDMPs
© PDMPs for MCMC

© Construction of Algorithms

@ Remarks, Open Questions, Takeaways
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Specifying a PDMP

o Today: PDMPs from ODEs
o Vector field ¢(2)
o Use dynamics % = ¢(z2)
o Event rate A(z) > 0
o Dictates how often events happen (inhomogeneous Poisson process)
o Transition dynamics Q(z — dz’)

o Dictates what happens at events (Markov jump kernel)
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PDMPs for MCMC

o Want 7(dz), but work on extended target:

o Set z = (x,v).

o Choose your own % (dv).

o Target is then u(dz) = w(dx)y(dv).
o Typically, jumps fix x ~ X; has continuous sample paths.
o Question:

Given target measure i, vector field ¢, (1)
how can | build (A, @) to sample 1 ? (2)
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Aside on Reversibility, Symmetry

o Reversibility
o Much MCMC work built on reversible methods
o PDMPs are generally non-reversible

o To design algorithms, locality is the important part
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Aside on Reversibility, Symmetry

o Reversibility
o Much MCMC work built on reversible methods
o PDMPs are generally non-reversible
o To design algorithms, locality is the important part
o Symmetry
o Existing PDMPs are highly symmetric (BPS, ZZ)
o A priori, not necessary to have symmetry

o Want to be able to use all ODEs!
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Time-Augmented PDMPs

o Idea:
@ Introduce ‘direction of time' variable 7 € {£1}
Q Target i(dz,dr) = u(dz)R(dr).
o Write ¢(2,7) = 7 ¢(2); use dynamics % = ¢(z, 1)
o Solve system forwards and backwards in time
o Let A= \(z,7)

o Stipulate that, at events, 7 — —7, i.e.

Q(z,7) = (d',dr")) = Q" (2 — d7) - §(—7,dT") (3)

@ 'Trajectorial Reversibility’ ~» checking exactness becomes local!
o ‘in at z forwards in time = out at z backwards in time'
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Choice of Event Rate (1)

o Consider ‘probability current’

r(z,7) £ (VH(2),¢(2,7)) —  div.g(z,7) (4)
N $ L ———
Energy Gain Compressibility Penalty
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o Consider ‘probability current’
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N @ ” ———
Energy Gain Compressibility Penalty
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Choice of Event Rate (1)

o Consider ‘probability current’

T(ZvT) =S <VH(Z)a¢(ZaT)> - divz¢(z77_) (4)
N @ ” ———
Energy Gain Compressibility Penalty

o Define ‘natural’ event rate as

N(z,m) = (r(z, 7))+ (5)
where (u)4 = max(0,u)
o Let 7(z) > 0 be some ‘refreshment rate’.

o We will take A\(z,7) = X°(z,7) +v(2)
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Choice of Transition Dynamics

o Define ‘jump measure’:

JT(dz) o< p(dz)A(z,T) (6)

o Want trajectorial reversibility
o = Need jump chain reversible w.r.t. jump measure

o ~» Choose ¢"(z — dz’) to be J™-reversible
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Putting together the ingredients

If (¢, X\, Q) are chosen in this way, then the resulting PDMP is trajectorially
reversible, and admits [i as a stationary measure.
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Putting together the ingredients

If (¢, X\, Q) are chosen in this way, then the resulting PDMP is trajectorially
reversible, and admits [i as a stationary measure.

Theorem

If (¢, \, Q) is a trajectorially-reversible, ji-stationary TA-PDMP, then
3~ > 0 such that

Mz, m) = X(z,7) +(2) (7)

and for 7 € {£1}, Q7 is J"-reversible

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 10 / 17



Split PDMPs (1)

o Many PDMPs in use have different types of event

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 11 / 17



Split PDMPs (1)

o Many PDMPs in use have different types of event
o Refreshment
o Zig-Zag
o Local BPS (Factor Graph)
o Subsampling

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 11 / 17



Split PDMPs (1)

o Many PDMPs in use have different types of event
o Refreshment
o Zig-Zag
o Local BPS (Factor Graph)
o Subsampling

o Each event type affects different parts of the system

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 11 / 17



Split PDMPs (1)

o Many PDMPs in use have different types of event
o Refreshment
o Zig-Zag
o Local BPS (Factor Graph)
o Subsampling
o .-
o Each event type affects different parts of the system

o Key point: Different event types correspond to decompositions of r
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Split PDMPs (2)
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Split PDMPs (2)

) z=(21,--' ,ZD), T=(7'1,"' aTD) E{il}D

° ¢(2,7) =70 d(2) = (nd1(2),-- -, TpPD(2))

@ Assume decomposition
M
r(z,7) = er(z,T) (8)
j=1
and existence of involutions F; : {+1}P — {£1}¥ such that

rj(z, Fj(1)) = =rj(2,7) (9)

o Events of type j happen at rate \;(z,7)
o and then jump according to Q7 (z — dz') - 6(F;(7),d7’)
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Making Split-PDMPs work (1)

o Define

A (z,7) = (rj(z,7))+ (10)
Nj(z,7) = )\2(,2,7') + (2, 7) (11)
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Making Split-PDMPs work (1)

o Define
N(z,7) = (rj(z,m))+ (10)
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Making Split-PDMPs work (1)

o Define
X (z,7) = (rj(z,7m))+ (10)
Nj(z,7) = )\?(Z,’T) + (2, 7) (11)

o Define
Ji(dz) oc p(dz)\j (2, 7) (12)

and for each 7 € {£1}7, take Q] to be J7-reversible.

This leads to trajectorially-reversible, [i-stationary Split PDMPs. |

Given a fixed splitting, all trajectorially-reversible, ji-stationary Split
PDMPs take this form.
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@ Decide on v.
Q Decide on ¢.
© Decide on 9(dv) (and hence p).
@ Write down r, decide on a splitting.
© Write down )\, decide on ~ (and hence )).
@ Decide on Q.
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Algorithm Design Pipeline (2)

o Choosing @ is often least obvious; order of preference:
@ Sample from J7 directly.
Q@ Sample from its restriction to a finite set. (e.g. BPS)
© (Use a Metropolis-Hastings step).

o Choosing v could make a big difference; dictates p.

o Can have 9 (dv|x) (relatively unexplored)

o Choosing ¢: some room for creativity here.
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Remarks, Open Questions, Takeaways
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Remarks, Open Questions, Takeaways

o Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
o Conjecture: Split as little as possible
o Conjecture: Refresh as little as possible
o Pinch of salt / ‘Pre-Asymptopia’: Maire, Vialaret (2018)
o Implementation remains challenging
o Splittings may help
o Speculation: Better dynamics ¢ ~ opportunities

o Curiosity: Tempering?
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Thank youl
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