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Overview

This talk is about: Estimating tail quantities..

Examples of extreme event/risk analysis:
• Environmental sciences, e.g. probability of flood etc. (Davison & Smith ’90...)

• Engineering reliability (Nicola et al. ‘93, Heidelberger ’95...)

• Large loss in insurance and finance (Kulik & Palmowski ‘11, McNeil ‘97, Beirlant & 
Teugels ‘92, Embrechts et al. ’97, Glasserman & Li ‘05, Glasserman et al. ’07…)
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Recurring issue: few data in the tail



Example

Example: Fire losses over one million Danish Krone (DKK) during 1980-1990 
(McNeil ‘97)

# data = 2156



Example

High-excess insurance policy (McNeil ‘97):

0 if   0 < 𝑋 < 50
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150 if  200 ≤ 𝑋 < ∞

Payout =

Insurance Price = 𝐸[Payout]
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High-excess insurance policy (McNeil ‘97):

0 if   0 < 𝑋 < 50

𝑋 − 50 if   50 ≤ 𝑋 < 200

150 if  200 ≤ 𝑋 < ∞

Payout =

Insurance Price = 𝐸[Payout]

Only seven data points above 50

What is a good estimate of the insurance 
price?
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Example 2

200 data points from unknown distribution

What is an estimate of 

• 𝑃 3.5 < 𝑋 < 4.5

• 𝑃(𝑋1 +⋯+ 𝑋50 > 100)

Should you fit a light or 
heavy tail?



Conventional Methods

“Goodness-of-fit”:
• Quantile plot, mean excess plot, etc. (Embrechts et al. ’97…)
• Shape/properties of parametric families (Hogg & Klugman ’84…)

Extreme value theory:
• Pickands-Balkema-de Haan Theorem (Pickands ‘75, Davison & Smith ’90…): 
The distribution function of an excess loss over high threshold 𝑢, i.e.

𝐹𝑢 𝑥 = 𝑃 𝑋 − 𝑢 ≤ 𝑥 𝑋 > 𝑢
converges to a generalized Pareto distribution (GPD) as 𝑢 → ∞
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“Goodness-of-fit”:
• Quantile plot, mean excess plot, etc. (Embrechts et al. ’97…)
• Shape/properties of parametric families (Hogg & Klugman ’84…)

Extreme value theory:
• Pickands-Balkema-de Haan Theorem (Pickands ‘75, Davison & Smith ’90…): 
The distribution function of an excess loss over high threshold 𝑢, i.e.

𝐹𝑢 𝑥 = 𝑃 𝑋 − 𝑢 ≤ 𝑥 𝑋 > 𝑢
converges to a generalized Pareto distribution (GPD) as 𝑢 → ∞

Implication: 
• GPD is justified to fit the tail portion of data

Challenges:
• Need 𝑢 to be large enough for convergence to GPD (control bias), and
• Sizable data above 𝑢 to estimate the parameters (control variance)
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and nonparametric



Main Goal of the Talk

Introduce an alternate method that is robust
and nonparametric

No free lunch. Some price to pay…
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A Robust Optimization Approach

Assume the tail density is convex

This assumption is satisfied by all known parametric density functions that 
has support on real line, e.g. normal, exponential, Weibull, Cauchy, GPD etc.



4.53.5

A Robust Optimization Approach

Worst-case estimation: 
Maximize a given target performance measure, e.g. 𝑃(3.5 < 𝑋 < 4.5)
among all convex tail extrapolations



4.53.5

A Robust Optimization Approach

ℎ 𝑥 = 𝐼(3.5 < 𝑥 < 4.5)

max
𝑓

𝐸𝑓[ℎ 𝑋 ]

among all densities 𝑓(𝑥) that are

known for 𝑥 ≤ 𝑎

convex for 𝑥 > 𝑎

In general, given a bounded function 
𝒉 𝒙 , compute:

𝑎
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Main Qualitative Results
Roughly speaking, worst-case convex tail is
• either extremely light or extremely heavy
• in the form of piecewise linear density

Either of the following two closely related cases happen:
1. There exists an optimal tail that has three (or less) line segments
2. There exists a sequence of tails that has three (or less) line segments, the last segment getting 

“flatter and flatter”, whose objective values converge to the optimum

Case 1: Extreme light tail Case 2: “Extreme heavy” tail



Main Computational Results

If ℎ(𝑥) is bounded and satisfies an increasing-decreasing property, the worst-case tail 
can be found by two low-dimensional nonlinear programs:

Step 1: 1-variable optimization to distinguish between light and heavy tails
Step 2: 2-variable optimization to find the sequence of tails in the heavy-tail case

Case 1: Extreme light tail Case 2: “Extreme heavy” tail



Information for Convex Extrapolation
Given a threshold 𝒂, a bounded performance 
function 𝒉(𝒙)
Three information needed for extrapolation:
• 𝜼: value of density at 𝑥 = 𝑎
• −𝝂: left derivative of 𝑓 at 𝑥 = 𝑎
• 𝜷: tail probability for 𝑋 > 𝑎

𝑎

slope = −𝜈
𝜂

area = 1 − 𝛽

Optimization formulation:

max  ׬𝑎
∞
ℎ 𝑥 𝑓 𝑥 𝑑𝑥

subject to

𝑎׬
∞
𝑓 𝑥 𝑑𝑥 = 𝛽

𝑓 𝑎 = 𝜂
𝑓+
′ 𝑎 ≥ −𝜈

𝑓 convex for 𝑥 ≥ 𝑎
𝑓 𝑥 ≥ 0 for 𝑥 ≥ 𝑎
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Results
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to a probability 
distribution on [0,∞)
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Explanation of the Main Qualitative 
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• For the moment problem, it suffices to consider probability measures that have 
discrete support on at most three points

Optimization formulation:

max  ׬𝑎
∞
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Moment problem:

max  𝜈𝐸 𝐻 𝑋
subject to

𝐸 𝑋 =
𝜂

ν

𝐸 𝑋2 =
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𝜈

1-to-1 map from 𝑓′(𝑥)
to a probability 
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• Kinks in the piecewise linear density correspond to the support points of the 
optimal distribution in the moment problem



Step 1: Distinguishing between Light 
and Heavy Tails

Given 𝒉 𝒙 , and 𝜼, 𝝂, 𝜷, distinguishing light vs heavy tail requires a one-dimensional 
line search (L. & Mottet ‘17)

Define

𝜇 =
𝜂

𝜈
, 𝜎 =

2𝛽

𝜈
, 𝐻 𝑥 = න

0

𝑥

න
0

𝑢

ℎ 𝑣 + 𝑎 𝑑𝑣 𝑑𝑢,

𝜆 = limsup𝑥→∞
𝐻 𝑥

𝑥2
< ∞

Solve

max
𝑥1∈ 0,𝜇

𝜎 − 𝜇2

𝜎 − 2𝜇𝑥1 + 𝑥1
2𝐻 𝑥1 +

𝜇 − 𝑥1
2

𝜎 − 2𝜇𝑥1 + 𝑥1
2𝐻

𝜎 − 𝜇𝑥1
𝜇 − 𝑥1

If there is an optimal solution 𝑥1
∗ ⇒ light tail

If there is no optimal solution, i.e. optimality occurs at 𝜇 ⇒ heavy tail

(*)



Step 1 (cont’d): Finding the Worst-Case 
Light Tail

Light-tail Case: The optimization (*) characterizes the optimality 

𝑥1
∗ solves (*) 𝑥2

∗ =
𝜎 − 𝜇𝑥1

∗

𝜇 − 𝑥1
∗

slope = −𝜈

slope =
𝜇−𝑥1

∗ 2

𝜎−2𝜇𝑥1
∗+𝑥1

∗2

𝑎



Step 2: Finding the Worst-case Heavy-
tailed Sequence 

Heavy-tail case: Solve an additional two-dimensional optimization

max
𝑥1∈ 0,𝜇 ,𝜌∈[𝜇2,𝜎]

𝜌 − 𝜇2

𝜌 − 2𝜇𝑥1 + 𝑥1
2 𝐻 𝑥1 − 𝜆𝑥1

2 +
𝜇 − 𝑥1

2

𝜌 − 2𝜇𝑥1 + 𝑥1
2 ൭𝐻

𝜎 − 𝜇𝑥1
𝜇 − 𝑥1

𝑎
𝑥2
∗(𝑘)

=
𝜌∗ − 𝜇𝑥1

∗

𝜇 − 𝑥1
∗ − 𝛿 𝑘

slope = −𝜈
slope = −

𝜈 𝜇−𝑥1
∗ 2

𝜌∗−2𝜇𝑥1
∗+𝑥1

∗2

𝑥3
∗(𝑘)

→ ∞

(**)

𝑥1
∗ solves (**) 

slope = −𝜈𝛾 𝑘



Related Literature

Robust extremal analysis:

– Worst-case copula: Balkema & Embrechts ’07, Wang & Wang ’11, Puccetti ’13, 
Puccetti & Ruschendorf ‘13…

– Distance-based constraints for extremal bound: Atar et al. ‘13, Engelke & Ivanovs
‘17, Blanchet & Murthy ’16

– Worst-case extremal coefficient: Stoev et al. ?

Optimization formulations and techniques:

– Shape-constrained problems: Li et al. ‘16, Popescu ’05, van Parys et al. ‘15

– Moment problems: Birge & Wets ‘87, Birge ‘90, Bertsimas & Popescu ‘05, Popescu
‘05, Karr ‘83, Winkler ‘88, Smith ’95, Bertsimas & Natajaran ’07…

– Distributionally robust optimization: Delage & Ye ‘10, Goh & Sim ‘09, Ben-Tal et al. 
‘13, Goldfarb & Iyengar ’03, Wiesemann et al. ’14, Li et al. ‘18…
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In practice, 𝜂, 𝜈, 𝛽 need to be estimated

Optimization formulation:

max  ׬𝑎
∞
ℎ 𝑥 𝑓 𝑥 𝑑𝑥

subject to

𝛽 ≤ 𝑎׬
∞
𝑓 𝑥 𝑑𝑥 ≤ ҧ𝛽

𝜂 ≤ 𝑓 𝑎 ≤ ҧ𝜂

𝑓+
′ 𝑎 ≥ − ҧ𝜈

𝑓 convex for 𝑥 ≥ 𝑎
𝑓 𝑥 ≥ 0 for 𝑥 ≥ 𝑎

Relax the worst-case optimization 
where 𝛽, 𝛽 , 𝜂, ҧ𝜂 , ҧ𝜈 are the 95% 
joint confidence intervals for the 
respective quantities

The optimal value provides a valid 
upper bound with 95% confidence

The nonlinear programs can be 
modified with one more variable



Example

Method 95% Confidence Upper 
Bound

Truth 2.1 × 10−3

GPD fitting 1.5 × 10−3

Robust approach 6.6 × 10−3

Empirical 𝑁/𝐴

200 data points from unknown distribution

Estimate of 𝑃 4 < 𝑋 < 5



Example

GPD fitting

The robust 
approach



Choosing Threshold for the “Tail 
Region”

Pickands-Balkema-de Haan Theorem: A threshold where the excess 
loss data are believed to follow GPD

• Bias-variance tradeoff

Robust Optimization: A threshold where the constraints are believed 
to hold (e.g., convexity)

• This threshold can be chosen lower than POT

• Conservativeness-variance tradeoff



Coping with Conservativeness
Add additional constraints, e.g., power moments, quantiles, or 
constraints implied by the Kolmogorov-Smirnov statistic, etc.

max   𝐸𝑓 ℎ 𝑋

subject to
𝛽 ≤ 𝑃𝑓(𝑋 ≥ 𝑎) ≤ ҧ𝛽

𝜂 ≤ 𝑓 𝑎 ≤ ҧ𝜂

𝑓+
′ 𝑎 ≥ − ҧ𝜈

−𝑧 +
𝑖

𝑛
≤ 𝑃 𝑋 ≤ 𝑋 𝑖 𝑋 ≥ 𝑎 ≤ 𝑧 +

𝑖 − 1

𝑛
, 𝑖 = 1,… , 𝑛

𝑓 convex for 𝑥 ≥ 𝑎
𝑓 𝑥 ≥ 0 for 𝑥 ≥ 𝑎

Solution via:
• Duality and semidefinite programming (e.g., Bertsimas et al. ‘17, Bertsimas & 

Popescu ’05, Van Parys et al. ‘16)
• Generalized linear programming / column generation with a “heavy-tail” slack 

variable (Mottet & L. ’18)



Multivariate Generalizations

𝑎

𝑎

max
𝑓

𝑃𝑓(1.5 ≤ 𝑋1 ≤ 2.5, 1.5 ≤ 𝑋2 ≤ 2.5)

subject to

𝛽 ≤ 𝑃𝑓 𝑋1 ≥ 𝑎, 𝑋2 ≥ 𝑎 ≤ 𝛽

𝜂1 ≤ 𝑓 𝑋1 = 𝑎;𝑋2 ≥ 𝑎 ≤ 𝜂
1

𝜂2 ≤ 𝑓 𝑋2 = 𝑎;𝑋1 ≥ 𝑎 ≤ 𝜂
2

𝑓(𝑥1, 𝑥2) coordinate-wise non-increasing for 𝑥𝑖 ≥ 𝑎

Estimate a probability involving a multivariate extremes, e.g., 
𝑃(1.5 ≤ 𝑋1 ≤ 2.5, 1.5 ≤ 𝑋2 ≤ 2.5)



Robust Simulation

Estimate 𝑃(𝑋1 +⋯+ 𝑋𝑛 > 𝑏)

max   𝑃𝑓(𝑋1 +⋯+ 𝑋𝑛 > 𝑏)

subject to
𝛽 ≤ 𝑃𝑓(𝑋 ≥ 𝑎) ≤ ҧ𝛽

𝜂 ≤ 𝑓 𝑎 ≤ ҧ𝜂

𝑓+
′ 𝑎 ≥ − ҧ𝜈
𝑓 convex for 𝑥 ≥ 𝑎
𝑓 𝑥 ≥ 0 for 𝑥 ≥ 𝑎

No closed form but simulable



Robust Simulation

Estimate a simulation-based performance measure 
𝜓(𝑓) that depends on the input distribution 𝑓

max   𝜓(𝑓)
subject to

𝑓 ∈ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

No closed form but simulable

Solution via stochastic gradient descent / sequential linearization 
(L. & Mottet ’15, Ghosh & L. ’18)



Conclusion

A robust and nonparametric approach to extremal estimation:

• Alternative to conventional extreme value theory

• Worst-case optimization subject to tail constraints, e.g., convex tail 
extrapolation

• Qualitative characterization (extreme light and heavy tail) and 
quantitative solution methods (e.g., line search, semidefinite 
programming, column generation)
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