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Bivariate long/short memory

A bivariate stationary time series { X, }nez = {(X1,n, X2,n) } nez is long
memory if its spectral density matrix satisfies:

o f1(A) A2(N) Wi A2 wipe I\~ (diteh) i
f(A) = ( £1(N) (N ~ wlzei¢/\—(dl+d2) Wop A2 ;s A= 07,

where di, dy € (0,1/2), wii, w2 >0, w12 € Rand ¢ € (—7/2,7/2), or in
matrix notation,

f(A) ~ ®po(N)1Qdp (AL, A — 0T,

where ®p 4(\) = diag(A\%, A\=2e7%), D = diag(dy, d») and Q = (wjk) is a
real-valued, symmetric, positive semi-definite matrix. It is short memory
when d; = d» = 0, in which case ¢ = 0.
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Bivariate long/short memory: special cases

Two special cases in the definition of bivariate long memory

f(A) ~ ( wp A2 wipe oA (ditd)

wipel®\~(ditd2) o A2 ) = ¢D7¢()\)7IQ$D,©(A)71~

Fractal non-connectivity: wi> = 0. (Connectivity: wiz # 0.)
Fractional cointegration: |Q| = wyjwo) — w%2 =0and di =db, ¢ =0.
(Non-cointegration: |Q2| # 0). Fractional (non-)cointegration is tested
within the framework

BF(AN)B' ~ ®p 4(N)1Qdp 4(\) 71, A= 0", (di < db)

_ (1 P
=6 7);

the case 5 = 0 corresponding to non-cointegration and the case 3 # 0
associated with cointegration. (Note that f(\) ~ A72%[32 3; 5 1].)

with
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Local Whittle estimation

In the non-cointegrated case, the local Whittle estimators of D, ¢ and 2

are defined as o
(D, ¢,Q2) = argmin Q(D, ¢,Q2)
(D,9,Q2)

with

Q(D,$,Q ZIOg‘q)Do Qdp (V) 1‘+tr(l(/\j)60‘,@‘()\1)9_14’0.%)‘1))7

~f(Xs) ~f(As) L

where \; = (27j)/N are the Fourier frequencies for a sample size N,

I(\) = %(ZLI X,,e_"”’\)(zrlyz1 X,e™)" is the periodogram and m is the
number of frequencies used in estimation. The optimization problem has
been reduced explicitly to that over D, ¢ only.

In the cointegrated case, as above, but /() is replaced by BI(\;)B’ and
[ is added as another parameter.
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Local Whittle estimation: previous work

Asymptotic normality: The asymptotic normality result for 5./ (E is
provided in Robinson (2008) under suitable assumptions, in particular, on
m = m(N) — oco. This is carried out in both fractionally non-cointegrated
and cointegrated cases. Related work includes M.O. Nielsen (2007), M.O.
Nielsen and Shimotsu (2007), Shimotsu (2007, 2012), F.S. Nielsen (2011).

Fractal connectivity: Wavelet-based and other testing procedures for
fractal connectivity were considered in Achard, Bassett, Meyer-Lindenberg
and Bullmore (2008), Wendt, Scherrer, Abry and Achard (2009),
Kristoufek (2013), Wendt, Didier, Combrexelle and Abry (2017). Though
the approach is slightly different.

Data applications: (log) spot exchange rates, realized volatilities of
stocks in Finance, MEG data in Neuroscience, packet and byte counts in
Internet Traffic studies.
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Local Whittle estimation: our contributions

@ Asymptotic normality for all model parameters w11, wao, w12, ¢, d1, da
(, ) in Parametrization P, and w11, w20, 1, n,d1,d> (, 5) in
Parametrization C, where r + irs = wi2e '®. The asymptotic
covariance matrices in explicit form!

Reduced optimization to that over D only.

Resulting tests for fractal non-connectivity.

Local Whittle plots for fractal (non-)connectivity, phase parameter.
Local Whittle plots to consider for real data with illustrations.

Corrected the asymptotic covariance matrix of Robinson (2008).

Corrected the asymptotic normalization in the univariate case going
back to Robinson (1995).
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Glance at our contributions: asymptotic normality

E.g. Suppose that the assumptions ... hold. Then, as N — oo,

W(?n — wi1)
W(“’ZZ — w)

vm W(@u —w12) | 94 aro, )

-

b — @
d—dy
d> — dy
where
2 2
w1 (w11 wo+(92)) Wi w11w12 0 _ wiwp+|9] _ Wi
2w 2 2 4w 4w
2
wp(wiywopt|Q)  wipwr) 0 _ Y12 _ wipwptlQ
2011 2 To10 Fuon1
“12 0 _ w12 _ %12
2 3 4
r, =
P 12| 0 0
203,
2
w11wp+|Q “12
8wilwo 8wiiw)
wilwor+|Q
8wiiwz)

the entries below the main diagonal are omitted but make I', symmetric,
and |Q| = W11W22 — w%z.
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Fractal (non-)connectivity tests

In connection to fractal (non-)connectivity (and fractional cointegration),
consider

2 2, 2 ~2 )
2 Wi o ntn o W o ntn
- ) o~ o~ - o~ o~ 9
Wiiw22  Wiiwo2 Wil W11

both taking values in [0,1]. Under Ho: 1 = r» = 0 (that is, fractal
non-connectivity), the asymptotic normality results yield

2
2
m/72£>X()

2

and under the alternative (that is, fractal connectivity),
~ d
\/E([J _[)2) —)N(0,0’i),

2w2,|Q2
where a/% = 73}2' 3|
Wi1W2)

fractional cointegration.

. Similar statistics are constructed in the case of
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Local Whittle plots

We sugget to examine the followings 9 local Whittle plots. The first 4
plots concern the fractionally non-cointegrated case and are the local
Whittle plots of:

° c71 and c72;
e ¢ (modified);
@ r and r3;
° p°.
The other 5 plots concern the fractionally cointegrated case and are the
local Whittle plots of:
° 5;
c71 and c?z;
¢ (modified);
r and ;

~2
Ptc-
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[llustration 1: SP500 and FTSE realized volatilities

RV of SP500 from Jan 2010 to Dec 2016
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[llustration 1: SP500 and FTSE realized volatilities

di, ds (w/o coint)
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Conclusion: Cointegrated but non-connected model.
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lllustration 2: US inflation rates for goods and services

US inflation rates for goods
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lllustration 2: US inflation rates for goods and services
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Conclusion:
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lllustration 2: US inflation rates for goods and services
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Conclusion: Connected either non-cointegrated or cointegrated model.
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Final thoughts

@ “Annoying” separate treatment of the cointegrated and
non-cointegrated cases.

@ Going to higher dimension (possibly with penalization) than 2.

e Extending to non-stationary case allowing for di,d» > 1/2.

@ Based on "Asymptotics of bivariate local Whittle estimators with
applications to fractal connectivity”, C. Baek, S. Kechagias and V.
Pipiras, Preprint, 2018. Available online.

@ Questions?
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