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Gaussian Subordination Model

A popular class of long-memory models: Gaussian subordination.
{Z}: standardized stationary long-memory Gaussian with

Cov[Zi, Zo) ~ k™0, 0<fo<1.

Model:
Xk = G(Z), G(z): a function s.t. EG(Z)? < cc.

Hermite polynomials Hm(:): orthogonal polynomials under Gaussian measure.

Ho(z) =1, Hi(z) =2z, Ho(z)=2"—1, Hs(z)=2"—3z,...

L2-expansion:
G(2) = p+ gmHm(2) + gmi1Hmi(2) +...,  gm #0

m: Hermite rank.
Key Property:
Cov[Xk, Xo] ~ K Bom.
Bom > 1: (X,) has short memory.
Bom < 1: (X,) has long memory with new parameter 3 = Bom.
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Limit Theorems for Gaussian Subordination
Recall: Xx = G(Zk), (Zk) standardized Gaussian, Cov[Zk, Zo] ~ k=, m: Hermite rank.

Central Limit Theorem Breuer Major (1983), Chambers Slud (1989).
If Bom > 1 (short memory), then

Lnt]
n1/2 Z )= oB(t), B(t): Brownian motion, o¢° := Z Cov[ Xk, Xo],

k=—o00

Non-Central Limit Theorem Dobrushin & Major (1979), Taqqu (1979).
If Bom < 1 (long memory with 8 = Som), then

Lnt]

1
pre—yes Z(X[ — 1) = vZm gy (t), v: scale constant.
i=1
Hermite process: Zn 5,(t) = (m = 1: fractional Brownian motion)

t m
/ / [1(s —x)7/272ds | dB(x1)dB (). . . dB(dxm)-
x1<x0<...<Xm 0 j=1

Summary: m controls both the normalization order and the asymptotic distribution.
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Statistical Challenges with Gaussian Subordination model
Recall Gaussian subordination Xx = G(Z).
(One can carry out a similar discussion for non-Gaussian linear process Zx = ). aiex—i).

To apply previous limit theorems for inference, one needs to know the Hermite rank:
m = inf {k >1: / G(2)Hi(z)p(z)dz # 0} .

» Situation 1: G is unknown.
Xk = G(Zx) with G unspecified to account for distributional flexibility.
E.g., error in regression ux = Bo + Bivk + G(Zk).

» Situation 2: G is known.
G arises from statistical procedure.
E.g., Zk observed, G(z) = z? (m = 2) arises when estimating variance of Z.
Situation 1: difficult to estimate m. Often assume m = 1 (justification?).

Situation 2: seems no problem?

Short conclusion: better not trust a Hermite rank m > 2.
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Perturbation of Gaussian Subordination

e A common statistical modeling principle:

A small perturbation of assumption should not drastically alter the conclusion.

perturbation
—

Model: G(Zx) G o F(Z)
G: known or unknown, with Hermite rank m.
F: an uncontrollable perturbation transform.

Note: when G is known, F reflects the uncertainty prior to applying G.

Question: how likely does G o F still have Hermite rank m?

Answer: if m > 2, very unlikely.
Indeed,

m>2 <= /GoF(z)~z~¢>(z) dz =0, where Hi(z) =z

The equality is very rigid. Departing from F(z) = z easily breaks it down.
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Shift Perturbation

As an example, let us consider a shift F(z) =6,(z) =z +y.

m(y): Hermite rank of G o 0,.

m(y) >2 < H(y)= /G(z+y) -z-¢(z)dz =0.
Bai & Taqqu (2018):
H is analytic = H(y) = 0 occurs only for isolated y's,

unless
H(y)=0 = G is a constant.

In particular, if G is not constant,

Hermite rank of G > 2 = Hermite rank of Go 6, is 1 in a nbhd of y = 0.

Similarly arguments apply to more general (parameterized) transforms F.
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Interplay Between Shift Perturbation Size and Sample Size
When m > 2 and F is close to identity, would G o F behave like m > 27

For shift F = 6,, one can perform a‘“near-higher-order-rank” analysis as y = y, — 0 of
1 [nt]
Su(t) = = > [6(Zc+ vo) ~ EG(Zc + )]
(1) an; (Zk + yn) (Zk + yn)

Recall Cov(Zx, Zo) ~ k=%, By € (0,1).
e By >1/m m>2:

Yn an f.d.d. limit
< n(ﬁo*l) (2m=2) nl 2 CB(t)
~ n(ﬁoil) (em=2) nt/? C1 B(t) + C2Zl»ﬁ0(t)
> n(ﬂo*l) (2m=2) nlfﬁo Zyn]-*m CZl,ﬁg(t)
e By <1/m:
Vn an f.d.d. limit

< n*BO 2 n]-*BOm 2 CZm,ﬁ[)

~ n /2 nt—Hom/2 ZT:l ckZi, g, (1)

> n” /2 | gtz cZ1,6,(t)
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Empirical Evidence

Observation:
(Zx) Gaussian or linear, Cov(Zx, Zo) ~ k=%, By € (0,1). Then “rank theory” predicts

n
Z(Zk — Z,)° has normalization n",

k=1
where

H= H(Bo) = m|n(1/2, 1-— Bo)
e Design of study:

Suppose we have a collection of long-memory time series data.
One of the series is (Zx, k=1,...,n).

Estimate (o from (Z4), plug in H(Bo).
Estimate H directly from (Zx — Z,,)Q, k=1,...,n.

With “rank theory”, one expects H(fo) ~ H on average.
Data: Treering width sequence (The International Tree-Ring Data Bank).

Well-known to exhibit long memory since Mandelbrot & Wallis (1969).
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Tree Ring Width

Figure: Tree Ring: Living Records of Climate

California Bristlecone Pine Tree Ring Width (International Tree-Ring Data Bank, ca506)
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Failure of “rank theory”
Let 6 = H — H(f).

We contrast with fractional Gaussian noise (fGn), for which “rank theory” works.

041
031
021

0.1r

-0.21
-0.31

-0.4r1

Figure: Box plot for d's, Treering width (left) vs fGn (right). Aggregated Variance Method.
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Beyond Sum: Instability of Whittle Estimator Asymptotics
(Zk) centered long-memory Gaussian process with spectral density fy.

Whittle estimator: )
0, = argmin > ag(k — 1)ZZ)

o k=

T efnA T
where ag(n) = [7=55dX, go(A) o< fy(A), [T Inge(A)dA = 0.
Fox & Taqqu (1986) and Giraitis & Surgailis (1990):

V(0 — 0) = N(0,0%). (1)

Achieving i.i.d. parametric rate n~Y/2 despite of having long memory.
Giraitis & Taqqu (1999):
Nice function G satisfying EG(Z) = 0,

pri=» E[G'(Z))G(Z)] %36( n).

If G(x) = x, then p1 = 0. Departing from G(x) = x likely yields p1 # 0 (not by shift).
If Gaussian Zj is replaced by G(Zx), and p1 # 0, then

n®/2(6, — ) = N(0, 03).
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What Should One Do?

e Issue: asymptotics developed based on “rank theory” may not be reliable.

An ad hoc solution: assume “rank = 1" always:

Stick to convergence rate n~%/2 and asymptotic normality no matter what.

Problem: may not approximate well the situation of “near-higher-order-rank”.

e Reformulate issue: uncertainty in normalization order and in asymptotic distribution.

o Prescription: Resampling (self-adaptive to normalization/self-normalization).
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Basic Notation and Setup for Inference

Sample block: X7 = (X, ..., Xq).
Unknown parameter of interest: 6.

To(-:;60):R" — R a function of n samples designed for inference of 6, which satisfies:

Ta(X1;0) LT as n — 0o,

for some non-degenerate T.

If distribution of T is known (no nuisance parameter), can use it for inference directly.
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Example: Inference of Mean

Xo — 11
D

0=p, Tau(X(;0)= , Dn = Dn(X7): a normalizer to ensure T, LT

e When (X,) is i.i.d. with finite variance o°, use sample standard deviation:
Dy = /15" (X — X)2 25 0. T £ N(O,1).

e When (X,) has short memory, use consistent estimate of long-run standard deviation:

L
D = /32 wk/hA(K) = /32, 7(k), v(k) := Cov[Xi, Xo]. T = N(0,1).
w : window function, h = h,: bandwidth parameter.

o A self-adaptive normalizer for short/long memory, light/heavy tails, Shao (2010):

D, = ,%3 Zﬁzl [Zf:l Xi— k)_("]Z-

1 Xo—p ¢ Z(1)
fF = ST(Xi— p) = vZ(s), then nH L7 _ .
LT e S T e - sz(pa

E.g. Z(s) = Brownian motion, Hermite process, stable process, etc.
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Resampling Under Dependence

e Block Bootstrap (Kunsch 1989).

1. Estimate 6 by a consistent estimator 6, = 5,,(X{’).

2. Choose a block size b. Form n — b+ 1 successive blocks (with overlap)
Xf7X123+17~“7 Z*b+l~

3. Sample randomly with replacement [n/b] blocks.
Paste them into X* of length b x [n/b] = n.
Obtain T™ := Ty[p/6(X™; 0a) on the bootstrapped sample X*.

4. Repeat the last step N times getting bootstrapped copies: T7,..., Ty.
5. Use the empirical distribution of {T;"} to approximate the distribution of T,(X{; 6).

Does NOT work under long-memory Gaussian subordination model. Lahiri (1993).
Idea for remedy: keep the order (no artificial pasting) = reduce sample size.

e Subsampling (Politis Romano Wolf 1999) or called block sampling, sampling window.
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Subsampling
e General procedure:
1. Estimate 6 by 0, = 0,(X7).

2. Choose a block size b and form blocks X{’,Xé’“7 D S
3. Compute Tb(Xﬁ’;é\n), Tb(Xé’“;an), Tb(XZ,bH;é\,,).
4. Use the empirical distribution F,, »(x) of { Tp(Xie, 0,)} to approximate the

distribution of T,(X{;0).
e Example: Inference of § = EX; = p.

1 n n k n 2
5 i Xi — 1 k
Tn(X,/,L) = T(x)’ Dn(X) = ﬁ E E Xi — ; E Xi| .
k=1 Li=1 i=1

Procedure for constructing a two-sided (1 — «)-confidence interval for u:

1. Estimate u by X,.
2. Choose a block size b and form blocks X{’,Xé’“7 D S
3. Obtain the empirical distribution f/-_\,,,b(x) of {To(XP"1,X,), i=1,...,n—b+1}.
4. Obtain the lower and upper /2 quantiles L, /> and Uy /2 of I?n,b(x).
5. A (1 — a)-level confidence interval for the mean is given by
%o = Ua2Da(X0) , Ko = LajoDa(XD)]
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Asymptotic Validity of Subsampling

n—b+1
~ 1 i1~
F"’b(x):m § 1{ TH(X2"18,) < x).
i=1

When the sample size n and the block size b are reasonably large,
n J c ) ~ c ~
Ta(X50) =T = Tp(X30) = Tu(X30,)  ~  Fas(x)
subsampling

Consistency Result:
A 1 Gaussian subordination model: {Xi = G(Z;)},

The long-memory Gaussian {Z;} satisfies some regularity conditions.
A2 T,(X7:0) 55 T.
A 3 Tu( - ;6n) is asymptotically replaceable by Ty( - ;6) in Fnp(x).

(E.g., holds for the common form T,(X{;60) = e’b’ne).

Theorem (Consistency of subsampling, Betken & Wenlder (2017), Bai & Taqqu
(2017))

Suppose the sample size n — oo, the block size b = b, — oo and b, = o(n). Then
Fuen(x) = P(TalX:0) < x)| 2 0

at any continuity point x of the cdf of T. )



Simulation Example
Data:

Xi:Hm(Zi) 0 =p=EX;=0.
{Z;}: standardized fractional Gaussian noise (Cov(Zy, Zx) ~ k—P0).

Hm(x) : Hermite polynomials. Hi(x) = x, Ha(x) = x? — 1, H3(x) = x> — 3x.
Dichotomy:

[nt]

H=1/2.
H=1-p3/2.

]
1 If2d — 1= (2dy — 1)m < —1, Y(t) = oB(t),
— Xi = Y(t
2 ® {IFB = fom <1, Y(8) = vZsg,m(2),
1 n
ol Xi— 2
o) = 250 Dyx) = /5 Ty [T 6 — £ X
200
Po 0.6 0.4 0.2 5
m
1 86 vs 82 83 vs 39 76 vs 25
2 90 vs 84 91 vs 71 86 vs 41
3 86 vs 86 90 vs 83 89 vs 58
Monte-Carlo evaluation of coverage percentage.

Sample size=500.
Nominal Level=90%.

Subsampling vs Block Bootstrap.

Block size: |v/500] = 22. ’ 0oomom

Red: Bom < 1 (long memory regime)

250 300 350 400 450 500

Figure: The running 90% confidence interval for a

sample path of {X;}.78o =0.2, m = 3,78 = 0.6.
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Thank You!



Precise Statement of Main Result

Long-memory Gaussian (X,), Cov[Xs, Xo] ~ n™#, 8 € (0,1). Assume the spectral density
of (X») is given by
F(A) = fa(A)h(N),

where fg(\) is the FARIMA(0,d = %0) spectrum:
fa(A) =1 — ™77,
and fy(\) satisfies short memory conditions (o(n) is the covariance of fo())):
(a) infx o(A) > 0; (b) v(n)=0(n"%), > 1.
Then VA >0,3I0<c<C

b\’ b\’ "
cl| — Soakp <C (=) + , forall1<b< Ak
k k ifa>14+p

e Time-domain interpretation: Let d = % FARIMA model: A9X, = €n, (e,) has fo()).
e Examples: FARIMA(p,d = 152 ,q), fractional Gaussian noise H =1— 3/2 > 1/2.
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Idea of Proof

Goal:
f?n,b,,(x) - P(T,,(Xi’; 0) < x)’ L.o0.

From Assumption 3, replace

n—b+1
~ 1 pii1 o
F, = 1 TH(X*~1.8,) < x1.
b(x) P ; {Tu(X; n) < x}
by
1 n—b+1
Fro(x)= —F— Y Tp(XT710) < x).
mb(X) p——— ; {Th(X; ) <x}
Suffices to show R
P, () = P(Ta(X$:0) < x) | 2> 0.

Bias-variance decomposition of mean-square error:

E [0 — P(Ta(xf:0) < x) ] = [P(T6(X4:0) < x) = P(Ta(X3:0) < x) |+ Varl; ()]

Bias Variance

Bias — 0 since by Assumption 2, both Th(X7;0) and T,(X%;0)) £ Toas n, b — oo.
How about the Variance term?
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Control Variance Term
Recall l/-_\,fyb(x) = ?2“ S PPI{TH(XHP71:0) < x}. and want to show

Var[l?;b(x)] —0 as n— oo

By a standard computation using stationarity of (X,),

n—b+1
- 2 b, k+b—1,
VarlFu(0] € - k; [Cov[ 1{Tu(Xt:0) <x}, HTo(X(™*750) <x} ||

<7 3, (the reason of replacing B by 0.

where ay,p is the between-block mixing coefficient:
Qi b = Sup{ |COV[1A7 1B]| ; Ac O—(Xf)v B¢ U(X:ii’) }
Hence under b, = o(n),
> au s, = o(n) = Var[Fy,(x)] — 0.
k=1

which was mentioned before.
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