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Gaussian Subordination Model

A popular class of long-memory models: Gaussian subordination.

{Zk}: standardized stationary long-memory Gaussian with

Cov[Zk ,Z0] ∼ k−β0 , 0 < β0 < 1.

Model:
Xk = G(Zk), G(z): a function s.t. EG(Zi )

2 <∞.

Hermite polynomials Hm(·): orthogonal polynomials under Gaussian measure.

H0(z) = 1, H1(z) = z , H2(z) = z2 − 1, H3(z) = z3 − 3z , . . .

L2-expansion:

G(z) = µ+ gmHm(z) + gm+1Hm+1(z) + . . . , gm 6= 0

m: Hermite rank.

Key Property:
Cov[Xk ,X0] ∼ k−β0m .

β0m > 1: (Xn) has short memory.
β0m < 1: (Xn) has long memory with new parameter β = β0m.
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Limit Theorems for Gaussian Subordination
Recall: Xk = G(Zk), (Zk) standardized Gaussian, Cov[Zk ,Z0] ∼ k−β0 , m: Hermite rank.

Central Limit Theorem Breuer Major (1983), Chambers Slud (1989).
If β0m > 1 (short memory), then

1

n1/2

bntc∑
i=1

(Xi − µ)⇒ σB(t), B(t) : Brownian motion, σ2 :=
+∞∑

k=−∞

Cov[Xk ,X0],

Non-Central Limit Theorem Dobrushin & Major (1979), Taqqu (1979).
If β0m < 1 (long memory with β = β0m), then

1

n1−β/2

bntc∑
i=1

(Xi − µ)⇒ νZm,β0 (t), ν: scale constant.

Hermite process: Zm,β0 (t) = (m = 1: fractional Brownian motion)∫
x1<x2<...<xm

[∫ t

0

m∏
j=1

(s − xj)
−β0/2−1/2
+ ds

]
dB(x1)dB(x2) . . . dB(dxm).

Summary: m controls both the normalization order and the asymptotic distribution.
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Statistical Challenges with Gaussian Subordination model

Recall Gaussian subordination Xk = G(Zk).

(One can carry out a similar discussion for non-Gaussian linear process Zk =
∑

i aiεk−i ).

To apply previous limit theorems for inference, one needs to know the Hermite rank:

m = inf

{
k ≥ 1 :

∫
G(z)Hk(z)φ(z)dz 6= 0

}
.

I Situation 1: G is unknown.
Xk = G(Zk) with G unspecified to account for distributional flexibility.
E.g., error in regression uk = β0 + β1vk + G(Zk).

I Situation 2: G is known.
G arises from statistical procedure.
E.g., Zk observed, G(z) = z2 (m = 2) arises when estimating variance of Zk .

Situation 1: difficult to estimate m. Often assume m = 1 (justification?).

Situation 2: seems no problem?

Short conclusion: better not trust a Hermite rank m ≥ 2.
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Perturbation of Gaussian Subordination

• A common statistical modeling principle:

A small perturbation of assumption should not drastically alter the conclusion.

Model: G(Zk)
perturbation−→ G ◦ F (Zk)

G : known or unknown, with Hermite rank m.

F : an uncontrollable perturbation transform.

Note: when G is known, F reflects the uncertainty prior to applying G .

Question: how likely does G ◦ F still have Hermite rank m?

Answer: if m ≥ 2, very unlikely.
Indeed,

m ≥ 2 ⇐⇒
∫

G ◦ F (z) · z · φ(z) dz = 0, where H1(z) = z .

The equality is very rigid. Departing from F (z) = z easily breaks it down.
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Shift Perturbation

As an example, let us consider a shift F (z) = θy (z) = z + y .

m(y): Hermite rank of G ◦ θy .

m(y) ≥ 2 ⇐⇒ H(y) =

∫
G(z + y) · z · φ(z)dz = 0.

Bai & Taqqu (2018):

H is analytic ⇒ H(y) = 0 occurs only for isolated y ′s,

unless
H(y) ≡ 0 ⇒ G is a constant.

In particular, if G is not constant,

Hermite rank of G ≥ 2 ⇒ Hermite rank of G ◦ θy is 1 in a nbhd of y = 0.

Similarly arguments apply to more general (parameterized) transforms F .
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Interplay Between Shift Perturbation Size and Sample Size
When m ≥ 2 and F is close to identity, would G ◦ F behave like m ≥ 2?

For shift F = θy , one can perform a“near-higher-order-rank” analysis as y = yn → 0 of

Sn(t) =
1

an

bntc∑
n=1

[
G(Zk + yn)− EG(Zk + yn)

]
Recall Cov(Zk ,Z0) ∼ k−β0 , β0 ∈ (0, 1).
• β0 > 1/m, m ≥ 2:

yn an f.d.d. limit

� n(β0−1)/(2m−2) n1/2 cB(t)

≈ n(β0−1)/(2m−2) n1/2 c1B(t) + c2Z1,β0 (t)

� n(β0−1)/(2m−2) n1−β0/2y 1−m
n cZ1,β0 (t)

• β0 < 1/m:

yn an f.d.d. limit

� n−β0/2 n1−β0m/2 cZm,β0

≈ n−β0/2 n1−β0m/2 ∑m
k=1 ckZk,β0 (t)

� n−β0/2 n1−β0/2y 1−m
n cZ1,β0 (t)
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Empirical Evidence

Observation:
(Zk) Gaussian or linear, Cov(Zk ,Z0) ∼ k−β0 , β0 ∈ (0, 1). Then “rank theory” predicts

n∑
k=1

(Zk − Z̄n)2 has normalization nH ,

where
H = H(β0) := min(1/2, 1− β0).

• Design of study:

Suppose we have a collection of long-memory time series data.
One of the series is (Zk , k = 1, . . . , n).

Estimate β̂0 from (Zk), plug in H(β̂0).

Estimate Ĥ directly from (Zk − Z̄n)2, k = 1, . . . , n.

With “rank theory”, one expects H(β̂0) ≈ Ĥ on average.

Data: Treering width sequence (The International Tree-Ring Data Bank).

Well-known to exhibit long memory since Mandelbrot & Wallis (1969).
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Tree Ring Width

Figure: Tree Ring: Living Records of Climate
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Failure of “rank theory”
Let δ = Ĥ − H(β̂0).

We contrast with fractional Gaussian noise (fGn), for which “rank theory” works.
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Figure: Box plot for δ’s, Treering width (left) vs fGn (right). Aggregated Variance Method.
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Beyond Sum: Instability of Whittle Estimator Asymptotics
(Zk) centered long-memory Gaussian process with spectral density fθ.

Whittle estimator:

θ̂n = argmin
θ

n∑
k,l=1

aθ(k − l)ZkZl

where aθ(n) =
∫ π
−π

e inλ

gθ(λ)
dλ, gθ(λ) ∝ fθ(λ),

∫ π
−π ln gθ(λ)dλ = 0.

Fox & Taqqu (1986) and Giraitis & Surgailis (1990):

√
n(θ̂n − θ)

L−→ N(0, σ2
1). (1)

Achieving i.i.d. parametric rate n−1/2 despite of having long memory.

Giraitis & Taqqu (1999):
Nice function G satisfying EG(Z0) = 0,

ρ1 :=
∑
n∈Z

E
[
G ′(Zn)G(Z0)

] ∂
∂θ

aθ(n).

If G(x) = x , then ρ1 = 0. Departing from G(x) = x likely yields ρ1 6= 0 (not by shift).

If Gaussian Zk is replaced by G(Zk), and ρ1 6= 0, then

nβ0/2(θ̂n − θ)
L−→ N(0, σ2

2).
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What Should One Do?

• Issue: asymptotics developed based on “rank theory” may not be reliable.

An ad hoc solution: assume “rank = 1” always:

Stick to convergence rate n−β0/2 and asymptotic normality no matter what.

Problem: may not approximate well the situation of “near-higher-order-rank”.

• Reformulate issue: uncertainty in normalization order and in asymptotic distribution.

• Prescription: Resampling (self-adaptive to normalization/self-normalization).
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Basic Notation and Setup for Inference

Sample block: Xq
p = (Xp, . . . ,Xq).

Unknown parameter of interest: θ.

Tn( · ; θ) : Rn → R a function of n samples designed for inference of θ, which satisfies:

Tn(Xn
1; θ)

L−→ T as n→∞,

for some non-degenerate T .

If distribution of T is known (no nuisance parameter), can use it for inference directly.
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Example: Inference of Mean

θ = µ, Tn(X n
1 ; θ) =

X̄n − µ
Dn

, Dn = Dn(Xn
1): a normalizer to ensure Tn

L−→ T .

• When (Xn) is i.i.d. with finite variance σ2, use sample standard deviation:

Dn =
√

1
n

∑n
i=1(Xi − X̄n)2 p−→ σ. T

L
= N(0, 1).

• When (Xn) has short memory, use consistent estimate of long-run standard deviation:

Dn =
√∑

k w(k/h)γ̂(k)
p−→
√∑

k γ(k), γ(k) := Cov[Xk ,X0]. T
L
= N(0, 1).

w : window function, h = hn: bandwidth parameter.

• A self-adaptive normalizer for short/long memory, light/heavy tails, Shao (2010):

Dn =

√
1
n3

∑n
k=1

[∑k
i=1 Xi − kX̄n

]2

.

If
1

nH

[ns]∑
i=1

(Xi − µ)⇒ νZ(s), then
X̄n − µ
Dn

L−→ T =
Z(1)√∫ 1

0
[Z(s)− sZ(1)]2ds

.

E.g. Z(s) = Brownian motion, Hermite process, stable process, etc.
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Resampling Under Dependence

• Block Bootstrap (Kunsch 1989).

1. Estimate θ by a consistent estimator θ̂n = θ̂n(Xn
1).

2. Choose a block size b. Form n − b + 1 successive blocks (with overlap)

Xb
1 ,X

b+1
2 , . . . ,Xn

n−b+1.

3. Sample randomly with replacement [n/b] blocks.
Paste them into X∗ of length b × [n/b] ≈ n.

Obtain T ∗ := Tb[n/b](X
∗; θ̂n) on the bootstrapped sample X∗.

4. Repeat the last step N times getting bootstrapped copies: T ∗1 , . . . ,T
∗
N .

5. Use the empirical distribution of {T̄ ∗i } to approximate the distribution of Tn(Xn
1; θ).

Does NOT work under long-memory Gaussian subordination model. Lahiri (1993).

Idea for remedy: keep the order (no artificial pasting) ⇒ reduce sample size.

• Subsampling (Politis Romano Wolf 1999) or called block sampling, sampling window.
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Subsampling
• General procedure:

1. Estimate θ by θ̂n = θ̂n(Xn
1).

2. Choose a block size b and form blocks Xb
1 ,X

b+1
2 , . . . ,Xn

n−b+1.

3. Compute Tb(Xb
1 ; θ̂n), Tb(Xb+1

2 ; θ̂n), . . . , Tb(Xb
n−b+1; θ̂n).

4. Use the empirical distribution F̂n,b(x) of {Tb(Xi+b−1
i ; θ̂n)} to approximate the

distribution of Tn(Xn
1; θ).

• Example: Inference of θ = EXi = µ.

Tn(x;µ) =
1
n

∑n
i=1 xi − µ
Dn(x)

, Dn(x) =

√√√√ 1

n3

n∑
k=1

[
k∑

i=1

xi −
k

n

n∑
i=1

xi

]2

.

Procedure for constructing a two-sided (1− α)-confidence interval for µ:

1. Estimate µ by X̄n.

2. Choose a block size b and form blocks Xb
1 ,X

b+1
2 , . . . ,Xn

n−b+1.

3. Obtain the empirical distribution F̂n,b(x) of {Tb(Xb+i−1
i ; X̄n), i = 1, . . . , n − b + 1}.

4. Obtain the lower and upper α/2 quantiles Lα/2 and Uα/2 of F̂n,b(x).

5. A (1− α)-level confidence interval for the mean is given by

[X̄n − Uα/2Dn(Xn
1) , X̄n − Lα/2Dn(Xn

1)].
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Asymptotic Validity of Subsampling

F̂n,b(x) =
1

n − b + 1

n−b+1∑
i=1

1{Tb(Xb+i−1
i ; θ̂n) ≤ x}.

When the sample size n and the block size b are reasonably large,

Tn(Xn
1; θ)

L
≈ T

L
≈ Tb(Xb

1 ; θ)
L
≈ Tb(Xb

1 ; θ̂n)
L
≈

subsampling
F̂n,b(x).

Consistency Result:
A 1 Gaussian subordination model: {Xi = G(Zi )},

The long-memory Gaussian {Zi} satisfies some regularity conditions.

A 2 Tn(Xn
1; θ)

L−→ T .

A 3 Tb( · ; θ̂n) is asymptotically replaceable by Tb( · ; θ) in F̂n,b(x).

(E.g., holds for the common form Tn(Xn
1; θ) = θ̂n−θ

Dn
).

Theorem (Consistency of subsampling, Betken & Wenlder (2017), Bai & Taqqu
(2017))

Suppose the sample size n→∞, the block size b = bn →∞ and bn = o(n). Then∣∣∣F̂n,bn (x)− P
(
Tn(Xn

1; θ) ≤ x
)∣∣∣ p−→ 0

at any continuity point x of the cdf of T .
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Simulation Example
Data:

Xi = Hm(Zi ) θ = µ = EXi = 0.

{Zi}: standardized fractional Gaussian noise (Cov(Z0, Zk ) ∼ k−β0 ).

Hm(x) : Hermite polynomials. H1(x) = x , H2(x) = x2 − 1, H3(x) = x3 − 3x .
Dichotomy:

1

nH

[nt]∑
i=1

Xi ⇒ Y (t)

{
If 2d − 1 = (2d0 − 1)m < −1, Y (t) = σB(t), H = 1/2.

If β = β0m < 1, Y (t) = νZβ0,m
(t), H = 1− β/2.

Tn(x;µ) =
1
n

∑n
i=1 xi−µ
Dn(x) , Dn(x) =

√
1
n3

∑n
k=1

[∑k
i=1 xi −

k
n

∑n
i=1 xi

]2
.

m
β0 0.6 0.4 0.2

1 86 vs 82 83 vs 39 76 vs 25
2 90 vs 84 91 vs 71 86 vs 41
3 86 vs 86 90 vs 83 89 vs 58

Monte-Carlo evaluation of coverage percentage.
Sample size=500.

Nominal Level=90%.

Subsampling vs Block Bootstrap.

Block size: b
√

500c = 22.

Red: β0m < 1 (long memory regime)
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Figure: The running 90% confidence interval for a
sample path of {Xi}. β0 = 0.2, m = 3, β = 0.6.
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Thank You!
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Precise Statement of Main Result

Long-memory Gaussian (Xn), Cov[Xn,X0] ∼ n−β , β ∈ (0, 1). Assume the spectral density
of (Xn) is given by

f (λ) = fβ(λ)f0(λ),

where fβ(λ) is the FARIMA(0,d = 1−β
2

,0) spectrum:

fβ(λ) = |1− e iλ|β−1,

and f0(λ) satisfies short memory conditions (γ0(n) is the covariance of f0(λ)):

(a) infλ f0(λ) > 0; (b) γ0(n) = O(n−α), α > 1.

Then ∀λ > 0, ∃ 0 < c ≤ C

c

(
b

k

)β
≤ αk,b ≤ C

(
b

k

)β
+
XXXXXO(k−α+1)
if α > 1 + β

, for all 1 ≤ b ≤ λk.

• Time-domain interpretation: Let d = 1−β
2

, FARIMA model: ∆dXn = εn, (εn) has f0(λ).

• Examples: FARIMA(p,d = 1−β
2

,q), fractional Gaussian noise H = 1− β/2 > 1/2.
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Idea of Proof

Goal: ∣∣∣F̂n,bn (x)− P
(
Tn(Xn

1; θ) ≤ x
)∣∣∣ p−→ 0.

From Assumption 3, replace

F̂n,b(x) =
1

n − b + 1

n−b+1∑
i=1

1{Tb(Xb+i−1
i ; θ̂n) ≤ x}.

by

F̂∗n,b(x) =
1

n − b + 1

n−b+1∑
i=1

1{Tb(Xb+i−1
i ; θ) ≤ x}.

Suffices to show ∣∣∣F̂∗n,bn (x)− P
(
Tn(Xn

1; θ) ≤ x
)∣∣∣ p−→ 0.

Bias-variance decomposition of mean-square error:

E
[
F̂∗n,b(x)− P

(
Tn(Xn

1; θ) ≤ x
)]2

=
[
P
(
Tb(Xb

1 ; θ) ≤ x
)
− P

(
Tn(Xn

1; θ) ≤ x
)

︸ ︷︷ ︸
Bias

]2
+ Var[F̂∗n,b(x)]︸ ︷︷ ︸

Variance

Bias → 0 since by Assumption 2, both Tn(Xn
1; θ) and Tb(Xb

1 ; θ)
) L−→ T as n, b →∞.

How about the Variance term?
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Control Variance Term

Recall F̂ ∗n,b(x) := 1
n−b+1

∑n−b+1
i=1 1{Tb(Xi+b−1

i ; θ) ≤ x}. and want to show

Var[F̂ ∗n,b(x)]→ 0 as n→∞.

By a standard computation using stationarity of (Xn),

Var[F̂ ∗n,b(x)] ≤ 2

n − b + 1

n−b+1∑
k=1

∣∣∣Cov[ 1{Tb(Xb
1 ; θ) ≤ x} , 1{Tb(Xk+b−1

k ; θ) ≤ x}
]∣∣∣

≤ 2

n − b + 1

n∑
k=1

αk,b, (the reason of replacing θ̂n by θ.)

where αk,b is the between-block mixing coefficient:

αk,b = sup{ |Cov[1A, 1B ]| , A ∈ σ(Xb
1), B ∈ σ(Xk+b

k+1) }.

Hence under bn = o(n),

n∑
k=1

αk,bn = o(n)⇒ Var[F̂ ∗n,b(x)]→ 0.

which was mentioned before.
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