Regularly Varying Random Fields BIRS-CMO Workshop

Lifan Wu

joint work with Gennady Samorodnitsky

Cornell University

Operations Research and Information Engineering

lw529@cornell.edu

Jun 21, 2018

Multivariate Regular Variation

Definition.

A random vector \mathbf{X} is said to be regularly varying with index $\alpha \in (0,\infty)$ if there exists a regularly function V(x) with index $-\alpha$ (i.e., $\lim_{x\to\infty} V(ux)/V(x) = u^{-\alpha}$ for u>0), and a nonzero Radon measure μ on $\overline{\mathbb{R}}^d \setminus \{\mathbf{0}\} = [-\infty,\infty]^d \setminus \{\mathbf{0}\}$ such that

$$\frac{\mathbb{P}(x^{-1}\mathbf{X}\in\cdot)}{V(x)}\stackrel{\nu}{\to}\mu(\cdot)$$

as $x \to \infty$.

Tail Dependence of Stationary Stochastic Processes

• Leadbetter (1983): extremal index θ

Assuming the regular variation...

Basrak and Segers (2009): tail process

$$\mathcal{L}(x^{-1}\mathbf{X}_s,\ldots,x^{-1}\mathbf{X}_t|\|\mathbf{X}_0\|>x)\stackrel{x\to\infty}{\longrightarrow} \mathcal{L}(\mathbf{Y}_s,\ldots,\mathbf{Y}_t|\|\mathbf{X}_0\|>x)$$

Questions

- Can we go from $\mathbf{X}_t, t \in \mathbb{Z}$ to $\mathbf{X}(\mathbf{t}), \mathbf{t} \in \mathbb{Z}^k$?
- What is an appropriate way to extend?

Outline

- Introduction
- 2 The Spatial Extremal Index
- The Tail Field
- 4 Relationship Between $\mathbf{Y}(\mathbf{t})$ And θ
- 5 Application: Brown-Resnick Random Fields (BRRFs)

Notations

- $M_X(A) = \max_{\mathbf{t} \in A} \|\mathbf{X}(\mathbf{t})\|$, for an index set $A \subset \mathbb{Z}^k$
- $\mathcal{R}_{\mathbf{n}} = \{ \mathbf{i} \in \mathbb{Z}^k : -(n_{\ell} 1) \le i_{\ell} \le (n_{\ell} 1), \ell = 1, \dots, k \}$
- $\mathcal{R}_{\mathbf{n}}^+ = \{ \mathbf{i} \in \mathbb{Z}^k : 0 \le i_{\ell} \le (n_{\ell} 1), \ell = 1, \dots, k \}$

The Spatial Extremal Index

Definition.

Let $(\mathbf{X}(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k)$ be a stationary random field, and (\mathcal{R}_n) be a sequence of nondecreasing hypercubes. Suppose for each fixed $\tau > 0$ and any sequence $(u_n(\tau))$ satisfying

$$|\mathcal{R}_{\mathsf{n}}| \mathbb{P}(\|\mathsf{X}(\mathbf{0})\| > u_{\mathsf{n}}(au)) \to au$$

as $\mathbf{n} \to \infty$, it holds that

$$\mathbb{P}\left(M_X(\mathcal{R}_{\mathbf{n}}) \leq u_{\mathbf{n}}(\tau)\right) \to e^{-\theta\tau}.$$

Then we say that the extremal index of the random field is θ .

Computing heta: Method 1

Stationary stochastic processes

$$\theta = \lim_{n \to \infty} \mathbb{P}\left(\max_{i=1,\dots,r_n-1} \|\mathbf{X}_i\| \le u_n \Big| \|\mathbf{X}_0\| > u_n\right)$$

(O'Brien (1987))

Computing θ : Method 1

Stationary stochastic processes

$$\theta = \lim_{n \to \infty} \mathbb{P}\left(\max_{i=1,\dots,r_n-1} \|\mathbf{X}_i\| \le u_n \middle| \|\mathbf{X}_0\| > u_n\right)$$

(O'Brien (1987))

Stationary random fields

For stationary stochastic processes:

$$\mathbb{P}\left(\max_{i=1,\dots,r_n-1}\|\mathbf{X}_i\| \leq u_n \middle| \|\mathbf{X}_0\| > u_n\right)$$

$$=\mathbb{P}\left(\max_{i=0,\dots,r_n-2}\|\mathbf{X}_i\| \leq u_n \middle| \|\mathbf{X}_{r_n-1}\| > u_n\right)$$

For random fields:

Which corner should we condition on?

Example

- $Z(\mathbf{t}), \mathbf{t} \in \mathbb{Z}^2$: iid standard Pareto random variables
- $X(t) = \max\{Z(t-1), Z(t)\}$

- $Z(\mathbf{t}), \mathbf{t} \in \mathbb{Z}^2$: iid standard Pareto random variables
- $X(t) = \max\{Z(t-1), Z(t)\}$

Computing θ : Method 2

• Stationary stochastic processes, assuming vanish condition

$$\theta = \lim_{\mathbf{n} \to \infty} \frac{\mathbb{P}(M_X(\mathcal{R}_{r_n}^+) > u_n)}{r_n \mathbb{P}(\|\mathbf{X}_0\| > u_n)} \quad \text{(Basrak and Segers (2009))}$$

Computing θ : Method 2

• Stationary stochastic processes, assuming vanish condition

$$\theta = \lim_{\mathbf{n} \to \infty} \frac{\mathbb{P}(M_X(\mathcal{R}_{r_n}^+) > u_n)}{r_n \, \mathbb{P}(\|\mathbf{X}_0\| > u_n)} \quad \text{(Basrak and Segers (2009))}$$

• Stationary random fields, assuming $\Delta(u_n)$ -condition

$$\theta = \lim_{\mathbf{n} \to \infty} \left(\mathbb{E} \left[\sum_{\mathbf{t} \in \mathcal{R}_{\mathbf{r}_{\mathbf{n}}}^{+}} \mathbb{1}(\|\mathbf{X}(\mathbf{t})\| > u_{\mathbf{n}}) \mid M_{X}(\mathcal{R}_{\mathbf{r}_{\mathbf{n}}}^{+}) > u_{\mathbf{n}} \right] \right)^{-1}$$

$$= \lim_{\mathbf{n} \to \infty} \frac{\mathbb{P}(M_{X}(\mathcal{R}_{\mathbf{r}_{\mathbf{n}}}^{+}) > u_{\mathbf{n}})}{\left(\prod_{\ell=1}^{k} r_{n_{\ell}} \right) \mathbb{P}(\|\mathbf{X}(\mathbf{0})\| > u_{\mathbf{n}})} \quad \text{(Pereira et al (2017))}$$

Condition: Vanish Condition

$$\bullet \lim_{\mathbf{m} \to \infty} \limsup_{\mathbf{n} \to \infty} \mathbb{P}\left(M_X(\mathcal{R}_{\mathbf{r_n}} \backslash \mathcal{R}_{\mathbf{m}}) > u_{\mathbf{n}} \mid \|\mathbf{X}(\mathbf{0})\| > u_{\mathbf{n}}\right) = 0$$

•
$$\mathbf{Y}(\mathbf{t}) \stackrel{\text{a.s.}}{\rightarrow} \mathbf{0}$$
 as $\mathbf{t} \rightarrow \infty$, $\theta > 0$

Condition: $\Delta(u_n)$ -condition

• The coordinatewise mixing condition (Choi (2002))

Condition: $\Delta(u_n)$ -condition

• The coordinatewise mixing condition (Choi (2002))

Outline

- Introduction
- 2 The Spatial Extremal Index
- The Tail Field
- 4 Relationship Between $\mathbf{Y}(\mathbf{t})$ And θ
- 5 Application: Brown-Resnick Random Fields (BRRFs)

Existence Of The Tail Field

Theorem 1.

Let $(\mathbf{X}(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$ be a stationary random field, and $\alpha \in (0, \infty)$. Then it is jointly regularly varying with index α , if and only if there exists a random field $(\mathbf{Y}(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$ such that

$$\mathcal{L}\left(x^{-1}\mathbf{X}(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k \mid \|\mathbf{X}(\mathbf{0})\| > x\right) \to \mathcal{L}\left(\mathbf{Y}(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k\right)$$

as
$$x \to \infty$$
, and $\mathbb{P}(\|\mathbf{Y}(\mathbf{0})\| > y) = y^{-\alpha}$ for $y \ge 1$.

Properties Of The Tail Field

- Let $\Theta(\mathbf{t}) = \mathbf{Y}(\mathbf{t})/\|\mathbf{Y}(\mathbf{0})\|$, then $\|\mathbf{Y}(\mathbf{0})\| \perp (\Theta(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$.
- ② For any bounded measurable $g:(\overline{\mathbb{R}}^d)^{\mathbb{Z}^k} \to \mathbb{R}$, and $\mathbf{s} \in \mathbb{Z}^k$:

$$\mathbb{E}\big[g(\mathbf{Y}(\cdot - \mathbf{s}))\mathbb{1}\big(\mathbf{Y}(-\mathbf{s}) \neq \mathbf{0}\big)\big]$$

$$= \int_0^\infty \mathbb{E}[g(r\Theta(\cdot))\mathbb{1}(r\|\Theta(\mathbf{s})\| > 1)] d(-r^{-\alpha})$$

$$\begin{aligned} \bullet & & \mathbb{E}\big[g(\Theta(\cdot - \mathbf{s}))\mathbb{1}\big(\Theta(-\mathbf{s}) \neq \mathbf{0}\big)\big] \\ = & & \mathbb{E}\left[g\left(\frac{\Theta(\cdot)}{\|\Theta(\mathbf{s})\|}\right)\|\Theta(\mathbf{s})\|^{\alpha}\right] \end{aligned}$$

The Sufficient Condition for The Joint Regular Variation

Stochastic Processes
 the weak convergence on the set of nonnegative times
 ⇒ joint regular variation of the original process
 (Basrak and Segers (2009))

The Sufficient Condition for The Joint Regular Variation

- Stochastic Processes
 the weak convergence on the set of nonnegative times
 ⇒ joint regular variation of the original process
 (Basrak and Segers (2009))
- Random Fields
 the weak convergence on the set in first 'quadrant'
 ⇒ joint regular variation of the original random field

The Sufficient Condition for The Joint Regular Variation

- Stochastic Processes
 the weak convergence on the set of nonnegative times
 ⇒ joint regular variation of the original process
 (Basrak and Segers (2009))
- Random Fields
 the weak convergence on the set in first 'quadrant'
 ⇒ joint regular variation of the original random field

No!

The weak convergence of the entire random field is needed.

Outline

- Introduction
- 2 The Spatial Extremal Index
- 3 The Tail Field
- 4 Relationship Between $\mathbf{Y}(\mathbf{t})$ And θ
- 5 Application: Brown-Resnick Random Fields (BRRFs)

Computing θ : The Tail Field Expression

 $(\mathbf{X}(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k)$: stationary, satisfying $\Delta(u_\mathbf{n})$ -condition, and vanish condition.

•
$$\theta = \mathbb{P}\left(\max_{\mathbf{t} \prec \mathbf{0}} \|\mathbf{Y}(\mathbf{t})\| \leq 1\right)$$

Ordering Examples in 2D

Ordering Examples in 2D

Ordering Examples in 2D

Computing θ : The Tail Field Expression

 $(\mathbf{X}(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k)$: stationary, satisfying $\Delta(u_\mathbf{n})$ -condition, and vanish condition.

- $\bullet \ \theta = \mathbb{P}\left(\mathsf{max}_{\mathsf{t} \prec \mathsf{0}} \left\| \mathsf{Y}(\mathsf{t}) \right\| \leq 1\right)$
- Ordering does not matter!

Outline

- Introduction
- 2 The Spatial Extremal Index
- 3 The Tail Field
- 4 Relationship Between $\mathbf{Y}(\mathbf{t})$ And θ
- 5 Application: Brown-Resnick Random Fields (BRRFs)

Constructing BRRFs

- $(W(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$: zero-mean Gaussian random field $\mathcal{L}(W(\mathbf{t} + \mathbf{s}) W(\mathbf{s}))$ does not depend on \mathbf{s}
- $(W_i(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k), i \in \mathbb{N}$: iid copies of $(W(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$
- $\sum_{i=1}^{\infty} \delta_{U_i}$: a Poisson process on \mathbb{R} with intensity du/u^2

Constructing BRRFs

- $(W(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$: zero-mean Gaussian random field $\mathcal{L}(W(\mathbf{t} + \mathbf{s}) W(\mathbf{s}))$ does not depend on \mathbf{s}
- $(W_i(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k), i \in \mathbb{N}$: iid copies of $(W(\mathbf{t}) : \mathbf{t} \in \mathbb{Z}^k)$
- $\sum_{i=1}^{\infty} \delta_{U_i}$: a Poisson process on \mathbb{R} with intensity du/u^2
- $X(\mathbf{t}) = \max_{i=1,2,...} U_i \exp\{W_i(\mathbf{t}) \sigma^2(\mathbf{t})/2\}$

Its Tail Field

• The Joint Distribution

$$\mathbb{P}(Y(\mathbf{t}_1) < y_1, \dots, Y(\mathbf{t}_n) < y_n)$$

$$= \mathbb{E}\left[\max_{i=1,\dots,n} \left(\frac{1}{y_i} \exp\left\{W(\mathbf{t}_i) - \frac{\sigma^2(\mathbf{t}_i)}{2}\right\}, \exp\left\{W(\mathbf{0}) - \frac{\sigma^2(\mathbf{0})}{2}\right\}\right)\right]$$

$$- \mathbb{E}\left[\max_{i=1,\dots,n} \frac{1}{y_i} \exp\left\{W(\mathbf{t}_i) - \frac{\sigma^2(\mathbf{t}_i)}{2}\right\}\right]$$

Its Tail Field

The Joint Distribution

$$\begin{split} & \mathbb{P}(Y(\mathbf{t}_1) < y_1, \dots, Y(\mathbf{t}_n) < y_n) \\ & = \mathbb{E}\left[\max_{i=1,\dots,n} \left(\frac{1}{y_i} \exp\left\{W(\mathbf{t}_i) - \frac{\sigma^2(\mathbf{t}_i)}{2}\right\}, \exp\left\{W(\mathbf{0}) - \frac{\sigma^2(\mathbf{0})}{2}\right\}\right)\right] \\ & - \mathbb{E}\left[\max_{i=1,\dots,n} \frac{1}{y_i} \exp\left\{W(\mathbf{t}_i) - \frac{\sigma^2(\mathbf{t}_i)}{2}\right\}\right] \end{split}$$

The Marginal Distribution

$$\mathbb{P}(Y(\mathbf{t}) < y) = \Phi\left(\frac{\ln y + \gamma(\mathbf{t})}{\sqrt{2\gamma(\mathbf{t})}}\right) - \frac{1}{y}\Phi\left(\frac{\ln y - \gamma(\mathbf{t})}{\sqrt{2\gamma(\mathbf{t})}}\right)$$

The Spatial Extremal Index

Recall:
$$\theta = \mathbb{P}\left(\mathsf{max}_{\mathbf{t}\prec\mathbf{0}}\ Y(\mathbf{t}) \leq 1\right)$$

Corollary 2.

Let $(X(\mathbf{t}): \mathbf{t} \in \mathbb{Z}^k)$ be a BRRF with standard Fréchet margin, satisfying both $\Delta(u_\mathbf{n})$ -condition and vanish condition. Then

$$\theta = \mathbb{E}\left[\max_{\mathbf{t} \preceq \mathbf{0}} \exp\left\{W(\mathbf{t}) - \sigma^2(\mathbf{t})/2\right\}\right] - \mathbb{E}\left[\max_{\mathbf{t} \prec \mathbf{0}} \exp\left\{W(\mathbf{t}) - \sigma^2(\mathbf{t})/2\right\}\right].$$

In comparison with

$$\theta = \lim_{\mathbf{n} \to \infty} \left(\mathbb{E} \left[\sum_{\mathbf{t} \in \mathcal{R}_{\mathbf{r_n}}^+} \mathbb{1}(X(\mathbf{t}) > u_{\mathbf{n}}) \mid M_X(\mathcal{R}_{\mathbf{r_n}}^+) > u_{\mathbf{n}} \right] \right)^{-1}$$

Simulating BRRFs Is Hard

 Approximation of the Brown-Resnick process based on the definition may result in non-stationarity

Oesting et al (2012). Simulation of Brown-Resnick processes.

Example: Brownian Motions

- $(W_1(t): t \in \mathbb{Z})$, $(W_2(t): t \in \mathbb{Z})$: two independent two-sided standard Brownian motions
- $W(t_1, t_2) = W_1(t_1) + W_2(t_2)$

Order	$y = \cdot$	$x + 3y = \cdot$	$x + 2y = \cdot$	$x + y = \cdot$
$\hat{ heta}$	0.0780	0.0786	0.0786	0.0784
$sd(\hat{ heta})$	0.0008	0.0008	0.0008	0.0008
Order	$2x + y = \cdot$	$3x + y = \cdot$	$x = \cdot$	
$\hat{ heta}$	0.0786	0.0787	0.0781	
$sd(\hat{ heta})$	0.0008	0.0008	0.0008	

Table: Simulated θ with different ordering

Thank you!