Hodge elliptic genera in geometry and in CFT

GEOMETRIC AND CATEGORICAL ASPECTS OF CFTS, Banff International Research Station, Oaxaca, Mexico, September 24–28, 2018

Katrin Wendland

Albert-Ludwigs-Universität Freiburg

Plan:

- Refining the Euler characteristic
- 2 More algebra and mathematical physics
- Interpretation in CFT
- [W17] Hodge-elliptic genera and how they govern K3 theories; arXiv:1705.09904 [hep-th]
- $[Taormina/W15] \begin{tabular}{ll} A twist in the M_{24} moonshine story, $Confluentes Mathematici 7, 1 (2015), 83-113; arXiv:1303.3221 [hep-th] \end{tabular}$
- [Taormina/W13] Symmetry-surfing the moduli space of Kummer K3s, Proceedings of Symposia in Pure Mathematics 90 (2015), 129-153; arXiv:1303.2931 [hep-th]
- [Taormina/W11] The overarching finite symmetry group of Kummer surfaces in the Mathieu group M_{24} , JHEP 1308:152 (2013); arXiv:1107.3834 [hep-th]

Euler characteristic:

$$\chi(M) := \sum_{i,k} (-1)^{j+k} h^{k,j}(M) = \sum_{k} (-1)^k \chi(\Lambda^k T^*) = \chi(\bigoplus_{k} (-1)^k \Lambda^k T^*)$$

Euler characteristic:

$$\chi(M) := \sum_{j,k} (-1)^{j+k} h^{k,j}(M) = \sum_k (-1)^k \chi(\Lambda^k T^*) = \chi(\underbrace{\bigoplus_k (-1)^k \Lambda^k T^*}_{\Lambda_{-1} T^*})$$

for any bundle
$$E \to M$$
, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

Hirzebruch χ_y -genus:

$$\chi_y(M) := \chi(\Lambda_y T^*) \stackrel{[\mathsf{HRR}]}{=} \int_M \mathrm{Td}(M) \operatorname{ch}(\Lambda_y T^*)$$

Euler characteristic:

$$\chi(M) := \sum_{j,k} (-1)^{j+k} h^{k,j}(M) = \sum_k (-1)^k \chi(\Lambda^k T^*) = \chi(\underbrace{\bigoplus_k (-1)^k \Lambda^k T^*}_{\Lambda_{-1} T^*})$$

for any bundle $E \to M$, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

Hirzebruch χ_{v} -genus:

$$\chi_{y}(M) := \chi(\Lambda_{y}T^{*}) \stackrel{[\mathsf{HRR}]}{=} \int_{M} \mathrm{Td}(M) \operatorname{ch}(\Lambda_{y}T^{*})$$
$$\chi_{-1}(M) = \chi(M), \quad \chi_{0}(M) = \chi(\mathcal{O}_{M}), \quad \chi_{1}(M) = \sigma(M)$$

Euler characteristic:

$$\chi(M) := \sum_{j,k} (-1)^{j+k} h^{k,j}(M) = \sum_k (-1)^k \chi(\Lambda^k T^*) = \chi(\underbrace{\bigoplus_k (-1)^k \Lambda^k T^*}_{\Lambda_{-1} T^*})$$

for any bundle $E \to M$, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

Hirzebruch χ_{ν} -genus:

$$\chi_{y}(M) := \chi(\Lambda_{y}T^{*}) \stackrel{[HRR]}{=} \int_{M} \operatorname{Td}(M) \operatorname{ch}(\Lambda_{y}T^{*})$$
$$\chi_{-1}(M) = \chi(M), \quad \chi_{0}(M) = \chi(\mathcal{O}_{M}), \quad \chi_{1}(M) = \sigma(M)$$

Definition [Hirzebruch88, Witten88]

With
$$q:=e^{2\pi i\tau}$$
, $y:=e^{2\pi iz}$ for $\tau, z\in\mathbb{C}$, $\mathrm{Im}(\tau)>0$,

$$\overline{\text{With } q := e^{2\pi i \tau}}, \quad y := e^{2\pi i z} \text{ for } \tau, \quad z \in \mathbb{C}, \quad \text{Im}(\tau) > 0,$$

$$\mathbb{E}_{q,-y} := y^{-\frac{D}{2}} \Lambda_{-y} T^* \otimes \bigotimes_{n=1}^{\infty} \left[\Lambda_{-yq^n} T^* \otimes \Lambda_{-y^{-1}q^n} T \otimes S_{q^n} T^* \otimes S_{q^n} T \right],$$

$$\mathcal{E}(M; \tau, z) := \chi(\mathbb{E}_{q, -y}) = \int_{M} \mathrm{Td}(M) \operatorname{ch}(\mathbb{E}_{q, -y})$$

is the COMPLEX ELLIPTIC GENUS of M.

Properties:

• $\mathcal{E}(M; \tau, z)$ arises from a regularized U(1)-equivariant index of a Dirac operator on the loop space of M

Properties:

• $\mathcal{E}(M; \tau, z)$ arises from a regularized U(1)-equivariant index of a Dirac operator on the loop space of M

operator on the loop space of
$$M$$

• using the splitting principle, $c(T) = \prod_{j=1}^{D} (1+x_j)$,
$$\mathcal{E}(M;\tau,z) = y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\underbrace{\frac{x_j}{1-e^{-x_j}}}_{\text{ch}(\Lambda_{-y}T^*)} \underbrace{(1-ye^{-x_j}q^n)(1-y^{-1}e^{x_j}q^n)}_{-1} \right]$$

$$\cdot \prod_{n=1}^{\infty} \frac{(1-ye^{-x_j}q^n)(1-y^{-1}e^{x_j}q^n)}{(1-e^{-x_j}q^n)(1-e^{x_j}q^n)}$$

Properties:

• $\mathcal{E}(M; \tau, z)$ arises from a regularized U(1)-equivariant index of a Dirac operator on the loop space of M

using the splitting principle, $c(T) = \prod (1 + x_i)$,

operator on the loop space of
$$M$$
using the splitting principle, $c(T) = \prod_{j=1}^{D} (1+x_j)$,
$$\mathcal{E}(M;\tau,z) = y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\underbrace{\frac{x_j}{1-e^{-x_j}}}_{\text{ch}(\Lambda_{-yq^n}\tau^*)} \underbrace{\frac{(1-ye^{-x_j}q^n)(1-y^{-1}e^{x_j}q^n)}{(1-e^{-x_j}q^n)(1-e^{x_j}q^n)}}_{\text{ch}(s_{q^n}\tau^*)} \right]$$

Properties:

• $\mathcal{E}(M; \tau, z)$ arises from a regularized U(1)-equivariant index of a Dirac operator on the loop space of M

• using the splitting principle,
$$c(T) = \prod_{j=1}^{D} (1 + x_j)$$
,

$$\mathcal{E}(M; \tau, z) = y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\frac{x_j}{1 - e^{-x_j}} (1 - y e^{-x_j}) \cdot \prod_{n=1}^{\infty} \frac{(1 - y e^{-x_j} q^n)(1 - y^{-1} e^{x_j} q^n)}{(1 - e^{-x_j} q^n)(1 - e^{x_j} q^n)} \right]$$

$$= \int_{M} \prod_{j=1}^{D} \left[x_{j} \frac{\vartheta_{1}(\tau, z - x_{j})}{\vartheta_{1}(\tau, -x_{j})} \right],$$

a weak Jacobi form (weight 0, index $\frac{D}{2}$) with respect to $SL_2(\mathbb{Z})$

Properties:

• $\mathcal{E}(M; \tau, z)$ arises from a regularized U(1)-equivariant index of a Dirac operator on the loop space of M

• using the splitting principle,
$$c(T) = \prod_{j=1}^{D} (1 + x_j)$$
,

$$\mathcal{E}(M; \tau, z) = y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\frac{x_j}{1 - e^{-x_j}} (1 - y e^{-x_j}) \cdot \prod_{j=1}^{\infty} \frac{(1 - y e^{-x_j} q^n)(1 - y^{-1} e^{x_j} q^n)}{(1 - e^{-x_j} q^n)(1 - e^{x_j} q^n)} \right]$$

$$= \int_{M} \prod_{i=1}^{D} \left[x_{i} \frac{\vartheta_{1}(\tau, z - x_{i})}{\vartheta_{1}(\tau, -x_{i})} \right],$$

a weak Jacobi form (weight 0, index $\frac{D}{2}$) with respect to $SL_2(\mathbb{Z})$

• it's a genus with values in the ring of weak Jacobi forms of weight 0

1. Refining $\chi(M)$: The (geometric) Hodge elliptic genus

Definition

1. Refining the Euler characteristic

$$\overline{\mathbb{E}_{q,-y}}$$
 as before, $\mathbb{E}_{q,-y} = y^{-\frac{D}{2}} \bigoplus_{\ell,m} q^\ell (-y)^m \mathcal{T}_{\ell,m}$,

COMPLEX ELLIPTIC GENUS of M:

$$\mathcal{E}(M;\tau,z) = y^{-\frac{D}{2}} \sum_{\ell,m} q^{\ell} (-y)^m \sum_j (-1)^j \dim H^j(M,\mathcal{T}_{\ell,m}).$$

1. Refining $\chi(M)$: The (geometric) Hodge elliptic genus

Hodge elliptic genus of M:

$$\textstyle \mathcal{E}^{\mathsf{HEG}}(M;\tau,z,\nu) := ({\color{blue} u} y)^{-\frac{D}{2}} \sum_{\ell,m} q^\ell (-y)^m \sum_j (-{\color{blue} u})^j \, \dim H^j(M,\mathcal{T}_{\ell,m}).$$

1. Refining $\chi(M)$: The (geometric) Hodge elliptic genus

Hodge elliptic genus of M:

$$\textstyle \mathcal{E}^{\mathsf{HEG}}(M;\tau,z,\nu) := ({\color{blue} u} y)^{-\frac{D}{2}} \sum_{\ell,m} q^\ell (-y)^m \sum_j (-{\color{blue} u})^j \, \dim H^j(M,\mathcal{T}_{\ell,m}).$$

Theorem [Kachru/Tripathy16]

If M is a complex torus or a K3 surface, then $\mathcal{E}^{HEG}(M; \tau, z, \nu)$ is an invariant (that is, independent of the complex structure).

```
The basic building block: bc - \beta \gamma \text{ system } E
\mathfrak{a}: \text{ (complex) Heisenberg algebra with basis } (\beta_n, \gamma_m, 1)_{n,m \in \mathbb{Z}}, \\ \forall n, m \in \mathbb{Z}: \ [\beta_n, \gamma_m] = \delta_{n+m,0} \cdot 1, \text{ and all other } [x_n, y_m] = 0
\mathfrak{a}_-: \text{ sub Lie algebra with basis } (\beta_n, \gamma_m, 1)_{n \leq 0, m < 0}
\mathfrak{C}:= \operatorname{span}_{\mathbb{C}}(\Omega), \qquad \forall n \leq 0: \beta_n.\Omega = 0, \ \forall m < 0: \gamma_m.\Omega = 0, \ 1.\Omega = \Omega
F:= \operatorname{ind}_{\mathfrak{a}_-}^{\mathfrak{a}_-}(\mathbb{C}) \cong \mathbb{C}[\beta_1, \beta_2, \beta_3, \ldots, \gamma_0, \gamma_1, \gamma_2, \ldots]
F \text{ carries the structure of a vertex operator algebra (VOA),}
\text{generated by two free bosonic fields } \beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F)[[x^{\pm 1}]];
```

```
The basic building block: bc - \beta \gamma system E
a: (complex) Heisenberg algebra with basis (\beta_n, \gamma_m, 1)_{n, m \in \mathbb{Z}},
                  \forall n, m \in \mathbb{Z}: [\beta_n, \gamma_m] = \delta_{n+m,0} \cdot 1, and all other [x_n, y_m] = 0
\mathfrak{a}_{-}: sub Lie algebra with basis (\beta_n, \gamma_m, 1)_{n \leq 0, m \leq 0}
\mathbb{C} := \operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n \leq 0 : \beta_n \cdot \Omega = 0, \ \forall m < 0 : \gamma_m \cdot \Omega = 0, \ 1 \cdot \Omega = \Omega
                F := \operatorname{ind}_{\mathfrak{a}}^{\mathfrak{a}} (\mathbb{C}) \cong \mathbb{C}[\beta_1, \beta_2, \beta_3, \dots, \gamma_0, \gamma_1, \gamma_2, \dots]
F carries the structure of a vertex operator algebra (VOA),
     generated by two free bosonic fields \beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F)[x^{\pm 1}];
introducing free fermions along the same lines, get a Fock space E \supset F,
b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E)[[x^{\pm 1}]] — altogether, a bc - \beta \gamma system E.
```

```
The basic building block: bc - \beta \gamma system E
a: (complex) Heisenberg algebra with basis (\beta_n, \gamma_m, 1)_{n, m \in \mathbb{Z}}
                  \forall n, m \in \mathbb{Z}: [\beta_n, \gamma_m] = \delta_{n+m,0} \cdot 1, and all other [x_n, y_m] = 0
\mathfrak{a}_{-}: sub Lie algebra with basis (\beta_n, \gamma_m, 1)_{n \leq 0, m \leq 0}
\mathbb{C} := \operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n < 0 : \beta_n \Omega = 0, \forall m < 0 : \gamma_m \Omega = 0, 1.\Omega = \Omega
               F := \operatorname{ind}_{\mathfrak{a}}^{\mathfrak{a}} (\underline{\mathbb{C}}) \cong \mathbb{C}[\beta_1, \beta_2, \beta_3, \dots, \gamma_0, \gamma_1, \gamma_2, \dots]
F carries the structure of a vertex operator algebra (VOA),
     generated by two free bosonic fields \beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F)[x^{\pm 1}];
introducing free fermions along the same lines, get a Fock space E \supset F,
b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E)[[x^{\pm 1}]] — altogether, a bc - \beta \gamma system E.
```

For $U \subset M$: holomorphic coordinate chart with $\mathbb{E}_{q,-y|U} \cong U \times \mathbb{E}$, \mathbb{E} a super-module of the super-VOA $E^{\otimes D}$.

[Dong/Liu/Ma02], using the SU(D)-holonomy of M, obtain an SU(D)-principal bundle of $E^{\otimes D}$ -modules associated to $\mathbb{E}_{q,-y}$.

```
 \begin{array}{ll}   \text{ The basic building block:} & bc - \beta \gamma \text{ system } E \\ \hline \text{a: (complex) Heisenberg algebra with basis } (\beta_n, \, \gamma_m, \, 1)_{n,m \in \mathbb{Z}}, \\ & \forall n, m \in \mathbb{Z} \colon [\beta_n, \gamma_m] = \delta_{n+m,0} \cdot 1, \text{ and all other } [x_n, y_m] = 0 \\ \text{a.: sub Lie algebra with basis } (\beta_n, \, \gamma_m, \, 1)_{n \leq 0, m < 0} \\ \hline \text{C} := \operatorname{span}_{\mathbb{C}}(\Omega), & \forall n \leq 0 \colon \beta_n.\Omega = 0, \, \forall m < 0 \colon \gamma_m.\Omega = 0, \, 1.\Omega = \Omega \\ & F := \operatorname{ind}_{\mathfrak{a}_-}^{\mathfrak{a}_-}(\underline{\mathbb{C}}) \cong \mathbb{C}[\beta_1, \, \beta_2, \, \beta_3, \, \ldots, \, \gamma_0, \, \gamma_1, \, \gamma_2, \, \ldots] \\ \hline F \text{ carries the structure of a vertex operator algebra (VOA),} \\ & \text{ generated by two free bosonic fields } \beta(x), \, \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F)[[x^{\pm 1}]]; \\ & \text{ introducing free fermions along the same lines, get a Fock space } E \supset F, \\ & b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E)[[x^{\pm 1}]] & - \text{ altogether, a } bc - \beta \gamma \text{ system } E. \\ \hline \end{array}
```

For $U \subset M$: holomorphic coordinate chart with $\mathbb{E}_{q,-y|U} \cong U \times \mathbb{E}$, \mathbb{E} a super-module of the super-VOA $E^{\otimes D}$.

[Dong/Liu/Ma02], using the $\mathrm{SU}(D)$ -holonomy of M, obtain an $\mathrm{SU}(D)$ -principal bundle of $E^{\otimes D}$ -modules associated to $\mathbb{E}_{q,-y}$.

But: In TQFT, we need to include the zero modes $\gamma_0^{(j)}$.

<u>Definition</u> [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX Ω_M^{ch} : sheaf of super-VOAs over M, for any holomorphic coordinate chart $U \subset M$: $\Omega_M^{ch}(U) := E^{\otimes D}$.

<u>Theorem</u> [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

 $H^*(M, \Omega_M^{\text{ch}})$ (sheaf cohomology) is a topological N=2 superconformal VOA. Ω_M^{ch} is filtered with associated graded $\mathbb{E}_{q,-\gamma}$ $(q\leftrightarrow L_0^{\text{top}}, y\leftrightarrow J_0)$.

Definition [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX Ω_M^{ch} : sheaf of super-VOAs over M, for any holomorphic coordinate chart $U \subset M$: $\Omega_M^{ch}(U) := E^{\otimes D}$.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

 $H^*(M, \Omega_M^{ch})$ (sheaf cohomology) is a topological N=2 superconformal VOA. Ω_M^{ch} is filtered with associated graded $\mathbb{E}_{q,-y}$ $(q \leftrightarrow L_0^{\text{top}}, y \leftrightarrow J_0)$.

$$\mathcal{E}(M;\tau,z) = y^{-\frac{D}{2}} \sum_{j} (-1)^{j} \operatorname{tr}_{H^{j}(M,\Omega_{M}^{ch})} \left((-y)^{J_{0}} q^{L_{0}^{top}} \right),$$

 \neq gr-dim $(H^{j}(M, \mathbb{E}_{a,-v}))$, in general

Definition [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX Ω_M^{ch} : sheaf of super-VOAs over M, for any holomorphic coordinate chart $U \subset M$: $\Omega_M^{\text{ch}}(U) := E^{\otimes D}$.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

 $H^*(M,\Omega_M^{\mathrm{ch}})$ (sheaf cohomology) is a topological N=2 superconformal VOA. Ω_M^{ch} is filtered with associated graded $\mathbb{E}_{q,-y}$ $(q\leftrightarrow L_0^{\mathrm{top}},\ y\leftrightarrow J_0)$.

Consequence:

$$\mathcal{E}(M;\tau,z) = y^{-\frac{D}{2}} \sum_{j} (-1)^{j} \operatorname{tr}_{H^{j}(M,\Omega_{M}^{\operatorname{ch}})} \left((-y)^{J_{0}} q^{L_{0}^{\operatorname{top}}} \right),$$

 $eq \operatorname{\mathsf{gr\text{-}dim}} ig(H^j(M, \mathbb{E}_{q,-y}) ig),$ in general

Definition [W17]

CHIRAL HODGE ELLIPTIC GENUS:

$$\mathcal{E}^{\mathsf{HEG,ch}}(M;\tau,\mathsf{z},\nu) := (u\mathsf{y})^{-\frac{D}{2}} \sum_{j} (-\mathsf{u})^{j} \operatorname{tr}_{H^{j}(M,\Omega_{M}^{\mathsf{ch}})} \left((-\mathsf{y})^{J_{0}} q^{L_{0}^{\mathsf{top}}} \right)$$

<u>Definition</u> [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX Ω_M^{ch} : sheaf of super-VOAs over M, for any holomorphic coordinate chart $U \subset M$: $\Omega_M^{ch}(U) := E^{\otimes D}$.

<u>Theorem</u> [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00] $H^*(M, \Omega_M^{ch})$ (sheaf cohomology) is a topological N=2 superconformal VOA.

 Ω_M^{ch} is filtered with associated graded $\mathbb{E}_{q,-y}$ $(q \leftrightarrow L_0^{\text{top}}, y \leftrightarrow J_0)$.

Consequence:

$$\mathcal{E}(M;\tau,z) = y^{-\frac{D}{2}} \sum_{j} (-1)^{j} \operatorname{tr}_{H^{j}(M,\Omega_{M}^{\operatorname{ch}})} \left((-y)^{J_{0}} q^{L_{0}^{\operatorname{top}}} \right),$$

 \neq gr-dim $\left(H^{j}(M,\mathbb{E}_{q,-y})\right)$, in general

Definition [W17]

CHIRAL HODGE ELLIPTIC GENUS:

$$\textstyle \mathcal{E}^{\mathsf{HEG,ch}}(M;\tau,z,\nu) := (uy)^{-\frac{D}{2}} \sum_{j} (-u)^{j} \operatorname{tr}_{H^{j}(M,\Omega_{M}^{\mathsf{ch}})} \left((-y)^{J_{0}} q^{L_{0}^{\mathsf{top}}} \right).$$

Results [W17] on $\mathcal{E}^{\mathsf{HEG,ch}}(M;\tau,z,\nu)$ (using [Creutzig/Höhn14, Song16]): If M is a complex torus, then $\mathcal{E}^{\mathsf{HEG,ch}}(M;\tau,z,\nu)$ agrees with $\mathcal{E}^{\mathsf{HEG}}(M;\tau,z,\nu)$; if M is a K3 surface, then it is an invariant, different from $\mathcal{E}^{\mathsf{HEG}}(M;\tau,z,\nu)$.

Fact:

C: a superconformal field theory (SCFT) at central charge c=3D, $D\in\mathbb{N}$ (assuming N=(2,2) worldsheet SUSY and spacetime SUSY) \Longrightarrow commuting J_0 , L_0^{top} , J_0 , L_0^{top} act on the space of states, as well as A, an extended N=2 SCA with c=3D, J_0 , $L_0\in A$.

Katrin Wendland

Fact:

$$L_0 - \frac{1}{2}J_0$$
 $\widetilde{L}_0 - \frac{1}{2}\widetilde{J}_0$

as well as \mathcal{A} , an extended N=2 SCA with c=3D, J_0 , $L_0 \in \mathcal{A}$.

Then
$$\mathbb{H} := \ker(\widetilde{L}_0^{\mathrm{top}})$$
 is an sVOA, and

$$\mathcal{E}_{\mathsf{CFT}}({\color{red}\mathcal{C}};\tau,\mathbf{z}) := \mathsf{tr}_{\mathbb{H}}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - \mathbf{c}/6} q^{L_0^{\mathsf{top}}} \right) \quad \in y^{-D/2} \cdot \mathbb{Z}[\![q,y^{\pm 1}]\!]$$

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLIPTIC GENUS.

Fact:

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLIPTIC GENUS. **Expectation:**

Such an SCFT \mathcal{C} exists "for every M" as above, $\mathcal{E}_{CFT}(\mathcal{C}; \tau, z) = \mathcal{E}(M; \tau, z)$. This **expectation holds true** if M is a complex torus or a K3 surface.

Fact:

 $\begin{array}{ll} \textit{C} \colon \text{a superconformal field theory (SCFT) at central charge } c = 3D, \ D \in \mathbb{N} \\ & \text{(assuming } N = (2,2) \text{ worldsheet SUSY and spacetime SUSY)} \\ \Longrightarrow & \text{commuting } J_0, \ L_0^{\text{top}}, \ \widetilde{J_0}, \ \widetilde{L}_0^{\text{top}} \ \text{act on the space of states,} \\ \end{array}$

$$L_0 - \frac{1}{2}J_0$$
 $\widetilde{L}_0 - \frac{1}{2}\widetilde{J}_0$

as well as \mathcal{A} , an extended N=2 SCA with c=3D, J_0 , $L_0 \in \mathcal{A}$.

Then $\mathbb{H} := \ker(\widetilde{L}_0^{\text{top}})$ is an sVOA, and

$$\mathcal{E}_{\mathsf{CFT}}({\color{blue}\mathcal{C}};\tau,z) := \mathsf{tr}_{\mathbb{H}}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - {\color{blue}c}/6} q^{L_0^{\mathsf{top}}} \right) \quad \in y^{-D/2} \cdot \mathbb{Z}[\![q,y^{\pm 1}]\!]$$

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLIPTIC GENUS.

Expectation:

Such an SCFT \mathcal{C} exists "for every M" as above, $\mathcal{E}_{CFT}(\mathcal{C}; \tau, z) = \mathcal{E}(M; \tau, z)$. This **expectation holds true** if M is a complex torus or a K3 surface.

Definition [Kachru/Tripathy16]

CONFORMAL FIELD THEORETIC HODGE ELLIPTIC GENUS:

$$\mathcal{E}_{\mathsf{CFT}}^{\mathsf{HEG}}(\mathcal{C};\tau,z,\nu) \! := \mathsf{tr}_{\mathbb{H}} \left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - c/6} u^{\widetilde{J_0} - c/6} q^{L_0^{\mathsf{top}}} \right).$$

Results

• [Kapustin05]: For theories \mathcal{C} associated to M, $\mathbb{H} \xrightarrow{\text{large volume}} H^*(M, \Omega_M^{\text{ch}})$.

Results

- [Kapustin05]: For theories \mathcal{C} associated to M, $\mathbb{H} \xrightarrow{\text{large volume}} H^*(M, \Omega_M^{\text{ch}})$.
- For K3 theories C (c = 6):

Let $\mathbb{H}_0 :=$ the GENERIC SPACE OF STATES, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_0 \hookrightarrow \mathbb{H}$ as a representation of $\langle \mathcal{A}, \widetilde{J_0} \rangle$,

$$\mathcal{E}_{\mathsf{CFT}}(\mathcal{C}; au, z) = \mathsf{tr}_{\mathbb{H}_0}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - c/6} q^{L_0^{\mathrm{top}}} \right).$$

Results

- [Kapustin05]: For theories \mathcal{C} associated to M, $\mathbb{H} \xrightarrow{\text{large volume}} H^*(M, \Omega_M^{\text{ch}})$.
- For K3 theories C (c = 6):

Let $\mathbb{H}_0:=$ the GENERIC SPACE OF STATES, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_0\hookrightarrow\mathbb{H}$ as a representation of $\langle\mathcal{A},\,\widetilde{J_0}\rangle$,

$$\mathcal{E}_{\mathsf{CFT}}(\mathcal{C}; au,z) = \mathsf{tr}_{\mathbb{H}_0}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - c/6} q^{L_0^{\mathrm{top}}}\right).$$

[W17] (using [W00, Song16, Song17]):

Then $\mathbb{H}_0 \cong H^*(M, \Omega_M^{ch}) \cong \text{Mathieu Moonshine module predicted by }$ [Eguchi/Ooguri/Tachikawa10] and proved to exist by [Gannon12].

Results

- large volume • [Kapustin05]: For theories \mathcal{C} associated to M, $\mathbb{H} \longrightarrow H^*(M, \Omega_M^{ch})$.
- For K3 theories C (c = 6):

Let \mathbb{H}_0 := the GENERIC SPACE OF STATES, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_0 \hookrightarrow \mathbb{H}$ as a representation of $\langle \mathcal{A}, \mathcal{J}_0 \rangle$,

$$\mathcal{E}_{\mathsf{CFT}}(\mathcal{C}; au, \mathbf{z}) = \mathsf{tr}_{\mathbb{H}_0} \left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - \mathbf{c}/6} q^{L_0^{\mathrm{top}}} \right).$$

[W17] (using [W00, Song16, Song17]):

Then $\mathbb{H}_0 \cong H^*(M, \Omega_M^{ch}) \stackrel{[\mathsf{Song17}]}{\cong} \mathsf{Mathieu}$ Moonshine module predicted by [Eguchi/Ooguri/Tachikawa10] and proved to exist by [Gannon12].

Open:

- Is any VOA structure of \mathbb{H}_0 compatible with the M_{24} -action?
- Is M_{24} generated by symmetry surfing,

as suggested in [Taormina/W11+ \cdots]?

THANK YOU FOR YOUR ATTENTION!