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1. Refining the Euler characteristic
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1. Refining the Euler characteristic: Complex elliptic genus

Euler characteristic:
(M) = S(-1Y R (M) = S(-DNT?) = X(B(-1)NT)
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1. Refining the Euler characteristic: Complex elliptic genus

Euler characteristic:
(M) = S(-1Y R (M) = S(-DNT?) = X(B(-1)NT)

Jsk k
—_—
AN_1T*
o0 oo
for any bundle E — M, AvE := @ xKAKE, SyE := @ x¥SE
k=0 k=0

Hirzebruch x,-genus:
(M) = x(0,7) " [ () ann, 1)
Xo1(M) = x(M),  xo(M) = x(On), x1(M) = (M)

Definition [Hirzebruch88, Witten88]
With g := ™", y := 2" for 7, z € C, Im(7) >0,

Eq—y =y AT @) [AoygT* @ A_y-15:T @ SgrT* ® ST,

[HRR]

n=1
EM;7,z) = x(Eq,—y) = /MTd(/\/l) ch(Eq—y)
is the COMPLEX ELLIPTIC GENUS of M.
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1. Refining the Euler characteristic
L]

1. Properties of the complex elliptic genus

Properties:

e &(M; T, z) arises from a regularized U(1)-equivariant index of a Dirac
operator on the loop space of M
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1. Refining the Euler characteristic
L]

1. Properties of the complex elliptic genus

Properties:

o E(M; T, z) arises from a regularized U(1)-equivariant index of a Dirac
operator on the loop space of M

D
e using the splitting principle, ¢(T) = [[(1 + xj),
D X =1
ez = y o2 [ T[22 ye )
M j=1 1— e —J—
N (Ao, T
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1. Refining the Euler characteristic
L]

1. Properties of the complex elliptic genus

Properties:

e E(M; T, z) arises from a regularized U(1)-equivariant index of a Dirac
operator on the loop space of M

D
e using the splitting principle, c¢(T) = [[(1 + x;),

.Fl
EM;1,z) = ‘D/z/ ﬁ{ - (L—ye™)-
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1. Refining the Euler characteristic
L]

1. Properties of the complex elliptic genus

Properties:

e E(M; T, z) arises from a regularized U(1)-equivariant index of a Dirac
operator on the loop space of M

D
e using the splitting principle, c¢(T) = [[(1 + x;),

.Fl
EM;T,2) = ‘D/z/ ﬁ{ - (L—ye™)-
1 (1—ye™q")(1 -y 'e¥q")
=1 (1—eg")(1—e%qn)
o D X_ﬁl(Taz*Xj)
- /M,-Hl[J (. ) }

a weak Jacobi form (weight 0, index 2) with respect to SL»(Z)

e it's a genus with values in the ring of weak Jacobi forms of weight 0
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1. Refining the Euler characteristic
[ ]

1. Refining x(M): The (geometric) Hodge elliptic genus

Definition
Eq._, as before, Eq _, = y~ 2 @Pq"(=y)" Te.m,
¢

,m

COMPLEX ELLIPTIC GENUS of M:
EM;r,z) = y ~E3q"(~y)" S (~1) dim H/(M, Te,m).
4,m

J
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1. Refining the Euler characteristic
[ ]

1. Refining x(M): The (geometric) Hodge elliptic genus

Definition [Kachru/Tripathy16]
Eq._, as before, Eq _, = y~ 2 @Pq"(=y)" Te.m,
4,m

v eC, u:=exp(2miv),
HODGE ELLIPTIC GENUS of M:

ENES(M; 7, 2, 1): = (uy)_%ezqz(—y)m S (—u) dim HI(M, Tg.m).

J
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1. Refining the Euler characteristic
[ ]

1. Refining x(M): The (geometric) Hodge elliptic genus

Definition [Kachru/Tripathy16]
Eq,—, as before, E, _, = y_g@ql(_}/)mﬁ,m,
¢

,m

v eC, u:=exp(2miv),
HODGE ELLIPTIC GENUS of M:

ENES(M; 7, 2, 1): = (uy)—%;qf(_y)m S (—u) dim HI(M, Tg.m).

J

Theorem [Kachru/Tripathy16]
If M is a complex torus or a K3 surface, then E"(M; 7, z,v) is an
invariant (that is, independent of the complex structure).

Katrin Wendland Geometric and Categorical Aspects of CFTs 3/7 ‘



2. More algebra and mathematical physics
[ ]

2. Attaching vertex operator algebras to M

The basic building block: bc — P system E

a: (complex) Heisenberg algebra with basis (84, Ym, 1), ez
Vn,m € Z: [Bn,Ym] = On+mo - 1, and all other [x,, ym] =0
a_: sub Lie algebra with basis (8n, Ym, 1), meo
C :=spang(Q), VYn<0:6,2=0,Ym<0:7,02=0,10=0
F :=indg_(C) = C[B1, B2, B3, - - +»70, Y15 V25 - -]

F carries the structure of a vertex operator algebra (VOA),
generated by two free bosonic fields 3(x), v(x) € Endc(F)[x*];
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F carries the structure of a vertex operator algebra (VOA),

generated by two free bosonic fields 3(x), v(x) € Endc(F)[x*];
introducing free fermions along the same lines, get a Fock space E D F,
b(x), c(x) € Endc(E)[[x*] — altogether, a bc — 37 system E.
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F carries the structure of a vertex operator algebra (VOA),

generated by two free bosonic fields 3(x), v(x) € Endc(F)[x*];
introducing free fermions along the same lines, get a Fock space E D F,
b(x), c(x) € Endc(E)[[x*] — altogether, a bc — 37 system E.

For U C M: holomorphic coordinate chart with E; _, )y = U x E,
E a super-module of the super-VOA E®P.

[Dong/Liu/Ma02], using the SU(D)-holonomy of M, obtain
an SU(D)-principal bundle of £“P-modules associated to E, _, .
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2. Attaching vertex operator algebras to M
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F carries the structure of a vertex operator algebra (VOA),

generated by two free bosonic fields 3(x), v(x) € Endc(F)[x*];
introducing free fermions along the same lines, get a Fock space E D F,
b(x), c(x) € Endc(E)[[x*] — altogether, a bc — 37 system E.

For U C M: holomorphic coordinate chart with E; _, )y = U x E,
E a super-module of the super-VOA E®P.

[Dong/Liu/Ma02], using the SU(D)-holonomy of M, obtain
an SU(D)-principal bundle of £“P-modules associated to E, _, .

But: In TQFT, we need to include the zero modes 'y(J).
Geometric and Categorical Aspects of CFTs
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2. More algebra and mathematical physics
o

2. The chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
CHIRAL DE RHAM COMPLEX Qﬁ\’): sheaf of super-VOAs over M,
for any holomorphic coordinate chart U C M: Qf(U) :=E®P.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]
H*(M, Q) (sheaf cohomology) is a topological N = 2 superconformal VOA.
Qs is filtered with associated graded E, _, (q ¢ Lg™®, y <> Jo).
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2. The chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
CHIRAL DE RHAM COMPLEX Qi\’): sheaf of super-VOAs over M,
for any holomorphic coordinate chart U C M: Qf(U) :=E®P.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]
H*(M, Q) (sheaf cohomology) is a topological N = 2 superconformal VOA.
Qs is filtered with associated graded E, _, (q ¢ Lg™®, y <> Jo).

Consequence: EM;r,z)=y 2 > (—1y s (m0ch) ((_y)JoqL8°p)7

# gr-dim(H/(M,Eq,—,)), in general

Definition [W17] CHIRAL HODGE ELLIPTIC GENUS:
_b 7 top
ENECNM; 7, z,v):= (uy) ™2 > (—uy trim ach) ((_Y)JOQL" ) .
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o

2. The chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
CHIRAL DE RHAM COMPLEX Qi\’): sheaf of super-VOAs over M,
for any holomorphic coordinate chart U C M: Qf(U) :=E®P.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]
H*(M, Q) (sheaf cohomology) is a topological N = 2 superconformal VOA.
Qs is filtered with associated graded E, _, (q ¢ Lg™®, y <> Jo).

Consequence: EM;r,z)=y 2 > (—1y s (m0ch) ((_y)JoqL8°p)7

# gr-dim(H/(M,Eq,—,)), in general

Definition [W17] CHIRAL HODGE ELLIPTIC GENUS:
_b 7 top
ENECNM; 7, z,v):= (uy) ™2 > (—uy trim ach) ((_Y)JOQL" ) .

Results [W17] on EME¢<"(M; 7, z,v) (using [Creutzig/H6hn14, Songl6]):
If M is a complex torus, then EMEC"(M; 7, z, v) agrees with EMEC(M; 7, z, v);
if M is a K3 surface, then it is an invariant, different from E"5¢(M; 7, z,v).
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3. Interpretation in CFT
[ ]

3. Interpretation in (2d unitary, Euclidean) SCFT

Fact:
C: a superconformal field theory (SCFT) at central charge c = 3D, D € N
(assuming N = (2,2) worldsheet SUSY and spacetime SUSY)

= commuting Jo, Lg™® , Jo, Lg™® act on the space of states,
e R
LO_%JU Lo*%Jo

as well as A, an extended N = 2 SCA with ¢ = 3D, Jy, Lo € A.
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(assuming N = (2,2) worldsheet SUSY and spacetime SUSY)
= commuting Jo, Lg™® , Jo, Lg™® act on the space of states,
—
Lo—3Jo Lo—1J
as well as A, an extended N = 2 SCA with ¢ = 3D, Jy, Lo € A.
Then H := ker(Ly’?) is an sVOA, and
Ecrr(Ci 7, 2) = try <(—1)J°_J°)’J°_C/6qL30p> €y "2 Z[q,y*]

is a weak Jacobi form of weight 0 and index %, the CF'T ELLIPTIC GENUS.
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e R
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as well as A, an extended N = 2 SCA with ¢ = 3D, Jy, Lo € A.

Then H := ker(Ls") is an sVOA, and
Ecrr(C;7,2) :=try ((—1)J°_J°)’J°_C/6qL30p> €y P12 Zq,y*]
is a weak Jacobi form of weight 0 and index %, the CF'T ELLIPTIC GENUS.

Expectation:
Such an SCFT C exists “for every M" as above, Ecer(C; 7, 2) = E(M; T, 2).
This expectation holds true if M is a complex torus or a K3 surface.
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3. Interpretation in (2d unitary, Euclidean) SCFT

Fact:

C: a superconformal field theory (SCFT) at central charge c = 3D, D € N
(assuming N = (2,2) worldsheet SUSY and spacetime SUSY)
= commuting Jo, Lg™® , Jo, Lg™® act on the space of states,
—~— —~—
Lo—3Jo Lo—1J

as well as A, an extended N = 2 SCA with ¢ = 3D, Jy, Lo € A.
Then H := ker(Ly’?) is an sVOA, and

Ecrr(Ci 7, 2) = try ((—1)J°_J~°)’J°_C/6qL30p> €y P Zlq,y*]
is a weak Jacobi form of weight 0 and index %, the CF'T ELLIPTIC GENUS.

Expectation:
Such an SCFT C exists “for every M" as above, Ecer(C; 7, 2) = E(M; T, 2).
This expectation holds true if M is a complex torus or a K3 surface.
Definition [Kachru/Tripathy16]
CONFORMAL FIELD THEORETIC HODGE ELLIPTIC GENUS:

ELES(Cim, 2,v): = tr (— Loy me/Suhe/6gH™ )
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3. Interpretation in CFT
L ]

3. Interpretation in CFT

Results |
arge volume
e [Kapustin05]: For theories C associated to M, H ——— H*(M, Q).
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3. Interpretation in CFT

Results |
arge volume
e [Kapustin05]: For theories C associated to M, H ——— H*(M, Qf)).
e For K3 theories C (¢ = 6):

Let Hp := the GENERIC SPACE OF STATES, i.e. maximal such that at_
every point of the moduli space, Hy < H as a representation of (A, Jp),

gCFT(C; T, Z) = try, ((—I)JO_I)yJO—C/GquOP)'
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3. Interpretation in CFT

Results |
arge volume
e [Kapustin05]: For theories C associated to M, H ——— H*(M, Qf)).

e For K3 theories C (¢ = 6):

Let Hp := the GENERIC SPACE OF STATES, i.e. maximal such that at_
every point of the moduli space, Hy < H as a representation of (A, Jp),

gCFT(C; T, Z) = try, ((—I)JO_I)yJO—C/GquOP)'

[W17] (using [W0O0, Songl6, Songl7]):
[Songl7]
Then Hy = H*(M,Q%;) =  Mathieu Moonshine module predicted by

[Eguchi/Ooguri/Tachikawal0] and proved to exist by [Gannon12].
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3. Interpretation in CFT

Results |
arge volume
e [Kapustin05]: For theories C associated to M, H ——— H*(M, Qf)).

e For K3 theories C (¢ = 6):

Let Hp := the GENERIC SPACE OF STATES, i.e. maximal such that at_
every point of the moduli space, Hy < H as a representation of (A, Jp),

gCFT(C; T, Z) = try, ((—I)JO_I)yJO—C/GquOP)'

[W17] (using [W0O0, Songl6, Songl7]):
[Songl7]
Then Hy = H*(M,Q%;) =  Mathieu Moonshine module predicted by

[Eguchi/Ooguri/Tachikawal0] and proved to exist by [Gannon12].

Open:
e |s any VOA structure of Hy compatible with the Mo4-action?

o |s My, generated by symmetry surfing,
as suggested in [Taormina/W11+---]?
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THANK YOU
FOR YOUR ATTENTION!
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