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Barcodes from decompositions (1-d)
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scale

M '
⊕
i∈I

tbik[t] ⊕
⊕
j∈J

tbj
k[t]

tsjk[t]

discrete setting: M : Z→ vectk

→ fg graded module over k[t]

continuous setting: M : R→ vectk

→ pfd representation of poset (R,≤)

M '
⊕
j∈J

kIj

indicator module
on interval Ij

Ij

[Crawley-Boevey]

dgmM : dgmM :



this is given e.g. in Ringel’s Izmir notes this holds because Zn is a locally finite poset, and M is locally finite-dimensional

Existence of decompositions (multi-d)

3

discrete setting: M : Zd → vectk continuous setting: M : Rd → vectk

M '
⊕
j∈J

Mj (indecomposables)

• bounded support: by recurrence

• unbounded support: [Ringel]

M '
⊕
j∈J

Mj [Botnan, Crawley-Boevey]

→ pfd representation of poset (Rd,≤)



this is given e.g. in Ringel’s Izmir notes this holds because Zn is a locally finite poset, and M is locally finite-dimensional

mention results around this fact, e.g. [Botnan et al.] on the embedding of Rep of [n,m] with horizontal surjections into [n,m− 1]
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Mj [Botnan, Crawley-Boevey]

→ pfd representation of poset (Rd,≤)



Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)
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Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block



Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)

This implies a strong correlation between the two coordinates: basically, whenever an element in M(t) has preimages in both M(sx, ty) and M(tx, sy), it also has a preimage in M(s). Note: this is somewhat weaker than a push-out square since there is no terminal → 0 in the exact sequence. As such, M is not a sheaf.

Existence of decompositions (multi-d)

3

continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)



Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)

This implies a strong correlation between the two coordinates: basically, whenever an element in M(t) has preimages in both M(sx, ty) and M(tx, sy), it also has a preimage in M(s). Note: this is somewhat weaker than a push-out square since there is no terminal → 0 in the exact sequence. As such, M is not a sheaf.

Existence of decompositions (multi-d)
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continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '
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Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //
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M(tx, sy)
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OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ



if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk  M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)



if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk  M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)

Application to interlevel-sets persistence:

f, g : X → R Morse
H0(f−1(·);k)

 M,N : R2
>∆ → vectk B-dec

(a, b) 7→ (−a, b)

F,G : Int→ vectk   

(right Kan ext.)

M,N : R2 → vectk B-dec

thm ⇒ db(dgmM,dgmN) = di(M,N) ≤ ‖f − g‖∞



if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk  M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)

Application to interlevel-sets persistence:

thm + our result ⇒ db(dgmM,dgmN) = di(M,N) ≤ ‖f − g‖∞

f, g : X → R pfd
Hr(f−1(·);k)

 M,N : R2
>∆ → vectk exact

(a, b) 7→ (−a, b)

F,G : Int→ vectk   

(right Kan ext.)

M,N : R2 → vectk exact
see also [Carlsson, de Silva, Kalǐsnik, Morozov]



internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

5

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M
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Counting functor (1-d case)
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For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
a<s≤t

ImM(s→ t) (elements alive at least since a and still at t)

• Im−I (t) :=
∑
s≤a

ImM(s→ t) (elements born before a and still alive at t)

Im+
I (t)/Im

−
I (t) (elements alive at t that were born at a )



note: in this special case, intersection = kerM(t→ d).

note: due to total order, sum = union.

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
a<s≤t

ImM(s→ t) (elements alive at least since a and still at t)

• Im−I (t) :=
∑
s≤a

ImM(s→ t) (elements born before a and still alive at t)

• Ker+
I (t) :=

⋂
s≥b

KerM(t→ s) (elements alive at t but not after b)

• Im−I (t) :=
∑
t≤s<b

KerM(s→ t) (elements alive at t and dead before b)

Ker+
I (t)/Ker−I (t) (elements alive at t that die at b)



note: in this special case, intersection = kerM(t→ d).

note: due to total order, sum = union.

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
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⋂
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KerM(t→ s) (elements alive at t but not after b)

• Im−I (t) :=
∑
t≤s<b

KerM(s→ t) (elements alive at t and dead before b)

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

(alive at least since a but not after b) (alive since a but dead before b) + (alive until b but born before a)



f : M → N takes images to images and kernels to kernels ⇒ induces maps Im±M,I(t)→ Im±N,I(t) and Ker±M,I(t)→ Ker±N,I(t) then C±M,I(t)→ C±N,I(t) and then CM,I(t)→ CN,I(t) and finally (by universality of the limit) CI(M)→ CI(N)

In other words, if M decomposes as a number of copies of the constant module over I and some other summand, then CI(M) encodes that number of copies

note: defined on morphisms in the obvious manner

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

(alive at least since a but not after b) (alive since a but dead before b) + (alive until b but born before a)

Prop: For t ≤ t′ ∈ (a, b), M(t −→ t′) induces CI(t)
'−→ CI(t

′)

Prop: dimCI(M) = mult(kI ;M)

CI(M) := lim←−
t∈I

CI(t)

t′

functorial construction



internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd
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CI : vectRk → vectk
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in particular, we can take a vector space complement of the smaller limit in the bigger one, to get an ”embedded” realization of CI via the cone maps

thus, we get a submodule of M that is isomorphic to RI ◦ CI(M)

by the Mittag-Leffler condition, this exact sequence goes to the limit, thus giving isomorphism of the two constructions

the quotient at each t gives an exact sequence as follows

alternatively, we could have taken the inverse limits of the C±I (t) then taken the quotient of the limitsthis is how we defined our counting functor

Embedding of summands (1-d case)

8

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

C+
I (t) C−I (t)

W := vector space complement of C−I (M) in C+
I (M)

C±I (M) := lim←−
t∈I

C±I (t)

0 // C−I (M) // C+
I (M) // CI(M) // 0 is exact

CI(M) := lim←−
t∈I

CI(t)

0 // C−I (t) // C+
I (t)

// CI(t) // 0 is exact for all t ∈ I⇒

(Mittag-Leffler)

 W ' CI(M)

MI(t) := πt(MI) where the πt are the (injective) cone maps for C+
I (M)
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Direct sum (1-d case)
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Base case: MI vs. MJ with sup I 6= sup J

I

t

J

u

MI(t) ∩MJ(t) 6= 0

<

⇒ MI(u) ∩MJ(u) 6= 0

⇒ MI(u) 6= 0 (contradiction)



Direct sum (1-d case)

10

Base case: MI vs. MJ with sup I 6= sup J

I

t

J

u

MI(t) ∩MJ(t) 6= 0

Variant case: MI vs. MJ with sup I = sup J and inf I 6= inf J

Ker±I (t) = Ker±J (t)

<

<

I

t

J

⇒ MI(u) ∩MJ(u) 6= 0

⇒ MI(u) 6= 0 (contradiction)

Im+
I (t) ⊆ Im−J (t)

C+
I (t) ⊆ C

−
J (t) ⇒ MI(t) ∩MJ(t) = 0
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by contradiction

Covering M (1-d case)

12

Approach: show that
∑
IMI(t) =M(t) for every t ∈ R

tu

u := inf{s ≤ t | X ( ImM(s→ t)}

Suppose X :=
∑
IMI(t) (M(t):

t v

v := sup{s ≥ t | KerM(t→ s) ( X}

Im−(u,v)(t) ⊆ X + Im+
(u,v)(t)

Ker−(u,v)(t) ⊆ X + Ker+
(u,v)(t)

⇒ C−(u,v)(t) ⊆ X + C+
(u,v)(t)

Then:

M(u,v)(t) * X :=
∑
IMI(t)

⇒

(contradiction)



internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd
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Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:
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I

3. Show that M =
⊕

IMI
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internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (exact 2-d case) [Cochoy, O.]
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Overview:

1. Define a counting functor for each block B:

CB : Exact vectR
2

k → vectk

M 7→ kmult(kB ;M) (mult(kB ;M) := max{n |M ' knB ⊕N})

2. Define an embedding operator (non-functorial) for each block B:

M 7→MB ≤M such that MB ' kmult(kB ;M)
B

3. Show that M =
⊕

BMB

show that the MB ’s are in direct sum

show that the sum of the MB ’s covers M



the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

t

t

B

B

s

u



the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case
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t
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(t) Im
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)
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(
t
)
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−
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K
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r
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(
t
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product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines

B B

B B⋂
s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)



Similarly, for any u /∈ B and u ≥ t, the morphism M(t→ u) factors through M(ux, ty) or M(tx, uy), and so KerM(t→ u) ⊇ KerM(t→ (ux, ty)) or KerM(t→ (tx, uy)), which implies that
∑

u/∈B,u≥t KerM(t→ u) = Ker−h (t) + Ker−v (t)

Note: for any s /∈ B and s ≤ t, the morphism M(s→ t) factors through M(sx, ty) or M(tx, sy), and so ImM(s→ t) ⊆ ImM((sx, ty)→ t) or ImM((tx, sy)→ t), which implies that
∑

s/∈B,s≤t ImM(s→ t) = Im−h (t) + Im−v (t)

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15
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∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)



Similarly, for any u /∈ B and u ≥ t, the morphism M(t→ u) factors through M(ux, ty) or M(tx, uy), and so KerM(t→ u) ⊇ KerM(t→ (ux, ty)) or KerM(t→ (tx, uy)), which implies that
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Note: for any s /∈ B and s ≤ t, the morphism M(s→ t) factors through M(sx, ty) or M(tx, sy), and so ImM(s→ t) ⊆ ImM((sx, ty)→ t) or ImM((tx, sy)→ t), which implies that
∑

s/∈B,s≤t ImM(s→ t) = Im−h (t) + Im−v (t)

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines⋂

s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)
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⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
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∑
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u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)

duality:

Im±M∗,B(t) =
(
Ker∓M,B(t)

)⊥
Ker±M∗,B(t) =

(
Im∓M,B(t)

)⊥
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the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines⋂

s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)

duality:

Im±M∗,B(t) =
(
Ker∓M,B(t)

)⊥
Ker±M∗,B(t) =

(
Im∓M,B(t)

)⊥
definitions of counting functor and

embedding operator go through



Direct sum (exact 2-d case)
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Base case: MB vs. MB′ with supB 6= supB′

MB(t) ∩MB′(t) 6= 0 ⇒ MB(u) ∩MB′(u) 6= 0

B

B′

t

u

⇒ MB′(u) 6= 0 (contradiction)
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16

Base case: MB vs. MB′ with supB 6= supB′

MB(t) ∩MB′(t) 6= 0 ⇒ MB(u) ∩MB′(u) 6= 0

Variant case: MB vs. MB′ with supB = supB′ and inf B 6= inf B′

Im+
B(t) ⊆ Im−B′(t)

⇒ MB(t) ∩MB′(t) = 0

B

B′

t

u

⇒ MB′(u) 6= 0 (contradiction)

Ker±B(t) = Ker±B′(t)

Im+
B(t) ∩ Im+

B′(t) ⊆ Im−B′(t)

B
B′

B

B′



by contradiction

Covering M (exact 2-d case)
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Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

B

B′

t

M(t) = 〈α, β〉

@B” s.t. Ker−B”(t) ⊆ 〈α+ β〉 + Ker+
B”(t)



by contradiction

Covering M (exact 2-d case)

17

Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

B

B′

t

M(t) = 〈α, β〉

@B” s.t. Ker−B”(t) ⊆ 〈α+ β〉 + Ker+
B”(t)

{ker∓B(t)
⊥}B separates any Y (M∗(t)

affects only the coverage by death quadrants

Notes:



by contradiction

Covering M (exact 2-d case)

17

Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

Fix: isolate the contribution of death quadrants to the coverage:

N(t) := Im +
R2 (t) ∩Ker−R2 (t) contribution of death quadrants

M = N ⊕
⊕

B: band or
birth quadrant

MB coverage by other blocks

N∗ =
⊕

B: birth quadrant
in (R2)op

N∗B
coverage of N by death quadrants
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continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

A conjecture
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continuous setting: M : Rd → vectk

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

A conjecture

Conjecture:

M : R2 → vectk weakly exact

⇐⇒
M '

⊕
j∈J kBj

Bj : rectangle

counting functor & embedding operator

direct sum coverage


