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e discrepancy of a matrix: extent to which the rows can be

simultaneously split into two equal parts.

e Formally, let || - ||« be a norm, and let
disc,(M) = min _ |[Mv].
ve{+1,—-1}"

(M is an m x n matrix).

Goal: prove disc,(M) is small in certain situations, and find the good
assignments v efficiently.
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Examples and Applications

discoololzl
1 1 1

e Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate discoo (/M) where M is a

1. (;:)2 X 22" matrix

2. with one row for each rectangle A x B C {0,1}" x {0,1}" with
Al = |B| = 2,
3. each row is a 2" x 2" matrix with (x, y) entry equal to 2%IA(X)IB(y).
number of rows is > number of columns, random coloring optimal

but useless!
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Upper bounds

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: M;; € [-1,1] and < t nonzero entries per
column,

herdisc(M) < 2t — 1.
Beck-Fiala Conjecture: If M as above,
herdisc(M) = O(y/t)
Komlos Conjecture: M with unit vector columns,
herdisc(M) = O(1)
Banaczszyk’'s Theorem: If M as above,

herdisc(M) = O(+/log m)
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Discrepancy of random matrices

Let M be a random t-sparse matrix

01101
m| 10011
11110

Theorem (Ezra, Lovett 2015)

Few columns: If 1 = O(m), then with probability 1 — exp(—(1)).

(M) = 0O(y/tlogt).

Many columns: If n=Q ((])log('})) then with pr. 1 — (t)*Q(l),

disc(M) < 2

Why not for many columns?
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General setup

e L C R™is a nondegenerate lattice,
e X is a finitely supported r.v. on £ such that span; X = L.

e n columns of M are from X.

Question

How does disc,.(M) behave for various ranges of n?
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Question

For a given random variable X, how large must n be before
discy (M) < 2p.(L) with high probability?

t-sparse vectors, (.
o Lis{xe€Z™:> xi=0mod t}
* poo(L) =1
By fact, discoo (M) < 2 eventually.
EL15 showed this happens for n > Q((7) log (7)). exponential

dependence on t!
This work: n = Q(m?log?® m)
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Random t-sparse matrices:
Theorem (FS18)

Let \ be a random t-sparse matrix. If n = Q(m?log® m), then

discoo (M) <2

with probability at least 1 — O <\ / m':g”> .

Actually usually discoo (M) = 1.
Hoberg and Rothvoss '18 obtained Q(m? log m) for M
with i.i.d {0,1} entries.
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More generally

L, M, X as before, and define

1. L= maxyesuppx |[V]2
e.g. \/t for t-sparse
2. distortion R. = max|,|,=1 |||+
e.g. /m for x = 00
3. spanningness: s(X) “how far X is from proper sublattice.”
will be <1/m for t-sparse
Theorem (FS18)

Suppose EXXT = I,,. Then disc,(M) < 2p.(L) with probability

1-0 (L '°§”> for

ZPO|Y( ) (X)_la ’ (£)> E)




To apply the theorem to non-isotropic X,
consider the transformed r.v. ¥ 1/2X, where ¥ = EXXT.

10
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Proof outline

Need to show: for most fixed M, the rv. My, y € {+1}", gets within
2p.(L) of the origin with positive probability.
Use local central limit theorem:

1. Intuitively the My (sampled at same time) approaches lattice
Gaussian:

PriMy = A] x= e AT
for A e M1 +2L
2. For most M, My also behaves like this!

3. Then done: A € M1 + 2L contains, near origin, elements of *-norm
2p.(L).

11
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holds for most M.
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Local central limit theorem

We propose an LCLT that takes a matrix parameter M, and show it
holds for most M.

e Proof of LCLT = proof of LCLT in [Kuperberg, Lovett, Peled, '12].
e Differences:

e theirs was for FIXED very wide matrices.
e Ours holds for MOST Jess wide matrices.
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Motivation for our LCLT

If X lies on a proper sublattice £ C L, in trouble.

Need an approximate version of the assumption that this doesn’t happen.
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Definition
Dual lattice: L*:={0:VYX € L,(\,0) € Z}.
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Definition
Dual lattice: L*:={0:VYX € L,(\,0) € Z}.
Definition

fx(0) := /E[|(X, 0) mod 1]2], where mod1 —

fx(0) =0=—= 0 € L*.
x(0) ~ 0 = (X,0) ~c Z.
Thus, obstruction is @ far from L£* with fx(6) small.

14
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Spanningness: recall

Say 6 is pseudodual if
fx(6) <
(Why pseudodual? Near L£*, fx(0) =~ d(0, L*).)

~d(0.£%).

N \

Spanningness:

X) = f f; .
S( ) L*F 0 [i?eudodual X(e)

ii5)



CLT

For a matrix //, define the multidimensional Gaussian density
m/2
G ()\) _ 2 / det(ﬁ) I e72AT( T)—IA
7m/2,/det(MMT)
on R™ (Gaussian with covariance 2 f).

16



CLT

For a matrix //, define the multidimensional Gaussian density
m/2
G ()\) _ 2 / det(ﬁ) I e72AT( T)—IA
7m/2,/det(MMT)
on R™ (Gaussian with covariance 2 f).

Theorem (FS18)

With probability 1 — O (L\/ I°%”> over the choice of

16



CLT

For a matrix //, define the multidimensional Gaussian density
m/2
G ()\) _ 2 / det(ﬁ) I e72AT( T)—IA
7m/2,/det(MMT)
on R™ (Gaussian with covariance 2 f).

Theorem (FS18)

With probability 1 — O (L\/ I°%”> over the choice of

1. 5nl, = t < 2nl,

N[

16



CLT

For a matrix //, define the multidimensional Gaussian density
m/2
G ()\) _ 2 / det(ﬁ) I e72AT( T)—IA
7m/2,/det(MMT)
on R™ (Gaussian with covariance 2 f).

Theorem (FS18)

With probability 1 — O (L\/ I°%”> over the choice of

nly, < t < 2nl,

N[

1
2.

petplY =2 =6 (A)‘ = &m(0)-0 (miLz)

for all X € 3 + L.

16



CLT

For a matrix //, define the multidimensional Gaussian density
m/2
G ()\) _ 2 / det(ﬁ) I e72AT( T)—IA
7m/2,/det(MMT)
on R™ (Gaussian with covariance 2 f).

Theorem (FS18)

With probability 1 — O (L\/ I°%”> over the choice of

nly, < t < 2nl,

N[

1
2.

petplY =2 =6 (A)‘ = &m(0)-0 (miLz)

for all X € 3 + L.

prvided = poly(m, s(X)™1, L, logdet £). 16
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Definition (Fourier transform!)

If Y is a random variable on R™, Y . R™ —Cis
?(0) _ E[e27ri<Y,0)]‘

Fact (Fourier inversion:)

if Y takes values on L, then

Pr(Y = A) = det(£) / Y(0)e 2mX0) g
D

Here D is any fundamental domain of the dual lattice L*.

Neat/obvious: true even if Y takes values on an affine shift v 4 L.

17



Take Fourier transform

For fixed M, Fourier transform of My for y egr {£1/2}7?
Say it" column is x;.

My(6) = By [¢27/(Xi750)

_ HEyj[e27riyj<xJ-,6>]

= Hcos w(x;j,0

18



Use Fourier inversion

Let € > 0, to be picked with hindsight (think n=1/4)

[0 @16) - Gl

L by = 2) - Gu(n)

det L
< / My(6) — Gu(6)|d6 (h)
B(e)
n / Gur(6)d6 (k)
R™\B(¢)

+ [ (o)l (5)
D\B(e)
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oz Py =) = Gu) = | [ 27 Ry (6) - Gar(0))c)

det L
< / My(6) — Gu(6)|d6 (h)
B(e)
n / Gur(6)d6 (k)
R™\B(¢)
n / My (6)d6 ()
D\B(e)

If D C B(g). D is the Voronoi cell in £*.
rest of the proof is to show these are small!

e First two easy from the eigenvalue property.
o Ey[h] < e " if £ < s(X).

19
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Random t-sparse matrices

From now on we just want to bound the spanningness. We'll do it for
t-sparse vectors - the framework is that of | |
Lemma

Let X be a random t-sparse vector. Then s(X) = Q(L).

20



Framework from | ] for bounding spanningness

Recall what s(X) > # means. We need to show that if 8 is pseudodual,
i.e., fx(6) < [|0]|/2 but not dual, then fx(0) > «/m.

21



Framework from | ] for bounding spanningness

Recall what s(X) > # means. We need to show that if 8 is pseudodual,
i.e., fx(6) < [|0]|/2 but not dual, then fx(0) > «/m.

Proof outline: (recall fx(8) := +/E[|(X,8) mod 1|7])

21



Framework from | ] for bounding spanningness

Recall what s(X) > # means. We need to show that if 8 is pseudodual,
i.e., fx(6) < [|0]|/2 but not dual, then fx(0) > «/m.

Proof outline: (recall fx(8) := +/E[|(X,8) mod 1|7])

o if all [(x,0) mod 1| < 1/4 for all x € supp X, then
fx(0) > d(0, L"), so 8 not pseudodual unless dual.

21



Framework from | ] for bounding spanningness

Recall what s(X) > # means. We need to show that if 8 is pseudodual,
i.e., fx(6) < [|0]|/2 but not dual, then fx(0) > «/m.

Proof outline: (recall fx(8) := +/E[|(X,8) mod 1|7])

o if all [(x,0) mod 1| < 1/4 for all x € supp X, then
fx(0) > d(0, L"), so 8 not pseudodual unless dual.

e Xis %-spreading: for all 0,

1
x(0) > — sup [(x,0) mod1
x(0) 2mxesuppx’< ) |

21



Framework from | ] for bounding spanningness

Recall what s(X) > # means. We need to show that if 8 is pseudodual,
i.e., fx(6) < [|0]|/2 but not dual, then fx(0) > «/m.

Proof outline: (recall fx(8) := +/E[|(X,8) mod 1|7])

o if all [(x,0) mod 1| < 1/4 for all x € supp X, then
fx(0) > d(0, L"), so 8 not pseudodual unless dual.

e Xis %-spreading: for all 0,

1
x(0) > — sup [(x,0) mod1
x(0) 2mxesuppx’< ) |

Together, if 0 is pseudodual, then fx(6) >

1
8m*

21



Showing X is spreading

1. The argument in [KLP12] shows that X is

is much more general.

W‘Spreading, but
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Showing X is spreading

1. The argument in [KLP12] shows that X is

is much more general.

W‘Spreading, but

2. A direct proof yields the %
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Random unit vectors

A result for a non-lattice distribution:
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Random unit vectors

A result for a non-lattice distribution:
Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then
discM = O(e™ Vv #)

with probability at least 1 — O (L\ /"’5”) provided n = Q(m?®log? m),
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Open problems

e Can the colorings guaranteed by our theorems be produced
efficiently? The probability a random coloring is good decreases with
nas \/n ", which is not good enough.

e As a function of m, how many columns are required such that
disc(M) < 2 for t-sparse vectors with high probability?

24



Thank youl!
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