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Maximum clique problem

I What is the size of a maximum clique in G?
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Motivation

I Clique fundamental problem

I Easy to decide if G contains a k-clique in time nk

Credit: Thore Husfeldt Is this optimal?
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Our main result

Theorem (informal)
State-of-the-art algorithms require time nΩ(k) to determine that the
maximum clique in a random graph is k.

I To analyse algorithms need to formalise method of reasoning used

I If graph has no k-clique, trace of algorithm gives proof of this fact

I Lower bound on size of such proofs ⇒ lower bound on running time

I Brings us to topic of this talk: proof complexity
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What is resolution?

Input: Unsatisfiable CNF formula, e.g.:

¬x ∧ (¬y ∨ ¬z) ∧ (y ∨ ¬w) ∧ (x ∨ w) ∧ (¬x ∨ z) ∧ ¬y

Goal: Certify unsatisfiability using resolution rule

C ∨ x D ∨ ¬x

C ∨D
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Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG
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Branching program

Credit: Airat Khasianov

Interested in branching programs solving falsified clause search problem

Falsified clause search problem: given unsat formula and
an assignment to variables, find a falsified clause
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Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w
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y

1

0

y

0

1

x

1

0
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1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree (a.k.a. decision tree)
Read-once = no variable queried twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree (a.k.a. decision tree)
Read-once = no variable queried twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20



Encoding the k-clique problem in CNF

Graph G = (V, E), k ∈ N

Formula Clique(G, k):

xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Formula Clique(G, k) is satisfiable ⇔ G has a k-clique
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State-of-the-art algorithms

Östergård’s algorithm using Russian doll search
I often used in practice
I has been available online since 2003
I main component of the Cliquer software
I algorithm of choice in the open source software SageMath

Colour-based branch-and-bound algorithms
I arguably the most successful in practice
I uses colouring as bounding (and often as branching) strategy
I basic idea: (k − 1)-colourable graph cannot contain k-clique
I extended survey and computational analysis in [Prosser’12] and

[McCreesh’17]
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Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

b1 b2 b3 b4 b5 b6 b7

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}
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2 41 2 3 5 6 7
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Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

3 4 51 2 6 7

1 2 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}
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I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 5 64 7

1 2 3 3 3
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Östergård’s algorithm

1 Cliquer(G):
2 begin
3 G← permute(G)
4 inc ← ∅
5 for i = n down to 1 do
6 found ← false
7 expand(G[Vi ∩N(vi)], {vi})
8 b[i]← |inc|
9 return inc

1 expand(H, sol):
2 begin
3 while V (H) 6= ∅ do
4 if |sol|+ |V (H)| ≤ |inc| then return
5 i← min{j | vj ∈ V (H)}
6 if |sol|+ b[i] ≤ |inc| then return
7 sol ′ ← sol ∪ {vi}
8 V ′ ← V (H) ∩N(vi)
9 expand(H[V ′], sol ′)

10 if found = true then return
11 H ← H \ {vi}
12 if |sol ′| > |inc| then
13 inc ← sol ′, found ← true
14 return
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Colour-based branch and bound

1 MaxClique(G):
2 begin
3 global inc ← ∅
4 expand(G, ∅)
5 return inc

1 expand(H, sol):
2 begin
3 (order , b)← colourOrder(H)
4 while V (H) 6= ∅ do
5 i← |V (H)|
6 if |sol|+ b[i] ≤ |inc| then return
7 v ← order [i]
8 sol ′ ← sol ∪ {v}
9 V ′ ← V (H) ∩N(v)

10 expand(H[V ′], sol ′)
11 H ← H \ {v}
12 if |sol ′| > |inc| then inc ← sol ′

13 return
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What kind of proofs do these algorithms
generate?
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Recall encoding of k-clique problem in CNF
xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)
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Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)
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What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution

I Bound =
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?

I Are there small resolution proofs of the fact that (k − 1)-colourable
graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution

I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20



What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

Östergård’s algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Reuse previous computations for bounding

Regular resolution captures any such algorithms, even for oracle access
to optimal ordering of vertices and optimal colourings
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Hardness of k-clique for resolution
Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]
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Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]

Usual proof complexity tool-box seems to fail:

I Random restrictions

I Interpolation techniques [Krajíček ’97]

I Size-width lower bound [Ben-Sasson, Wigderson ’99]
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What are hard instance for regular resolution?

I Erdős-Rényi random graph: G ∼ G(n, p)
I n vertices
I include each possible edge with probability p
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What are hard instance for regular resolution?

I Erdős-Rényi random graph: G ∼ G(n, p)
I n vertices
I include each possible edge with probability p

What is an appropriate p?

E[# of k-cliques] =
(

n

k

)
pk(k−1)/2

I Threshold value for having a k-clique p ≈ n−2/(k−1)

I Choose p slightly below so that w.h.p. no k-clique but still dense
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Slightly more formal statement of main result

Theorem
Let k � n1/4 and let G ∼ G(n, p) for p slightly less than threshold.
W.h.p. any regular resolution refutation of Clique(G, k) has length
nΩ(k).

I Tight: upper bound nO(k) (even for tree-like resolution)

I Lower bound degrades gracefully with smaller density
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Take away
Summary
I k-clique fundamental problem
I Prove nΩ(k) average case lower bound for regular resolution
I Holds for proof system that captures state-of-the-art algorithms

Open problems
I Prove hardness for explicit graphs
I Extend to general resolution
I Why are CDCL solvers slower than clique-solvers?
I Can we design better algorithms (e.g. that are not captured by

regular resolution)?

Thanks!
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