
Clique Is Hard for State-of-the-Art Algorithms

Susanna F. de Rezende

KTH Royal Institute of Technology

Oaxaca
August 2018

Talk based on joint work with:

A. Atserias I. Bonacina M. Lauria

J. Nordström A. Razborov

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 1/20
1/20

Maximum clique problem

I What is the size of a maximum clique in G?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 2/20
2/20

Maximum clique problem

I What is the size of a maximum clique in G?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 2/20
2/20

Maximum clique problem

I What is the size of a maximum clique in G?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 2/20
2/20

Motivation

I Clique fundamental problem

I Easy to decide if G contains a k-clique in time nk

Credit: Thore Husfeldt Is this optimal?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 3/20
3/20

Motivation

I Clique fundamental problem
I Easy to decide if G contains a k-clique in time nk

Credit: Thore Husfeldt

Is this optimal?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 3/20
3/20

Motivation

I Clique fundamental problem
I Easy to decide if G contains a k-clique in time nk

Credit: Thore Husfeldt Is this optimal?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 3/20
3/20

Our main result

Theorem (informal)
State-of-the-art algorithms require time nΩ(k) to determine that the
maximum clique in a random graph is k.

I To analyse algorithms need to formalise method of reasoning used

I If graph has no k-clique, trace of algorithm gives proof of this fact

I Lower bound on size of such proofs ⇒ lower bound on running time

I Brings us to topic of this talk: proof complexity

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 4/20
4/20

Our main result

Theorem (informal)
State-of-the-art algorithms require time nΩ(k) to determine that the
maximum clique in a random graph is k.

I To analyse algorithms need to formalise method of reasoning used

I If graph has no k-clique, trace of algorithm gives proof of this fact

I Lower bound on size of such proofs ⇒ lower bound on running time

I Brings us to topic of this talk: proof complexity

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 4/20
4/20

Our main result

Theorem (informal)
State-of-the-art algorithms require time nΩ(k) to determine that the
maximum clique in a random graph is k.

I To analyse algorithms need to formalise method of reasoning used

I If graph has no k-clique, trace of algorithm gives proof of this fact

I Lower bound on size of such proofs ⇒ lower bound on running time

I Brings us to topic of this talk: proof complexity

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 4/20
4/20

Our main result

Theorem (informal)
State-of-the-art algorithms require time nΩ(k) to determine that the
maximum clique in a random graph is k.

I To analyse algorithms need to formalise method of reasoning used

I If graph has no k-clique, trace of algorithm gives proof of this fact

I Lower bound on size of such proofs ⇒ lower bound on running time

I Brings us to topic of this talk: proof complexity

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 4/20
4/20

What is resolution?

Input: Unsatisfiable CNF formula, e.g.:

¬x ∧ (¬y ∨ ¬z) ∧ (y ∨ ¬w) ∧ (x ∨ w) ∧ (¬x ∨ z) ∧ ¬y

Goal: Certify unsatisfiability using resolution rule

C ∨ x D ∨ ¬x

C ∨D

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 5/20
5/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Resolution refutation

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 6/20
6/20

Branching program

Credit: Airat Khasianov

Interested in branching programs solving falsified clause search problem

Falsified clause search problem: given unsat formula and
an assignment to variables, find a falsified clause

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 7/20
7/20

Branching program

Credit: Airat Khasianov

Interested in branching programs solving falsified clause search problem

Falsified clause search problem: given unsat formula and
an assignment to variables, find a falsified clause

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 7/20
7/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree
Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree (a.k.a. decision tree)
Read-once = no variable queried twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Branching program solving falsified clause problem

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

w

0

1
z

x

1

0
y

1

0

y

0

1

x

1

0

0

1

Decision tree
= tree-like resolution

Read-once branching
program = regular
resolution

General branching
program stronger than
general resolution

Tree-like = the DAG is a tree (a.k.a. decision tree)
Read-once = no variable queried twice in any source-to-sink path
Size = # of nodes in the DAG

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 8/20
8/20

Encoding the k-clique problem in CNF

Graph G = (V, E), k ∈ N

Formula Clique(G, k):

xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Formula Clique(G, k) is satisfiable ⇔ G has a k-clique

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 9/20
9/20

Encoding the k-clique problem in CNF

Graph G = (V, E), k ∈ N

Formula Clique(G, k):

xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Formula Clique(G, k) is satisfiable ⇔ G has a k-clique

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 9/20
9/20

Encoding the k-clique problem in CNF

Graph G = (V, E), k ∈ N

Formula Clique(G, k):

xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Formula Clique(G, k) is satisfiable ⇔ G has a k-clique

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 9/20
9/20

State-of-the-art algorithms

Östergård’s algorithm using Russian doll search
I often used in practice
I has been available online since 2003
I main component of the Cliquer software
I algorithm of choice in the open source software SageMath

Colour-based branch-and-bound algorithms
I arguably the most successful in practice
I uses colouring as bounding (and often as branching) strategy
I basic idea: (k − 1)-colourable graph cannot contain k-clique
I extended survey and computational analysis in [Prosser’12] and

[McCreesh’17]

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 10/20
10/20

State-of-the-art algorithms

Östergård’s algorithm using Russian doll search
I often used in practice
I has been available online since 2003
I main component of the Cliquer software
I algorithm of choice in the open source software SageMath

Colour-based branch-and-bound algorithms
I arguably the most successful in practice
I uses colouring as bounding (and often as branching) strategy
I basic idea: (k − 1)-colourable graph cannot contain k-clique
I extended survey and computational analysis in [Prosser’12] and

[McCreesh’17]

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 10/20
10/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

b1 b2 b3 b4 b5 b6 b7

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

2 41 2 3 5 6 7

1 2 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

2 41 2 3 5 6 7

1 2 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

3 4 51 2 6 7

1 2 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

3 4 51 2 6 7

1 2 3 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2 3 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 5 64 7

1 2 3 3 3

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 5 64 7

1 2 3 3 3 4

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 3 4 5 6 7

1 2 3 3 3 4

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 4 5 73 6

1 2 3 3 3 4

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

I G = (V, E)
I V = [n] = {1, 2, . . . , n}

1 2 4 5 73 6

1 2 3 3 3 4 4

bi := max{` : ∃ `-clique among vertices {1, 2, . . . , i}}

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 11/20
11/20

Östergård’s algorithm

1 Cliquer(G):
2 begin
3 G← permute(G)
4 inc ← ∅
5 for i = n down to 1 do
6 found ← false
7 expand(G[Vi ∩N(vi)], {vi})
8 b[i]← |inc|
9 return inc

1 expand(H, sol):
2 begin
3 while V (H) 6= ∅ do
4 if |sol|+ |V (H)| ≤ |inc| then return
5 i← min{j | vj ∈ V (H)}
6 if |sol|+ b[i] ≤ |inc| then return
7 sol ′ ← sol ∪ {vi}
8 V ′ ← V (H) ∩N(vi)
9 expand(H[V ′], sol ′)

10 if found = true then return
11 H ← H \ {vi}
12 if |sol ′| > |inc| then
13 inc ← sol ′, found ← true
14 return

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 12/20
12/20

Colour-based branch and bound

1 MaxClique(G):
2 begin
3 global inc ← ∅
4 expand(G, ∅)
5 return inc

1 expand(H, sol):
2 begin
3 (order , b)← colourOrder(H)
4 while V (H) 6= ∅ do
5 i← |V (H)|
6 if |sol|+ b[i] ≤ |inc| then return
7 v ← order [i]
8 sol ′ ← sol ∪ {v}
9 V ′ ← V (H) ∩N(v)

10 expand(H[V ′], sol ′)
11 H ← H \ {v}
12 if |sol ′| > |inc| then inc ← sol ′

13 return

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 13/20
13/20

What kind of proofs do these algorithms
generate?

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 14/20
14/20

Recall encoding of k-clique problem in CNF
xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 15/20
15/20

Recall encoding of k-clique problem in CNF
xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 15/20
15/20

Recall encoding of k-clique problem in CNF
xv,i: “vertex v is i-th member of clique”

∃ith clique-member
∨

v∈V

xv,i i ∈ [k]

non-neighbours are ¬xv,i ∨ ¬xu,j (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 15/20
15/20

Recall encoding of k-clique problem in CNF
xv: “vertex v is i-th member of clique” for v ∈ Vi

∃ith clique-member
∨

v∈Vi

xv i ∈ [k]

non-neighbours are ¬xv ∨ ¬xu (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 15/20
15/20

Recall encoding of k-clique problem in CNF
xv: “vertex v is i-th member of clique” for v ∈ Vi

∃ith clique-member
∨

v∈Vi

xv i ∈ [k]

non-neighbours are ¬xv ∨ ¬xu (v, u) /∈ E

not both in clique

Doesn’t capture: if no k-clique where v is 1st member ⇒
no k-clique where v is 2nd member

Fix: define “stronger” formula
⇒ split V = V1∪̇ . . . ∪̇Vk s.t. v ∈ Vi can only be ith clique member

G has no k-clique ⇒ formula unsat (converse not necessarily true)
Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 15/20

15/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution

I Bound =
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?

I Are there small resolution proofs of the fact that (k − 1)-colourable
graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph

I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution

I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = ?
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

I Complete (k − 1)-partite graph
I Hard for tree-like resolution
I Easy for regular resolution! (can do ≈ 2kn2)
I In fact, any (k − 1)-colourable graph is easy for regular resolution

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

What kind of proofs do these algorithms generate?
Colouring-base branch-and-bound algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Are there small resolution proofs of the fact that (k − 1)-colourable

graphs do not contain k-cliques?

Östergård’s algorithm
I Branch = tree-like resolution
I Bound = regular resolution
I Reuse previous computations for bounding

Regular resolution captures any such algorithms, even for oracle access
to optimal ordering of vertices and optimal colourings

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 16/20
16/20

Hardness of k-clique for resolution
Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 17/20
17/20

Hardness of k-clique for resolution
Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]

Many reasons to care about small k

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 17/20
17/20

Hardness of k-clique for resolution
Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]

Many reasons to care about small k

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 17/20
17/20

Hardness of k-clique for resolution
Previous work

I nΩ(k) for tree-like resolution [Beyersdorff, Galesi, Lauria ’11]

I nΩ(k) for general resolution for binary encoding [Lauria, Pudlák, Rödl,
Thapen ’13]

I exp
(
nΩ(1)) for general resolution for k � n5/6 [Beame, Impagliazzo,

Sabharwal ’01]

Usual proof complexity tool-box seems to fail:

I Random restrictions

I Interpolation techniques [Krajíček ’97]

I Size-width lower bound [Ben-Sasson, Wigderson ’99]

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 17/20
17/20

What are hard instance for regular resolution?

I Erdős-Rényi random graph: G ∼ G(n, p)
I n vertices
I include each possible edge with probability p

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 18/20
18/20

What are hard instance for regular resolution?

I Erdős-Rényi random graph: G ∼ G(n, p)
I n vertices
I include each possible edge with probability p

What is an appropriate p?

E[# of k-cliques] =
(

n

k

)
pk(k−1)/2

I Threshold value for having a k-clique p ≈ n−2/(k−1)

I Choose p slightly below so that w.h.p. no k-clique but still dense

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 18/20
18/20

Slightly more formal statement of main result

Theorem
Let k � n1/4 and let G ∼ G(n, p) for p slightly less than threshold.
W.h.p. any regular resolution refutation of Clique(G, k) has length
nΩ(k).

I Tight: upper bound nO(k) (even for tree-like resolution)

I Lower bound degrades gracefully with smaller density

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 19/20
19/20

Slightly more formal statement of main result

Theorem
Let k � n1/4 and let G ∼ G(n, p) for p slightly less than threshold.
W.h.p. any regular resolution refutation of Clique(G, k) has length
nΩ(k).

I Tight: upper bound nO(k) (even for tree-like resolution)

I Lower bound degrades gracefully with smaller density

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 19/20
19/20

Take away
Summary
I k-clique fundamental problem
I Prove nΩ(k) average case lower bound for regular resolution
I Holds for proof system that captures state-of-the-art algorithms

Open problems
I Prove hardness for explicit graphs
I Extend to general resolution
I Why are CDCL solvers slower than clique-solvers?
I Can we design better algorithms (e.g. that are not captured by

regular resolution)?

Thanks!

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 20/20
20/20

Take away
Summary
I k-clique fundamental problem
I Prove nΩ(k) average case lower bound for regular resolution
I Holds for proof system that captures state-of-the-art algorithms

Open problems
I Prove hardness for explicit graphs
I Extend to general resolution
I Why are CDCL solvers slower than clique-solvers?
I Can we design better algorithms (e.g. that are not captured by

regular resolution)?

Thanks!

Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 20/20
20/20

Take away
Summary
I k-clique fundamental problem
I Prove nΩ(k) average case lower bound for regular resolution
I Holds for proof system that captures state-of-the-art algorithms

Open problems
I Prove hardness for explicit graphs
I Extend to general resolution
I Why are CDCL solvers slower than clique-solvers?
I Can we design better algorithms (e.g. that are not captured by

regular resolution)?

Thanks!
Susanna F. de Rezende (KTH) Clique Is Hard for State-of-the-Art Algorithms 20/20

20/20

	Motivation and Background
	Proof Complexity
	Result and Proof

