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Composite Risk functionals

Motivation
oX) =E[ (E[B(EL - &E[An (X)L X)] -, X)].X)],

X is an integrable random vector with domain X C R™ and probability
distribution P. f; : R™ x R™ — R™-1, j=1,..., k, with mg =1 and
fer1 : R™ — R™M,

Example

The mean-semi-deviation of order p > 1 for a random variable X
representing a loss is

o(X) = E(X) + ,-;[E[( max{0, X — E(X)})Pﬂ 3
where k € [0,1]. We have k =2, m =1, and

fi(n,x) = x + K,

f2(12,x) = [ max{0,x — nz}]p,
f3(x) = x.
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Composite Risk Functionals in Optimization

Composite Functionals
o(X) = E[A(E[R(E[. . . fi(Efir1(X)], X)] ..., X)], X)]
Risk measures representable as optimal values of composite functionals
0(X) = min fi(u, E[f2(u, X)])
uclU
S(X) = argmin,,c £ (u, E[f2(u, X)])
where U C R? is a nonempty compact set.
Optimized composite functionals
X) = mi X
9(X) = min o(u, X)
o(u, X) = E[f (v, E[fa(u, E[. .. fi(u, E[fer1(u, X)], X)] ..., X)], X)]
» D. Dentcheva, S. Penev, A. Ruszczynski: Statistical estimation of

composite risk functionals and risk optimization problems, Annals of the
Institute of Statistical Mathematics 2017
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The empirical estimator

Given {X;};>1 i.i.d random variables with probability measure P, we
denote by P, the empirical measure: P, = %27:1 0x;; The empirical
estimator has the form:

» Composite Functionals

o = i % [fl(i%[fz(i %[ aE fk(i %fkﬂ(Xik)aXiH)] 7Xi1)]7Xio):|

io=1 i1=1 2=

> Risk Measures Representable as Optimal Values of Composite

Functionals
1 n
" =minf [0, =Y Hu, X
0 min f <u7 - 2(u, Xi)

i=1
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Kernel Estimation Introduction

Assumption: The symmetric Kernel K : RY — R of order r > 0 satisfies
k]_ fy,JK(y)dy/:Ofor/: ]_7 7d andJ: ]_7 7,«_1_
R

k2. [ yI"|K(y)ldy < oc.
Rd

The smooth empirical measure for bandwidt h, is defined as

1 - X*X,‘
Pox K (x) = 1 X;K( " )

Darinka Dentcheva Statistical Inference for Risk Averse Optimization



Kernel Estimation of Composite Risk Functionals

» Composite functionals

"Xl

1 1
/fk /fk+1( )WK(X*X,’k)dX],X)WK(X—X,'k,]_)dX

n

n n

2,17/ (Z%[...

=1 i=1

]..‘,x)h:];an(xf Xi1)dx], x)hmo K(x — Xig)dx]

» Risk Measures Representable as Optimal Values of Composite
Functionals

6?5()—m|nf1 /7‘2zx
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Higher-order inverse measures of risk

0[X] = r;neiﬁ{z + c||max(0, X — 2)||,}

where p > 1 and | - ||, is the norm in the LP space.
We define

filz,m) = z+ ey
f(z,x) = (max(0, x — z))P

» The empirical estimator is

0(M[X] = rzneiﬁ {z + C[% i (max(0, X; — z))p} :}

i=1

» The kernel estimator is

001-ga -+ 5 oo (52
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Framework

We define:
fi(n) = /X fi(nj,x) P(dx), j=1,....k

kst = / () P, gy = Fljsa)e J=1oo ke
X

li C R™ are compact sets such that pjyq € int(l;), j=1,..., k.
H =Ci(h) X Cmy (k) x ...Cm_, (Ik) x R™, where Cr,_, (I;) is the space
of continuous functions on /; with values in R™~-*.
Hadamard directional derivatives of f;(-,x) at p;41 in directions (j11:

) 1

G’(Hj+17x; G1) = |tl¢ﬂg T M(NjJrl + ts,x) — ﬂ(ﬂj+1,X)]-
S+

For every direction d = (d, ..., dk, dkt1) € H, we define recursively the
sequence of vectors:

Ekv1(d) = dita,

fj(d)Z/Xﬂ/(uﬁlax?fjﬂ(d)) P(dx) + di(ujr1), j=kk-1,... .1
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Strong Law of the Large Numbers for Composite Risk Functionals

Let F = {fy : 6 € ©} be a collection of functions fy(x) = (6, x):
» fy(-) are measurable and bounded by integrable envolope function;
» the index set / is compact metric set;

> f(-,x) is continuous for any x.

Then F is Glinvenko-Cantelli class, i.e. supycg |Pof — Pf| 2250

Assumptions for the estimated composite functional:

al. The functions f;(n;,), fer1(-) are measurable, continuous and
uniformly bounded for all n; € I; j =1,--- , k by a measurable
function.

a2. For all x € X, f;(-,x), are continuous on ;.

a3. The bandwidth h, — 0 when n — .

Then ggg)(X) =
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SSLN for composite risk functionas as optimal values

0(X) = [:neltr} fi(u, E[fz(u, X)]) S(X) = argmin,,,fi(u, E[fz(u, X)])

Assumptions:
bl. The function fi(-,-) is continuous.

b2. The functions fi(n,) and f;(z,) are measurable and uniformly
bounded for all € | and all z € Z by a measurable function.

b3. Let the bandwidth h, — 0 when n — .

Then the SLLN for the optimal value holds, i.e. f)&n) 2%, 0 as n — oo.
Additionally, ]D)(Sf("),é‘) — 0 w.p.l. as n — 0.
If the optimal solution is unique, then H(S&"),S) — 0.

The distance D(A, B) denotes the deviation of the set A from set B, and
H(A, B) stands for the Hausdorff distance between sets A and B.

Statistical Inference for Risk Averse Optimization
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SLLN for optimized composite risk functionals

I(X) = [:neltr} o(u, X) S(X) = argmin,,,0(u, X)
o(u, X) =E[f (u,E[f(u,E[. .. i(u,E[fir1(u, X)], X)] ..., X)], X)]
Assumptions:

cl. The functions f;, j =1,--- , k are continuous;

c2. The functions f;(u,n,-) are measurable and uniformly bounded for
all n; € I; by a measurable function.

c3. The bandwidth h, — 0 when n — co.

Then 195?) 225 . If the optimal solution is unique, then ]D)(S&"),S) — 0.
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Uniform Central Limit Theorems for smoothed processes

Al. The class

F= {f(n7x) = [7(1(7717X)a fg(’l]g,X), T 7fk(77k7X)a fk+1(X)]T :
n=(m,....,n) €1}

is a subset of a trapslation invariant class F,
ie., f(n,-+y) e Fforally e RY.

A2. {1n}52 is a proper approximated convolution identity: sequence of
finite signed Borel measures which converge weakly to the point
mass &o, and for every a > 0, lim,_,oc [n| (RM \ [-a,2]) =0

o mn(RYM) =1;
e forall n, for all f € F, f(n,-+y) is pun — integrable;
o Jan [IF(n,- = Y)llppdpun(y) < oo for all f(n,-) € F.

A3. s;plE (/RM("(U,XH) - f(mX))dun(y))2 =50

n—oo

A sup VB [ (£ X +) = Fln. X)) dpnly)| = 0
F RM
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Central Limit Theorems for composite risk functionals

Assume Al. A3. and A4.

A'2. The symmetric kernel K is of order two or higher and satisfies regularity
assumptions and the bandwidth h, — 0 when n — oc;

A5. For all x € X, the functions fi(-,x), j = 1,..., k, are Lipschitz continuous

with square-integrable Lipschitz constant and Hadamard directionally
differentiable;

Then /n[o™ — o] 25 & (W), where W(-) = (WA(:), ..., Wi(:), Wis1) is a
zero-mean Brownian process on I; Wj(-) is a Brownian process of dimension
mj_ion lj, j=1,...,k, and W41 is an me-dimensional normal vector.

cov [Wi(n:), Wi(ny)] = /X [ (ni, x) = Bi(m)] [F(my, %) — Fi(n))]  P(dx),
nmel,nel,i,j=1,...,k,
cov [Wi(ni), W] = /X [fi(mi,x) — fi(mi)] [faza(x) — Mk+1]—r P(dx),
n€l, i=1...k,

cov [Wk+17 Wk+1} = /X [fk+1(X) - ,Uk+1] [fkﬂ(x) - ,Ufk+1]T P(dX).

Darinka Dentcheva
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Semi-deviations continued

The limiting random variable

1—p

G(W) =i + %(E{[max{O,X —EX]}]°}) ° x
(va = pE{[max{0, X — E[X]}]" "} 1),
Here V4 and Vs are normal random variables (V2 = Wa(E[X])) and
Var[V4] = Var[X],
Var[Va] = E{ ([max{o, X — B[X]}]” — E([ max{0, X — E[X]}]p))z},
cov[Va, Vi =
E{ ([max{0, X — E[X]}]" — E([max{0, X - E[X]}]") ) (X - E[x]) }.

If p =1 the limit distribution may be obtained in a different way.

Darinka Dentcheva Statistical Inference for Risk Averse Optimization



Risk functionals as optimal values

Composite risk functional of the higher order risk measures
0[X] = mEIU fi(u,E[f2(u, X)]), U C R? is a nonempty compact set.

The class F = {f(u,x) = [fi(u,x), f2(u,x)]" : u € U}
Assume that AL, A2. (or A'2), A3, A4 are satisfied.

C1. The function fi(u,-) is differentiable Yu € U, and both fi(-,-) and its
derivative w.r.t. the second argument, Vf(-,), are jointly continuous;
C2. f(+,x) is Lipschitz-continuous with a square-integrable Lipschitz constant.

Then /n[6) — 6] 2 min (VA (u,E[f2(u, X)]), W(u)), where
ueU
W(u) is a zero-mean Brownian process on U with the covariance function
cov[W(u'), W(u")] =
/ (L(v',x) — Elf(d, X)]) (R(v",x) — E[f(u”, X)])TP(dx).
x

Darinka Dentcheva Statistical Inference for Risk Averse Optimization



Optimized Composite Risk Functionals

o(u.X) = E[fi (0, E[fs (6, B - filu, Elfira (s, X)L X)) -+, X)], X)) |
HX) = LnelLr} o(u, X)

Assumptions in addition to A1-A4:

D1. The optimal solution & of this problem is unique;

D2. Compact sets /1. .., I are selected so that int(/x) D fir1(U), and
int() D fix1(U, li+1), j=1,...,k—1.

D3. The functions f;(-,-,x), j=1,...,k, and fi;1(-, x) are Lipschitz
continuous for every x € X’ with square integrable Lipschitz
constants.

D4. The functions fi(u,-,x), j=1,..., k, are continuously differentiable
for every x € X, u € U, their derivatives are continuous with respect
to the first two arguments.
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Central Limit Theorem for the optimized risk functional

V[t — 9] 25 g(a, W),
W() = (Wi(:),..., Wi(-), Wis1) is a zero-mean Brownian process on
b X -+ X I; Wj(+) is a Brownian process of dimension m;_; on

I =h x|
i, j=1,...,k, and W1 is an m-dimensional normal vector. The

covariance function of W(-) has the form
cov[W;(n:), Wj(nj)] =
/X [f’(ﬁa niaX) - f’(ﬁa 77')] [ﬁ(ﬁvnjax) - 6(07 Uj)]T P(dX)7

mel,nel i,j=1...k
cov[Wi(ni), Wiia] =
/ [f’(ﬁa 77i7X) - ﬁ(ﬁa 77')] [fk+1(ﬁ7x) - ﬁf+1([})]T P(dX)7
X
mekh, i=1,... k
COV[Wk+17 Wk+1] =
[ T30 = fea(@)] [ (@) — fua(@)] Plo)
X

Statistical Inference for Risk Averse Optimization
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Optimization problems with mean—semideviation

1

min o(ip(u. X)) = B((u X)) +  (E[(¢(u.X) = Eli(. X))"]) ]

where ¢ : RY x X — R. We have

fi(n, u,x) = mh% + ¢(u, x),
fo(n2, u,x) = {[ max{0,¢(u,x) — n2}]"},
f3(u,X) = cp(u,x),

and

fi(m, u) = kg + Elp(u, X)),
FQ(HQ’ u) = ]E{[max{ov <p(u,X) - 772}]13}7
A(u) = Elp(u, X)].

We assume that p > 1 and i is the unique solution of the problem.
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Optimization problems with mean—semideviation continued

We set uz = E[p(d, X)].
Then iz = E{[max{0, ¢(d, X) — IE[gp(ﬁ,X)]}]p} and p1 = o(X).
The limiting element

€2(d) = B(ps. 0; ds)+do(pz) = —pE{ [ max{0, (8, X)—p3}]* " }ds-+da(us),
&1(d) = f (p2, 0;(d)) + d (p2) = guz%il&(d) + di ().

The limiting element is

i—p

Vi + g(E{[max{O,'p(ﬁ,X) —]E[ga(ﬁ,X)]}]p}> ?

. . —1
(Vg — pE{[max{0, (d, X) — E[Q.Q(U,X)]Hp }V1>.
The normal random variables V; and V5, have variances:
Var(Vy) = Var(p(a, X));

Var(V) = B{ ([ max{0, ¢(8, X) - Bl (a, X)]}] "~

E([max{0, (8, X) — El(a. X)1}]”) ) ((2. X) — Ele(a. X)) }.
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Numerical comparison of the two estimators

Consider the higher order inverse risk measure

0(X) = min{u + cf|max(0, X — u)|,}
Uniform kernel function K(u) = 5 with support on |u| < hj.

For p > 1, the kernel estimator 9&") has the form

n 1

rJ'nelﬂrg {u + C(% Z /(max(O,x — “))p%hnﬂ(\x—xi\ﬁhn) dX) p}
i=1

= min {u + C(Z m [(max(0, hn + Xi — )Pt
i=1 n

ueR

— (max(0, —hn + X; — u))p+1]) %}

We use a sample X;, i =1,...,n from X ~ N(10,3) and set p = 2.
Recall that BIAS=E(6(")) — 6 and VARIANCE=E[¢(") — E(¢(")]*,
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Numerical comparison for normal random variables

(c) m1000n3000p2 (d) m1000n6000p2
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Numerical comparison for normal random variables

(e) m2500n500p2

16 Tes

(g) m2500n3000p2

Darinka Dentcheva
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(f) m2500n1500p2

(h) m2500n6000p2
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The bias and the variance of the estimators

n m K-bias | K-variance | E-bias | E-variance
500 | 1000 | -0.0058 0.2930 -0.2981 0.3816
1500 | 1000 | -0.0241 0.1462 -0.1080 0.1640
3000 | 1000 | -0.0318 0.0795 -0.0456 0.0811
6000 | 1000 | -0.0230 0.0406 -0.0262 0.0408
500 | 2500 | -0.1370 0.2913 -0.3278 0.3561
1500 | 2500 | -0.0405 0.1388 -0.1173 0.1538
3000 | 2500 | -0.0383 0.0789 -0.0600 0.0812
6000 | 2500 | -0.0222 0.0426 -0.0254 0.0428

Conclusion
e Better performance when data size is small by kernel estimation.
e Reduce the bias by kernel estimation.

e Bandwidth of the kernel could be optimized.
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The effect of the order and heavier tails

We consider p as parameter, X is normal distribution N(10,3), n = 2000

and m = 2500.
p K-bias | K-variance | E-bias | E-variance
1 -0.0019 0.0094 -0.0040 0.0094
1.50 | -0.0156 0.0337 -0.0184 0.0338
2.00 | -0.0871 0.1207 -0.0910 0.1214
2.5 | -0.3481 0.3053 -0.3617 0.3118

T-distribution degrees of freedom 60,8,6,4, mean = 10,
n = 4000, m = 2500, p = 2.00

df | K-bias | K-variance E-bias E-variance
60 | -0.0260 0.0256 -0.0313 0.0259
8 -0.0815 0.2255 -0.0841 0.2260
6 -0.1464 0.4984 -0.1484 0.4989
4 0.4484 2.6820 0.4496 2.6827

Darinka Dentcheva
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Stochastic Dominance Relation

X=zo Y € E[(n—X)1] <E[(n—Y)4]
o / FED(X: £ dt > / FEO(Y ) dt Va e [0,1]
0 0
< o[X] < o[Y] Vo law-invariant coherent risk measures.

kth degree Stochastic Dominance (kSD), k > 2

Xz, Y & [max(0,n—X)|lfZ1 < [[max (0,7 — Y)|IfZ1
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Test for Stochastic Dominance or order 1 or 2

For X, Y € Li(£2,F, P) with k > 1, we consider the hypothesis

Ho : o[X] < o[Y] \wversus H,: o[X] > o[Y],

where the risk functional o is law-invariant coherent measure of risk.
Rejecting Hg implies that X does not dominate Y in orders m =1 or
m=2.

Step 0. Set i =1.

Step 1. Select p; uniformly distributed in [0, 1] and test the hypothesis
at level of significance «

Ho : AVaR,,[X] < AVaR,[Y]

Step 2. If Ho is rejected, reject the hypothesis X >=(;) Y and stop. If
i = N accept X =(2) Y, otherwise increase i by one and go to
Step 1.

The type | error of this test is asymptotically bounded by a and does not
exceed o' for any o/ > « and N sufficiently large.
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Test for Stochastic Dominance of order kK > 2

For X, Y € Li(2,F, P) with k > 2, we consider

zeR

0x(X) = min {CH max(0, z — X)Hk - z}

1
k

ox(X) = E[X] — H[E[( max{0, E[X] — X})k]]

Consistency with higher-order stochastic dominance

If X = .. Y then 0k(X) < 0k(Y) as well as ox(X) < 0k(Y).

Ho @ o[X] < o[Y] \versus H,: ok[X] > ok[Y],
Hy : ek[X] < ek[Y] versus H, : Gk[X] > 6k[Y]

Rejecting Hg implies that X does not dominate Y in orders
m=1...,k+1.

Darinka Dentcheva
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Power Comparison: Unif(0,1) vs. Unif(e, 1 + ¢)

e ADOS
e AD10
e AD25
= AD50
= AD75
e (CD1
CcD2
e CD3
MW

0 0.05 0.1 0.15 0.2 0.25
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Power Comparison: Gamma(2,1) vs. Gamma(2/(1-¢),1-¢)

1.
0.9 -
08 1 ——AD10
0.7 — AD25
0.6 - === AD50
05 | ——AD75
s CD 1
0.4
0.3
CcD3
0.2 MW
0.1
0 T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Multivariate extension

Consider ¢ random variables X', i =1,...,¢. and ¢ composite risk
functionals for them

0X) = B[ (B[ (B [+ (B [fura (X)) X)] - . X7)] X))
Without loss of generallity, we may assume the same level of nesting.
Multivariate CLT

Setting Y = (X1,...,X%)T and assuming analogous conditions, we have

Q(ln) 01
V(e —o(V)=vn || | =[] B aWw).
ggn) O¢
¢
For a vector a € R an) o1
vaal || =] ] ataw)
g&") O¢
where W(-) = (WA("),..., W(-)k+1) is a zero-mean Brownian process of

appropriate dimension.
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Application to Portfolio

Efficiency
Given a set of random variables Q, a random variable X € Q is efficient
under > if there is no Y € O such that Y strictly dominates X.

Consider a family of random variables
O={X(u)=u'R:ueR™ u"1=1},

where the random vector R comprises the return rates of a basket of m
securities and u represents a feasible portfolio and u denotes the
investment allocation.

Multivariate central limit formula applied to o[u] R] — o[u, R] allows for
statistical testing of

» the relation of risk of two given portfolios;
> efficiency of a given portfolio.
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A Portfolio Optimization Problem

Assumption R = (Ry, Ry, ..., Rm) has eliptical distribution with
expectation p and covariance matrix ¥.

The lower semi-deviation of second order is

Ni=

(E[ max(0,E(u"R) — u" R)?])® = %v uTTu.

The mean-semi-deviation optimization problem becomes

The mean-standard-deviation model

max ulp—kVuTZu st u'l=r (1)
ueR™

Here 1 is the m-dimensional vector of ones, v € R.
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Lower Bound for the Cost of Risk x

Theorem

If problem (1) has an optimal solution, then

Tg—11)2
X1
2> S — (MTi) for any v #0
1'>-11 (2)
Ty-11)?
[4;2:77(# ) fory=0

17x-11
Denoting the lower bound by ko, problem (1) always has a solution for k = 0
but has no solution for x € (0, ko).
Example

For k = 0.5, the existence of optimal solution requires

2
(,J):*ll) >17x 11 (,Jz*lu - 0.25) : (3)
For 10,000 observations of return data for 200 securities we computed
FS™11 = 300.0096, 1S—11 = 11065445, and FS~17 = 1.4994. Substitution of

these values into (3) contradicts the inequality. Substitution into (2) gives
Ro = 1.2212. The estimate problem has no solution for any 0 < xk < 1.2212.
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Bounded short positions

Mean-standard-deviation model with bounded allocations

maxu' p—rVuTEu stou'l=v u>L (4)

Results

The optimal value 1, the optimal solution 4 and the optimal Lagrange
multipliers & and X satisfy the specific optimality conditions implying

2 =il (p+A,x711)?

K ><,U4+)\,z (/L‘l‘)\))—ﬁ forany'y;éO
2 =il (p+A,x711)°

K= {(p+NX (p+ ) — TT3-11 for vy =0.
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