On Statistical Inference for Optimization with Composite Risk Functionals

Darinka Dentcheva

Stevens Institute of Technology Hoboken, New Jersey, USA

joint work with
Yang Lin, Gregory J. Stock

Multi-Stage Stochastic Optimization for Clean Energy Transition September, 2024 Oaxaca, Mexico

Outline

- 1 Composite Risk functionals. Definitions and Framework
- 2 Higher Order Inverse Risk Measures
- **3** Central Limit Theorem for composite risk functionals
- 4 Optimized composite risk functionals
- Multivariate Extension
- 6 Applications

Composite Risk functionals

Motivation

$$\varrho(X) = \mathbb{E}\Big[f_1\Big(\mathbb{E}\big[f_2\big(\mathbb{E}[\cdots f_k(\mathbb{E}[f_{k+1}(X)],X)]\cdots,X\big)\big],X\Big)\Big],$$

X is an integrable random vector with domain $\mathcal{X} \subseteq \mathbb{R}^m$ and probability distribution P. $f_j: \mathbb{R}^{m_j} \times \mathbb{R}^m \to \mathbb{R}^{m_{j-1}}$, $j=1,\ldots,k$, with $m_0=1$ and $f_{k+1}: \mathbb{R}^m \to \mathbb{R}^{m_k}$.

Example

The mean-semi-deviation of order $p \ge 1$ for a random variable X representing a loss is

$$\varrho(X) = \mathbb{E}(X) + \kappa \Big[\mathbb{E} \big[\big(\max\{0, X - \mathbb{E}(X)\} \big)^{\rho} \big] \Big]^{\frac{1}{\rho}},$$

where $\kappa \in [0,1]$. We have k=2, m=1, and

$$f_1(\eta_1, x) = x + \kappa \eta_1^{\frac{1}{p}},$$

 $f_2(\eta_2, x) = \left[\max\{0, x - \eta_2\} \right]^p,$
 $f_3(x) = x.$

Composite Risk Functionals in Optimization

Composite Functionals

$$\varrho(X) = \mathbb{E}[f_1(\mathbb{E}[f_2(\mathbb{E}[\dots f_k(\mathbb{E}[f_{k+1}(X)], X)] \dots, X)], X)]$$

Risk measures representable as optimal values of composite functionals

$$\begin{split} &\theta(X) = \min_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)]) \\ &\mathcal{S}(X) = \operatorname{argmin}_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)]) \\ &\text{where } U \subset \mathbb{R}^d \text{ is a nonempty compact set.} \end{split}$$

Optimized composite functionals

$$\vartheta(X) = \min_{u \in U} \varrho(u, X)$$

$$\varrho(u, X) = \mathbb{E} \left[f_1(u, \mathbb{E}[f_2(u, \mathbb{E}[\dots f_k(u, \mathbb{E}[f_{k+1}(u, X)], X)], \dots, X)], X) \right]$$

 D. Dentcheva, S. Penev, A. Ruszczyński: Statistical estimation of composite risk functionals and risk optimization problems, Annals of the Institute of Statistical Mathematics 2017

The empirical estimator

Given $\{X_i\}_{i\geq 1}$ i.i.d random variables with probability measure P, we denote by P_n the empirical measure: $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$; The empirical estimator has the form:

► Composite Functionals

$$\varrho^{(n)} = \sum_{i_0=1}^n \frac{1}{n} \Big[f_1 \Big(\sum_{i_1=1}^n \frac{1}{n} \Big[f_2 \Big(\sum_{i_2=1}^n \frac{1}{n} \Big[\cdots f_k \Big(\sum_{i_k=1}^n \frac{1}{n} f_{k+1}(X_{i_k}), X_{i_{k-1}} \Big) \Big] \cdots, X_{i_1} \Big) \Big], X_{i_0} \Big) \Big]$$

 Risk Measures Representable as Optimal Values of Composite Functionals

$$\varrho^{(n)} = \min_{u \in U} f_1\left(u, \frac{1}{n} \sum_{i=1}^n f_2(u, X_i)\right)$$

Kernel Estimation Introduction

Assumption: The symmetric Kernel $K : \mathbb{R}^d \to \mathbb{R}$ of order r > 0 satisfies

k1.
$$\int_{\mathbb{R}} y_l^j K(y) dy_l = 0$$
 for $l = 1, \dots, d$ and $j = 1, \dots, r-1$.

k2.
$$\int_{\mathbb{R}^d} |y|^r |K(y)| dy < \infty$$
.

The smooth empirical measure for bandwidt h_n is defined as

$$P_n * K_{h_n}(x) = \frac{1}{h_n n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right).$$

$$\mathbb{E}[f(X)] = \frac{1}{n} \sum_{i=1}^{n} \int_{\mathbb{R}^d} f(x) K\left(\frac{x - X_i}{h_n}\right) \frac{1}{h_n^d} dx$$

Kernel Estimation of Composite Risk Functionals

Composite functionals

$$\varrho_{K}^{(n)} = \sum_{i_{0}=1}^{n} \frac{1}{n} \left[\int f_{1}\left(\sum_{i_{1}=1}^{n} \frac{1}{n} \left[\int f_{2}\left(\sum_{i=1}^{n} \frac{1}{n} \left[\cdots \right) \right) \right] \right] dx$$

$$\int f_{k}\left(\sum_{i_{k}=1}^{n} \left[\frac{1}{n} \int f_{k+1}(x) \frac{1}{h_{n}^{m_{k}}} K(x - X_{i_{k}}) dx \right], x\right) \frac{1}{h_{n}^{m_{k}-1}} K(x - X_{i_{k}-1}) dx$$

$$\left[\cdots, x\right] \frac{1}{h_{n}^{m_{1}}} K(x - X_{i_{1}}) dx \right], x\right) \frac{1}{h_{n}^{m_{0}}} K(x - X_{i_{0}}) dx$$

 Risk Measures Representable as Optimal Values of Composite Functionals

$$\theta_{K}^{(n)} = \min_{z \in Z} f_{1}\left(z, \sum_{i=1}^{n} \frac{1}{n} \int_{m_{i}d} f_{2}(z, x) K\left(\frac{x - X_{i}}{h_{n}}\right) \frac{1}{h_{n}^{d}} dx\right)$$

Higher-order inverse measures of risk

$$\theta[X] = \min_{z \in \mathbb{R}} \{z + c \| \max(0, X - z) \|_{p} \}$$

where p>1 and $\|\cdot\|_p$ is the norm in the \mathcal{L}^p space. We define

$$f_1(z, \eta_1) = z + c\eta^{\frac{1}{p}}$$

 $f_2(z, x) = (\max(0, x - z))^p$

► The empirical estimator is

$$\theta^{(n)}[X] = \min_{z \in \mathbb{R}} \left\{ z + c \left[\frac{1}{n} \sum_{i=1}^{n} \left(\max(0, X_i - z) \right)^p \right]^{\frac{1}{p}} \right\}$$

► The kernel estimator is

$$\theta_K^{(n)}[X] = \min_{z \in \mathbb{R}} \left\{ z + c \left[\frac{1}{n} \sum_{i=1}^n \int (\max(0, x - z))^p \frac{1}{h_n} K\left(\frac{x - X_i}{h_n}\right) dx \right]^{\frac{1}{p}} \right\}$$

Framework

We define:

$$ar{f_j}(\eta_j) = \int_{\mathcal{X}} f_j(\eta_j, x) P(dx), \quad j = 1, \dots, k,$$

$$\mu_{k+1} = \int_{\mathcal{X}} f_{k+1}(x) P(dx), \quad \mu_j = ar{f_j}(\mu_{j+1}), \quad j = 1, \dots, k.$$

 $I_j \subset \mathbb{R}^{m_j}$ are compact sets such that $\mu_{j+1} \in \operatorname{int}(I_j)$, $j=1,\ldots,k$. $\mathcal{H} = \mathcal{C}_1(I_1) \times \mathcal{C}_{m_1}(I_2) \times \ldots \mathcal{C}_{m_{l-1}}(I_k) \times \mathbb{R}^{m_k}$, where $\mathcal{C}_{m_{j-1}}(I_j)$ is the space of continuous functions on I_j with values in $\mathbb{R}^{m_{j-1}}$. Hadamard directional derivatives of $f_i(\cdot,x)$ at μ_{i+1} in directions ζ_{i+1} :

$$f'_{j}(\mu_{j+1}, x; \zeta_{j+1}) = \lim_{\substack{t\downarrow 0 \ \zeta \neq t}} \frac{1}{t} [f_{j}(\mu_{j+1} + ts, x) - f_{j}(\mu_{j+1}, x)].$$

For every direction $d = (d_1, \dots, d_k, d_{k+1}) \in \mathcal{H}$, we define recursively the sequence of vectors:

$$\xi_{k+1}(d)=d_{k+1},$$

$$\xi_j(d) = \int_{\mathcal{X}} f'_j(\mu_{j+1}, x; \xi_{j+1}(d)) P(dx) + d_j(\mu_{j+1}), \quad j = k, k-1, \ldots, 1.$$

Strong Law of the Large Numbers for Composite Risk Functionals

Let $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$ be a collection of functions $f_{\theta}(x) = f(\theta, x)$:

- $ightharpoonup f_{\theta}(\cdot)$ are measurable and bounded by integrable envolope function;
- ▶ the index set / is compact metric set;
- $ightharpoonup f(\cdot,x)$ is continuous for any x.

Then \mathcal{F} is Glinvenko-Cantelli class, i.e. $\sup_{\theta \in \Theta} |P_n f - Pf| \xrightarrow{a.s.} 0$

Assumptions for the estimated composite functional:

- a1. The functions $f_j(\eta_j,\cdot)$, $f_{k+1}(\cdot)$ are measurable, continuous and uniformly bounded for all $\eta_j \in I_j$ $j=1,\cdots,k$ by a measurable function.
- a2. For all $x \in \mathcal{X}$, $f_i(\cdot, x)$, are continuous on I_i .
- a3. The bandwidth $h_n \to 0$ when $n \to \infty$.

Then
$$\varrho_K^{(n)}(X) \xrightarrow{a.s.} \varrho$$
.

SSLN for composite risk functionas as optimal values

$$\theta(X) = \min_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)]) \quad S(X) = \operatorname{argmin}_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)])$$

Assumptions:

- **b1**. The function $f_1(\cdot, \cdot)$ is continuous.
- b2. The functions $f_1(\eta, \cdot)$ and $f_2(z, \cdot)$ are measurable and uniformly bounded for all $\eta \in I$ and all $z \in Z$ by a measurable function.
- b3. Let the bandwidth $h_n \to 0$ when $n \to \infty$.

Then the SLLN for the optimal value holds, i.e. $\theta_K^{(n)} \xrightarrow{a.s.} \theta$ as $n \to \infty$. Additionally, $\mathbb{D}(\mathcal{S}_K^{(n)}, \mathcal{S}) \to 0$ w.p.1. as $n \to \infty$. If the optimal solution is unique, then $\mathbb{H}(\mathcal{S}_K^{(n)}, \mathcal{S}) \to 0$.

The distance $\mathbb{D}(A, B)$ denotes the deviation of the set A from set B, and $\mathbb{H}(A, B)$ stands for the Hausdorff distance between sets A and B.

SLLN for optimized composite risk functionals

$$\begin{split} \vartheta(X) &= \min_{u \in U} \varrho(u, X) \quad \mathcal{S}(X) = \operatorname{argmin}_{u \in U} \varrho(u, X) \\ \varrho(u, X) &= \mathbb{E} \left[f_1 \left(u, \mathbb{E} [f_2(u, \mathbb{E} [\dots f_k(u, \mathbb{E} [f_{k+1}(u, X)], X)], X)], X) \right] \right] \end{split}$$

Assumptions:

- c1. The functions f_i , $j = 1, \dots, k$ are continuous;
- c2. The functions $f_j(u, \eta, \cdot)$ are measurable and uniformly bounded for all $\eta_i \in I_i$ by a measurable function.
- c3. The bandwidth $h_n \to 0$ when $n \to \infty$.

Then $\vartheta_K^{(n)} \xrightarrow{a.s.} \varrho$. If the optimal solution is unique, then $\mathbb{D}(\mathcal{S}_K^{(n)}, \mathcal{S}) \to 0$.

Uniform Central Limit Theorems for smoothed processes

A1. The class

$$\mathcal{F} = \{ f(\eta, x) = [f_1(\eta_1, x), f_2(\eta_2, x), \cdots, f_k(\eta_k, x), f_{k+1}(x)]^\top : \\ \eta = (\eta_1, \dots, \eta_k) \in I \}$$

is a subset of a translation invariant class $\tilde{\mathcal{F}}$, i.e., $f(\eta, \cdot + y) \in \tilde{\mathcal{F}}$ for all $y \in \mathbb{R}^d$.

- A2. $\{\mu_n\}_{n=1}^{\infty}$ is a proper approximated convolution identity: sequence of finite signed Borel measures which converge weakly to the point mass δ_0 , and for every a>0, $\lim_{n\to\infty}|\mu_n|(\mathbb{R}^M\setminus[-a,a]^M)=0$
 - $\mu_n(\mathbb{R}^M) = 1$;
 - for all n, for all $f \in \mathcal{F}$, $f(\eta, \cdot + y)$ is μ_n integrable;
 - $\int_{\mathbb{R}^M} \|f(\eta, \cdot y)\|_{2, \mathbb{P}} d\mu_n(y) < \infty$ for all $f(\eta, \cdot) \in \mathcal{F}$.

A3.
$$\sup_{\mathcal{F}} \mathbb{E} \left(\int_{\mathbb{R}^M} (f(\eta, X + y) - f(\eta, X)) d\mu_n(y) \right)^2 \xrightarrow{n \to \infty} 0$$

A4.
$$\sup_{\mathcal{F}} \sqrt{n} \Big| \mathbb{E} \int_{\mathbb{R}^M} (f(\eta, X + y) - f(\eta, X)) d\mu_n(y) \Big| \xrightarrow{n \to \infty} 0$$

Central Limit Theorems for composite risk functionals

Assume A1. A3. and A4.

- A'2. The symmetric kernel K is of order two or higher and satisfies regularity assumptions and the bandwidth $h_n \to 0$ when $n \to \infty$;
- A5. For all $x \in \mathcal{X}$, the functions $f_j(\cdot, x)$, $j = 1, \dots, k$, are Lipschitz continuous with square-integrable Lipschitz constant and Hadamard directionally differentiable;

Then $\sqrt{n}[\varrho^{(n)}-\varrho] \xrightarrow{\mathcal{D}} \xi_1(W)$, where $W(\cdot)=(W_1(\cdot),\ldots,W_k(\cdot),W_{k+1})$ is a zero-mean Brownian process on I; $W_j(\cdot)$ is a Brownian process of dimension m_{j-1} on I_j , $j=1,\ldots,k$, and W_{k+1} is an m_k -dimensional normal vector.

$$cov [W_{i}(\eta_{i}), W_{j}(\eta_{j})] = \int_{\mathcal{X}} [f_{i}(\eta_{i}, x) - \bar{f}_{i}(\eta_{i})] [f_{j}(\eta_{j}, x) - \bar{f}_{j}(\eta_{j})]^{\top} P(dx),
\eta_{i} \in I_{i}, \ \eta_{j} \in I_{j}, \ i, j = 1, ..., k,
cov [W_{i}(\eta_{i}), W_{k+1}] = \int_{\mathcal{X}} [f_{i}(\eta_{i}, x) - \bar{f}_{i}(\eta_{i})] [f_{k+1}(x) - \mu_{k+1}]^{\top} P(dx),
\eta_{i} \in I_{i}, \ i = 1, ..., k,
cov [W_{k+1}, W_{k+1}] = \int_{\mathcal{X}} [f_{k+1}(x) - \mu_{k+1}] [f_{k+1}(x) - \mu_{k+1}]^{\top} P(dx).$$

Semi-deviations continued

The limiting random variable

$$\xi_{1}(W) = V_{1} + \frac{\kappa}{p} \left(\mathbb{E}\left\{ \left[\max\{0, X - \mathbb{E}[X]\} \right]^{p} \right\} \right)^{\frac{1-p}{p}} \times \left(V_{2} - p \mathbb{E}\left\{ \left[\max\{0, X - \mathbb{E}[X]\} \right]^{p-1} \right\} V_{1} \right).$$

Here V_1 and V_2 are normal random variables ($V_2 = W_2(\mathbb{E}[X])$) and

$$\begin{split} & \mathsf{Var}\big[V_1\big] = \mathsf{Var}[X], \\ & \mathsf{Var}[V_2] = \mathbb{E}\Big\{ \Big(\big[\max\{0, X - \mathbb{E}[X]\} \big]^\rho - \mathbb{E}\big(\big[\max\{0, X - \mathbb{E}[X]\} \big]^\rho \big) \Big)^2 \Big\}, \\ & \mathsf{cov}[V_2, V_1] = \\ & \mathbb{E}\Big\{ \Big(\big[\max\{0, X - \mathbb{E}[X]\} \big]^\rho - \mathbb{E}\big(\big[\max\{0, X - \mathbb{E}[X]\} \big]^\rho \big) \Big) \Big(X - \mathbb{E}[X] \Big) \Big\}. \end{split}$$

If p = 1 the limit distribution may be obtained in a different way.

Risk functionals as optimal values

Composite risk functional of the higher order risk measures

$$\theta[X] = \min_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)]), \quad U \subset \mathbb{R}^d$$
 is a nonempty compact set.

The class $\mathcal{F} = \{f(u, x) = [f_1(u, x), f_2(u, x)]^\top : u \in U\}$ Assume that A1, A2. (or A'2), A3, A4 are satisfied.

- C1. The function $f_1(u,\cdot)$ is differentiable $\forall u \in U$, and both $f_1(\cdot,\cdot)$ and its derivative w.r.t. the second argument, $\nabla f_1(\cdot,\cdot)$, are jointly continuous;
- C2. $f_2(\cdot,x)$ is Lipschitz-continuous with a square-integrable Lipschitz constant.

Then
$$\sqrt{n} [\theta_K^{(n)} - \theta] \xrightarrow{\mathcal{D}} \min_{u \in \hat{U}} \langle \nabla f_1(u, \mathbb{E}[f_2(u, X)]), W(u) \rangle$$
, where

W(u) is a zero-mean Brownian process on U with the covariance function

$$\begin{aligned} \text{cov}\big[W(u'),W(u'')\big] &= \\ &\int_{\mathcal{X}} \big(f_2(u',x) - \mathbb{E}[f_2(u',X)]\big) \big(f_2(u'',x) - \mathbb{E}[f_2(u'',X)]\big)^\top P(dx). \end{aligned}$$

Optimized Composite Risk Functionals

$$\varrho(u,X) = \mathbb{E}\Big[f_1\Big(u,\mathbb{E}\big[f_2\big(u,\mathbb{E}[\cdots f_k(u,\mathbb{E}[f_{k+1}(u,X)],X)]\cdots,X\big)\big],X\Big)\Big]$$
$$\vartheta(X) = \min_{u \in U} \varrho(u,X)$$

Assumptions in addition to A1-A4:

- D1. The optimal solution \hat{u} of this problem is unique;
- D2. Compact sets I_1, \ldots, I_k are selected so that $\operatorname{int}(I_k) \supset \overline{f}_{k+1}(U)$, and $\operatorname{int}(I_i) \supset \overline{f}_{i+1}(U, I_{i+1}), j = 1, \ldots, k-1$.
- D3. The functions $f_j(\cdot,\cdot,x)$, $j=1,\ldots,k$, and $f_{k+1}(\cdot,x)$ are Lipschitz continuous for every $x\in\mathcal{X}$ with square integrable Lipschitz constants.
- D4. The functions $f_j(u,\cdot,x)$, $j=1,\ldots,k$, are continuously differentiable for every $x\in\mathcal{X}$, $u\in U$; their derivatives are continuous with respect to the first two arguments.

Central Limit Theorem for the optimized risk functional

It holds

$$\sqrt{n} [\vartheta^{(n)} - \vartheta] \xrightarrow{\mathcal{D}} \xi_1(\hat{u}, W),$$

 $W(\cdot) = (W_1(\cdot), \ldots, W_k(\cdot), W_{k+1})$ is a zero-mean Brownian process on $I = I_1 \times I_2 \times \cdots \times I_k$; $W_j(\cdot)$ is a Brownian process of dimension m_{j-1} on I_j , $j = 1, \ldots, k$, and W_{k+1} is an m_k -dimensional normal vector. The covariance function of $W(\cdot)$ has the form

$$\begin{split} & \text{cov} \big[W_i(\eta_i), W_j(\eta_j) \big] = \\ & \int_{\mathcal{X}} \big[f_i(\hat{u}, \eta_i, x) - \bar{f}_i(\hat{u}, \eta_i) \big] \big[f_j(\hat{u}, \eta_j, x) - \bar{f}_j(\hat{u}, \eta_j) \big]^\top \ P(dx), \\ & \eta_i \in I_i, \ \eta_j \in I_j, \ i, j = 1, \dots, k \\ & \text{cov} \big[W_i(\eta_i), W_{k+1} \big] = \\ & \int_{\mathcal{X}} \big[f_i(\hat{u}, \eta_i, x) - \bar{f}_i(\hat{u}, \eta_i) \big] \big[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \big]^\top \ P(dx), \\ & \eta_i \in I_i, \ i = 1, \dots, k \\ & \text{cov} \big[W_{k+1}, W_{k+1} \big] = \\ & \int_{\mathcal{X}} \big[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \big] \big[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \big]^\top \ P(dx). \end{split}$$

Optimization problems with mean-semideviation

$$\min_{u \in U} \varrho(\varphi(u, X)) = \mathbb{E}(\varphi(u, X)) + \kappa \Big(\mathbb{E}[(\varphi(u, X) - \mathbb{E}[\varphi(u, X)])^p]\Big)^{\frac{1}{p}}\Big],$$

where $\varphi : \mathbb{R}^d \times \mathcal{X} \to \mathbb{R}$. We have

$$\begin{split} f_1(\eta_1, u, x) &= \kappa \eta_1^{\frac{1}{\rho}} + \varphi(u, x), \\ f_2(\eta_2, u, x) &= \big\{ \big[\max\{0, \varphi(u, x) - \eta_2\} \big]^{\rho} \big\}, \\ f_3(u, x) &= \varphi(u, x), \end{split}$$

and

$$\begin{split} & \bar{f}_1(\eta_1, u) = \kappa \eta_1^{\frac{1}{p}} + \mathbb{E}[\varphi(u, X)], \\ & \bar{f}_2(\eta_2, u) = \mathbb{E}\big\{\big[\max\{0, \varphi(u, X) - \eta_2\}\big]^p\big\}, \\ & \bar{f}_3(u) = \mathbb{E}[\varphi(u, X)]. \end{split}$$

We assume that p>1 and \hat{u} is the unique solution of the problem.

Optimization problems with mean-semideviation continued

We set $\mu_3 = \mathbb{E}[\varphi(\hat{u}, X)]$. Then $\mu_2 = \mathbb{E}\{\left[\max\{0, \varphi(\hat{u}, X) - \mathbb{E}[\varphi(\hat{u}, X)]\}\right]^p\}$ and $\mu_1 = \varrho(X)$. The limiting element

$$\xi_{2}(d) = \bar{f}'_{2}(\mu_{3}, \hat{u}; d_{3}) + d_{2}(\mu_{3}) = -p\mathbb{E}\left\{\left[\max\{0, \varphi(\hat{u}, X) - \mu_{3}\}\right]^{p-1}\right\} d_{3} + d_{2}(\mu_{3}),$$

$$\xi_{1}(d) = \bar{f}'_{1}(\mu_{2}, \hat{u}; \xi_{2}(d)) + d_{1}(\mu_{2}) = \frac{\kappa}{p} \mu_{2}^{\frac{1}{p}-1} \xi_{2}(d) + d_{1}(\mu_{2}).$$

The limiting element is

$$\begin{split} V_1 + \frac{\kappa}{\rho} \Big(\mathbb{E} \big\{ \big[\max\{0, \varphi(\hat{u}, X) - \mathbb{E}[\varphi(\hat{u}, X)]\} \big]^{\rho} \big\} \Big)^{\frac{1-\rho}{\rho}} \times \\ \Big(V_2 - \rho \mathbb{E} \big\{ \big[\max\{0, \varphi(\hat{u}, X) - \mathbb{E}[\varphi(\hat{u}, X)]\} \big]^{\rho-1} \big\} V_1 \Big). \end{split}$$

The normal random variables V_1 and V_2 have variances:

$$\begin{split} \mathsf{Var}(V_1) &= \mathsf{Var}\big(\varphi(\hat{u},X)\big); \\ \mathsf{Var}(V_2) &= \mathbb{E}\Big\{ \Big(\big[\max\{0,\varphi(\hat{u},X) - \mathbb{E}[\varphi(\hat{u},X)]\} \big]^p - \\ &\mathbb{E}\big(\big[\max\{0,\varphi(\hat{u},X) - \mathbb{E}[\varphi(\hat{u},X)]\} \big]^p \big) \Big) \Big(\varphi(\hat{u},X) - \mathbb{E}[\varphi(\hat{u},X)] \Big) \Big\}. \end{split}$$

Numerical comparison of the two estimators

Consider the higher order inverse risk measure

$$\theta(X) = \min_{u \in \mathbb{R}} \{u + c \| \max(0, X - u)\|_p \}$$

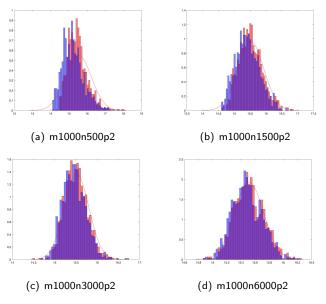
Uniform kernel function $K(u) = \frac{1}{2h_n}$ with support on $|u| \le h_n$.

For p>1, the kernel estimator $\theta_K^{(n)}$ has the form

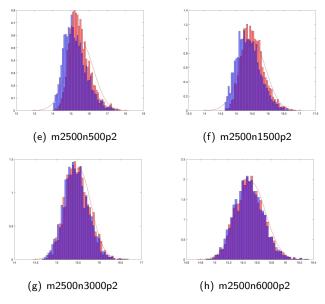
$$\begin{split} \min_{u \in \mathbb{R}} \Big\{ u + c \Big(\frac{1}{n} \sum_{i=1}^{n} \int (\max(0, x - u))^{p} \frac{1}{2h_{n}} \mathbb{I}_{(|x - X_{i}| \le h_{n})} \ dx \Big)^{\frac{1}{p}} \Big\} \\ &= \min_{u \in \mathbb{R}} \Big\{ u + c \Big(\sum_{i=1}^{n} \frac{1}{2n(p+1)h_{n}} \big[(\max(0, h_{n} + X_{i} - u))^{p+1} \\ &- (\max(0, -h_{n} + X_{i} - u))^{p+1} \big] \Big)^{\frac{1}{p}} \Big\} \end{split}$$

We use a sample X_i , $i=1,\ldots,n$ from $X \sim N(10,3)$ and set p=2. Recall that $\text{BIAS}=\mathbb{E}(\theta^{(n)})-\theta$ and $\text{VARIANCE}=\mathbb{E}[\theta^{(n)}-\mathbb{E}(\theta^{(n)})]^2$.

Numerical comparison for normal random variables



Numerical comparison for normal random variables



The bias and the variance of the estimators

n	m	K-bias	K-variance	E-bias	E-variance
500	1000	-0.0058	0.2930	-0.2981	0.3816
1500	1000	-0.0241	0.1462	-0.1080	0.1640
3000	1000	-0.0318	0.0795	-0.0456	0.0811
6000	1000	-0.0230	0.0406	-0.0262	0.0408
500	2500	-0.1370	0.2913	-0.3278	0.3561
1500	2500	-0.0405	0.1388	-0.1173	0.1538
3000	2500	-0.0383	0.0789	-0.0600	0.0812
6000	2500	-0.0222	0.0426	-0.0254	0.0428

Conclusion

- Better performance when data size is small by kernel estimation.
- Reduce the bias by kernel estimation.
- Bandwidth of the kernel could be optimized.

The effect of the order and heavier tails

We consider p as parameter, X is normal distribution N(10,3), n=2000 and m=2500.

р	K-bias	K-variance	E-bias	E-variance
1	-0.0019	0.0094	-0.0040	0.0094
1.50	-0.0156	0.0337	-0.0184	0.0338
2.00	-0.0871	0.1207	-0.0910	0.1214
2.5	-0.3481	0.3053	-0.3617	0.3118

T-distribution degrees of freedom 60,8,6,4, mean = 10, n = 4000, m = 2500, p = 2.00

df	K-bias	K-variance	E-bias	E-variance
60	-0.0260	0.0256	-0.0313	0.0259
8	-0.0815	0.2255	-0.0841	0.2260
6	-0.1464	0.4984	-0.1484	0.4989
4	0.4484	2.6820	0.4496	2.6827

Stochastic Dominance Relation

$$\begin{split} \textbf{\textit{X}} \succeq_{\textbf{(2)}} \textbf{\textit{Y}} &\Leftrightarrow \mathbb{E}[(\eta - \textbf{\textit{X}})_{+}] \leq \mathbb{E}[(\eta - \textbf{\textit{Y}})_{+}] \\ &\Leftrightarrow \int_{0}^{\alpha} F^{(-1)}(\textbf{\textit{X}};t) \, dt \geq \int_{0}^{\alpha} F^{(-1)}(\textbf{\textit{Y}};t) \, dt \quad \forall \alpha \in [0,1] \\ &\Leftrightarrow \varrho[\textbf{\textit{X}}] \leq \varrho[\textbf{\textit{Y}}] \quad \forall \varrho \text{ law-invariant coherent risk measures.} \end{split}$$

kth degree Stochastic Dominance (kSD), $k \ge 2$

Test for Stochastic Dominance or order 1 or 2

For $X, Y \in \mathcal{L}_k(\Omega, \mathcal{F}, P)$ with $k \geq 1$, we consider the hypothesis

$$H_0: \ \varrho[X] \leq \varrho[Y] \quad \text{ versus } H_a: \ \varrho[X] > \varrho[Y],$$

where the risk functional ϱ is law-invariant coherent measure of risk. Rejecting H_0 implies that X does not dominate Y in orders m=1 or m=2.

- Step 0. Set i = 1.
- Step 1. Select p_i uniformly distributed in [0,1] and test the hypothesis at level of significance α

$$H_0: \mathsf{AVaR}_{p_i}[X] \leq \mathsf{AVaR}_{p_i}[Y]$$

Step 2. If H_0 is rejected, reject the hypothesis $X \succeq_{(2)} Y$ and stop. If i = N accept $X \succeq_{(2)} Y$, otherwise increase i by one and go to Step 1.

The type I error of this test is asymptotically bounded by α and does not exceed α' for any $\alpha'>\alpha$ and N sufficiently large.

Test for Stochastic Dominance of order k > 2

For
$$X,Y\in\mathcal{L}_k(\Omega,\mathcal{F},P)$$
 with $k\geq 2$, we consider

$$\begin{split} &\theta_k(X) = \min_{z \in \mathbb{R}} \left\{ c \big\| \max(0, z - X) \big\|_k - z \right\} \\ &\varrho_k(X) = \mathbb{E}[X] - \kappa \Big[\mathbb{E} \big[\big(\max\{0, \mathbb{E}[X] - X\} \big)^k \big] \Big]^{\frac{1}{k}} \end{split}$$

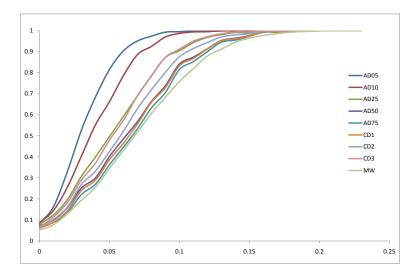
Consistency with higher-order stochastic dominance

If
$$X \succeq_{(k+1)} Y$$
 then $\theta_k(X) \le \theta_k(Y)$ as well as $\varrho_k(X) \le \varrho_k(Y)$.

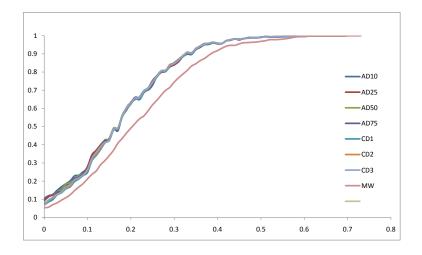
$$H_0: \ \varrho[X] \le \varrho[Y]$$
 versus $H_a: \ \varrho_k[X] > \varrho_k[Y],$
 $H_0: \ \theta_k[X] \le \theta_k[Y]$ versus $H_a: \ \theta_k[X] > \theta_k[Y].$

Rejecting H_0 implies that X does not dominate Y in orders m = 1, ..., k + 1.

Power Comparison: Unif(0,1) vs. Unif(ε , 1 + ε)



Power Comparison: Gamma(2,1) vs. Gamma($2/(1-\varepsilon)$,1- ε)



Multivariate extension

Consider ℓ random variables X^i , $i=1,\ldots,\ell$. and ℓ composite risk functionals for them

$$\varrho_{i}(X^{i}) = \mathbb{E}\left[f_{1}^{i}\left(\mathbb{E}\left[f_{2}^{i}\left(\mathbb{E}\left[\cdots f_{k_{i}}^{i}\left(\mathbb{E}\left[f_{k_{i+1}}\left(X^{i}\right)\right], X^{i}\right)\right]\cdots, X^{i}\right)\right], X^{i}\right)\right]$$

Without loss of generallity, we may assume the same level of nesting.

Multivariate CLT

Setting $Y = (X^1, \dots, X^\ell)^\top$ and assuming analogous conditions, we have

$$\sqrt{n}(\varrho^n - \varrho(Y)) = \sqrt{n} \left[\begin{pmatrix} \varrho_1^{(n)} \\ \vdots \\ \varrho_\ell^{(n)} \end{pmatrix} - \begin{pmatrix} \varrho_1 \\ \vdots \\ \varrho_\ell \end{pmatrix} \right] \xrightarrow{\mathcal{D}} \xi_1(W).$$

For a vector
$$\mathbf{a} \in \mathbb{R}^{\ell}$$

$$\sqrt{n} \, \mathbf{a}^{\top} \left[\begin{pmatrix} \varrho_1^{(n)} \\ \vdots \\ \varrho_\ell^{(n)} \end{pmatrix} - \begin{pmatrix} \varrho_1 \\ \vdots \\ \varrho_\ell \end{pmatrix} \right] \to \mathbf{a}^{\top} \xi_1(W)$$

where $W(\cdot) = (W_1(\cdot), \dots, W(\cdot)_{k+1})$ is a zero-mean Brownian process of appropriate dimension.

Application to Portfolio

Efficiency

Given a set of random variables Q, a random variable $X \in Q$ is efficient under \succeq if there is no $Y \in Q$ such that Y strictly dominates X.

Consider a family of random variables

$$\mathbf{Q} = \left\{ X(u) = u^{\top}R : u \in \mathbb{R}^m, u^{\top}1 = \gamma \right\},\,$$

where the random vector R comprises the return rates of a basket of m securities and u represents a feasible portfolio and u denotes the investment allocation.

Multivariate central limit formula applied to $\varrho[u_1^\top R] - \varrho[u_2^\top R]$ allows for statistical testing of

- ▶ the relation of risk of two given portfolios;
- efficiency of a given portfolio.

A Portfolio Optimization Problem

Assumption $R = (R_1, R_2, ..., R_m)$ has eliptical distribution with expectation μ and covariance matrix Σ .

The lower semi-deviation of second order is

$$\left(\mathbb{E}\big[\max(0,\mathbb{E}(u^{\top}R)-u^{\top}R)^2\big]\right)^{\frac{1}{2}}=\frac{1}{\sqrt{2}}\sqrt{u^{\top}\Sigma u}.$$

The mean-semi-deviation optimization problem becomes

The mean-standard-deviation model

$$\max_{u \in \mathbb{R}^m} \ u^\top \mu - \kappa \sqrt{u^\top \Sigma u} \quad \text{s.t.} \quad u^\top 1 = \gamma \tag{1}$$

Here 1 is the *m*-dimensional vector of ones, $\gamma \in \mathbb{R}$.

Lower Bound for the Cost of Risk κ

Theorem

If problem (1) has an optimal solution, then

$$\kappa^2 > \mu^\top \Sigma^{-1} \mu - \frac{\left(\mu^\top \Sigma^{-1} 1\right)^2}{1^\top \Sigma^{-1} 1} \quad \text{for any } \gamma \neq 0$$

$$\kappa^2 = -\frac{\left(\mu^\top \Sigma^{-1} 1\right)^2}{1^\top \Sigma^{-1} 1} \quad \text{for } \gamma = 0$$
(2)

Denoting the lower bound by κ_0 , problem (1) always has a solution for $\kappa=0$ but has no solution for $\kappa\in(0,\kappa_0]$.

Example

For $\kappa = 0.5$, the existence of optimal solution requires

$$(\mu^T \Sigma^{-1} 1)^2 > 1^T \Sigma^{-1} 1 (\mu^T \Sigma^{-1} \mu - 0.25).$$
 (3)

For 10,000 observations of return data for 200 securities we computed $\bar{r}S^{-1}1=300.0096,\ 1S^{-1}1=11065445,\$ and $\bar{r}S^{-1}\bar{r}=1.4994.$ Substitution of these values into (3) contradicts the inequality. Substitution into (2) gives $\hat{\kappa}_0=1.2212.$ The estimate problem has no solution for any $0<\kappa\leq 1.2212.$

Bounded short positions

Mean-standard-deviation model with bounded allocations

$$\max u^{\top} \mu - \kappa \sqrt{u^{\top} \Sigma u} \quad \text{s.t. } u^{\top} 1 = \gamma \ u \ge \ell. \tag{4}$$

Results

The optimal value ϑ , the optimal solution \hat{u} and the optimal Lagrange multipliers α and λ satisfy the specific optimality conditions implying

$$\begin{split} \kappa^2 &> \langle \mu + \lambda, \Sigma^{-1}(\mu + \lambda) \rangle - \frac{\langle \mu + \lambda, \Sigma^{-1} 1 \rangle^2}{1^\top \Sigma^{-1} 1} & \text{ for any } \gamma \neq 0 \\ \kappa^2 &= \langle \mu + \lambda, \Sigma^{-1}(\mu + \lambda) \rangle - \frac{\langle \mu + \lambda, \Sigma^{-1} 1 \rangle^2}{1^\top \Sigma^{-1} 1} & \text{ for } \gamma = 0. \end{split}$$