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The potential offered by Discrete Mathematics for solving
stochastic integer programs is widely under-exploited




Gordan, Dickson, Maclagan and

Aschenbrenner, Hemmecke, Nash-Williams

Graver

or

» Solution of linear two-stage stochastic (pure)
integer programs

» by successive augmentation of feasible vectors.



Augmentation with Tailored Generating Sets (Bases)

Solve min{f(x) : x € X}.

There is a finite set B containing improving vectors, if any:

Either 3b€ B: xpt1 = xa + b € X, f(Xnt1) < f(xn) Or X, is optimal.

Issues:
1. Tailored Ground Set S
2. Tailored Partial Order T
3. Existence of B — Finite Antichain
4. Computation of B — Critical Pair/Completion (Buchberger)
5. SP Algorithm — Augmentation — scenario-wise !!
6. Bonus: card B “stabilizes” with growing number of scenarios



Issues — IP:

» Ground Set: § := 2"
» Partial Order on Z": uLC v, if

u? v >0 and  |u¥| < |vU)|  for all components .

Commonly said “u reduces v’

» The Set B

Paul Gordan (1837-1912), Leonard Eugene Dickson (1874-1954)

> A sequence {p1, pz, ...} of vectors in Z7 such that p; £ p; for
all i < j is called an ANTICHAIN.

In (Zi, S) there are no antichains of infinite cardinality.




42)

(m,n) «— x"y"



42)

(m,n) «— x"y"

» Every infinite set in Z" has only finitely many <-minimal points.



Augmentation - Test Set = The Promise:
A set 7. C Z" is called a test set
for the family of integer linear programs
(IP)c.» min{cTz: Az=b,zc Z}

as b € R/ varies if

1. ¢t >0 for all t € T, and

2. for every b € R and for every non-optimal feasible solution
29 € 2!} to Az = b, there exists an improving vector t € T¢ such
that zg — t is feasible.

Obviously, 7. must be a subset of the kernel of A.



» Jack Graver: Let A an m X n integer matrix. The set of all
C-minimal points of kerz(A) \ {0} is called Graver Basis
g =36(A)
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G(A) is a test set and can be computed by a finite algorithm.

» normalForm Procedure: While there is some g in a set
G such that g C s do s:=s—g Division with
Remainder

» Completion Algorithm: Yields a set G which contains

G(A).




Algorithm (Computing IP Graver Sets via Completion Procedures)

Input: F= |J {f,—f}, where F(A) is a set of vectors generating

FEF(A)
ker(A) over Z

Output: a set G which contains the IP Graver set G(A).

G:=F
C= U {f+g}
f,.eeG

while C # 0 do
s := an element in C
C:=C\{s}

f := normalForm(s, G)

if £ # 0 then
C=Cu lU{f+g}
geG
G:=GU{f}

return G.

(forming S-vectors)

(adding S-vectors)




Proposition
The above algorithm terminates with a set G containing the IP Graver
Set G(A) for (IP)c,»

IP)cp min{c'z: Az=b, z € 71
, +

Proof (termination) : If f =normalForm(s, G), then there is no g € G such
that

(67,67 )< (F",f).
Hence (g7,g7) £ (f*,f7) for any g € G.
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Proposition
The above algorithm terminates with a set G containing the IP Graver
Set G(A) for (IP)c,»

(IP)c.p min{c’z: Az=b,z€ Z}

Proof (termination) : If f =normalForm(s, G), then there is no g € G such
that

(g".87) < (F,f).
Hence (g7,g7) £ (f*,f7) for any g € G.

In case the algorithm does not terminate, an infinite number of normalForm
computations occurs.

In other words, there exists an infinite sequence in N*" such that a; £ a; for
any i # j. This contradicts te Gordan-Dickson Lemma, hence the algorithm

terminates.



Two-Stage Stochastic Integer Programs

min{cTz: Ayz=b,z € Zi}

A 0 0 0
T W 0 0
Ay=| T 0 W 0
T 0o 0 --- W

with
N denoting the number of scenarios, d = m+ Nn,
Cc = (Co, Cly---y C/\/).r = (h,7r1q, NN ,7qu)T

b= (a&t,... N



A Detail

Lemma
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A Detail

Lemma
(u,v1,...,wn) € ker(Ay) if and only if (u, v1),. .., (u, vn) € ker(Ar).

Conclusions:
> By permuting the v; we do not leave ker(Ay).
> A C-minimal element of ker(Ay) will always be transformed into a
C-minimal element of ker(Ay).

» Thus, a Graver test set vector is transformed into a Graver test set
vector by such a permutation. This leads us to the following definition:

Definition

Let z = (u, v1,..., vn) € ker(An) and call the vectors u, v, ..., vy the
building blocks of z. Denote by Gy the Graver test set associated with
An and collect into Hy all those vectors arising as building blocks of
some z € Gy By Hoo denote the set (Jy_; Hn.




The set H, contains both m-dimensional vectors u associated with
the first-stage and n-dimensional vectors v related to the second-stage
in the stochastic program. For convenience, we will arrange the
vectors in Hoo into pairs (u, V).

Definition
For fixed u € Hoo, all those vectors v € H,, are collected into V,,
for which (u, v) € ker(A7).




Towards Finiteness of H.,

Reduction at pair level:

Definition
We say that (v, Vi) reduces (u, V,), or (v, Viy) C (u, Vy)
for short, if the following conditions are satisfied:
» u' Cu,
» for every v € V, there exists a v/ € V,, with v/ C v,
» ' # 0 or there exist vectors v € V, and v/ € V,, with
0#£Vv Cv.




Monomials Enter

Definition
We associate with (u, V,), u # 0,and with (0, Vo) the monomial ideals

I(u, Vi) € Q[x1, ..., Xom+2n] and 1(0, Vo) € Q[xa,- .., Xx2n]

generated by all the monomials xWHuT VYT with v e V., and by all
the monomials x* ") with v # 0 and v € Vg, respectively.

Ideal:
Z C k[x1,...,xn] is an ideal, if (i) 0 € Z; (ii) If f,g € Z, then f + g € T;
(iii) If f € Z and h € k[x], then hf € T.



Theorem (Maclagan 2001)
Let Z be an infinite collection of monomial ideals in a polynomial ring.
Then there are two ideals /,,J € Z with | C J.

Antichains of monomial ideals
are finite.

Diane Maglagan




Computation of H,

Idea:

> Retain the completion pattern of Graver set computation, but
work with pairs (v, V,,) instead.

» Define the two main ingredients, S-vectors and normalForm, that
means the operations @& and ©, appropriately.

> Now, the objects f, g, and s all are pairs of the form (u, V).

Algorithm (Extended normal form algorithm)

Input: a pair s, a set G of pairs
Output: a normal form of s with respect to G

while there is some g € G such that g Csdo s:=sog

return s




Algorithm (Compute Hoo)

Input: a generating set F of ker(A:1) in (u, V,)-notation to be specified

below

Output: a set G which contains Heo

G:=F
C=U{fog
f,geG

while C # 0 do
s := an element in C

C:=C\{s}

f := normalForm(s, G)

if £ # (0, {0}) then
cC=Ccu U {feg}
geGU{f}
G = GU{f}

return G.

(forming S-vectors)

(adding S-vectors)
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Some more ?

» Graver sets of linear multistage stochastic integer programs,

> Decomposition into finitely many building blocks, independently
on number of scenarios,

» Completion-type of algorithm for computing Graver sets,

> “Theory of Better-Quasi-Orderings” (Nash-Williams) used for
termination proof.




Matthias Aschenbrenner, Raymond Hemmecke:
Finiteness Theorems in Stochastic Integer Programming
Foundations of Computational Mathematics 7 (2007), 183-227.

FINITENESS THEOREMS IN STOCHASTIC INTEGER
PROGRAMMING

MATTHIAS

ENNER AND RAYMOND HEMMECKE

Dedicated to St J. A, Nosh-Wilkam

Antichains of collections
of monomial ideals are
finite.

ConTexts

1 Orderings and Monomial Ideals 4

ic Integer Programming 18

1 Blocks 2




Theorem.

Let S be a collection of monomial ideals in a polynomial ring,
and let M1y, Moy, ... be an infinite sequence of collections of
monomial ideals from S where each M; is closed under
inclusion,

Then M; C M; for some indices i # j.

i.e. no infinite antichain of M;.



