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Rüdiger Schultz (University of Duisburg-Essen)



The potential offered by Discrete Mathematics for solving
stochastic integer programs is widely under-exploited

.



Gordan, Dickson, Maclagan and

Aschenbrenner, Hemmecke, Nash-Williams

Graver

or

I Solution of linear two-stage stochastic (pure)
integer programs

I by successive augmentation of feasible vectors.



Augmentation with Tailored Generating Sets (Bases)

Solve min{f (x) : x ∈ X}.

There is a finite set B containing improving vectors, if any:

Either ∃ b ∈ B : xn+1 := xn + b ∈ X , f (xn+1) < f (xn) or xn is optimal.

Issues:

1. Tailored Ground Set S

2. Tailored Partial Order v

3. Existence of B – Finite Antichain

4. Computation of B – Critical Pair/Completion (Buchberger)

5. SP Algorithm – Augmentation → scenario-wise !!

6. Bonus: card B “stabilizes” with growing number of scenarios



Issues – IP:

I Ground Set: S := Zn

I Partial Order on Zn: u v v , if

u(j) · v (j) ≥ 0 and |u(j)| ≤ |v (j)| for all components j .

Commonly said “u reduces v ’

I The Set B

Paul Gordan (1837-1912), Leonard Eugene Dickson (1874-1954)

I A sequence {p1, p2, . . .} of vectors in Zn
+ such that pi 6≤ pj for

all i < j is called an ANTICHAIN.

In
(
Zn
+,≤

)
there are no antichains of infinite cardinality.



I Every infinite set in Zn
+ has only finitely many ≤-minimal points.



I Every infinite set in Zn
+ has only finitely many ≤-minimal points.



Augmentation - Test Set = The Promise:

A set Tc ⊆ Zn is called a test set
for the family of integer linear programs

(IP)c,b min{cᵀz : Az = b, z ∈ Zn
+}

as b ∈ Rl varies if

1. cᵀt > 0 for all t ∈ Tc , and

2. for every b ∈ Rl and for every non-optimal feasible solution
z0 ∈ Zn

+ to Az = b, there exists an improving vector t ∈ Tc such
that z0 − t is feasible.

Obviously, Tc must be a subset of the kernel of A.



I Jack Graver: Let A an m × n integer matrix. The set of all
v-minimal points of kerZn(A) \ {0} is called Graver Basis
G = G(A)
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G(A) is a test set and can be computed by a finite algorithm.

I normalForm Procedure: While there is some g in a set
G such that g v s do s := s − g Division with
Remainder

I Completion Algorithm: Yields a set G which contains
G(A).



Algorithm (Computing IP Graver Sets via Completion Procedures)

Input: F =
⋃

f∈F (A)
{f ,−f }, where F (A) is a set of vectors generating

ker(A) over Z
Output: a set G which contains the IP Graver set G(A).

G := F
C :=

⋃
f ,g∈G

{f + g} (forming S-vectors)

while C 6= ∅ do
s := an element in C
C := C \ {s}
f := normalForm(s,G)
if f 6= 0 then

C := C ∪
⋃

g∈G
{f + g} (adding S-vectors)

G := G ∪ {f }
return G .



Proposition

The above algorithm terminates with a set G containing the IP Graver
Set G(A) for (IP)c,b

(IP)c,b min{cᵀz : Az = b, z ∈ Zn
+}

Proof (termination) : If f =normalForm(s,G), then there is no g ∈ G such
that

(g+, g−) ≤ (f +, f −).

Hence (g+, g−) 6≤ (f +, f −) for any g ∈ G .

In case the algorithm does not terminate, an infinite number of normalForm
computations occurs.

In other words, there exists an infinite sequence in N2n such that ai 6≤ aj for

any i 6= j . This contradicts te Gordan-Dickson Lemma, hence the algorithm

terminates.
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Two-Stage Stochastic Integer Programs

min{cᵀz : ANz = b, z ∈ Zd
+}

AN :=


A 0 0 · · · 0
T W 0 · · · 0
T 0 W · · · 0
...

...
...

. . .
...

T 0 0 · · · W


with

N denoting the number of scenarios, d = m + Nn,

c = (c0, c1, . . . , cN)
ᵀ := (h, π1q, . . . , πNq)

ᵀ

b = (a, ξ1, . . . , ξN)ᵀ.



A Detail

Lemma

(u, v1, . . . , vN) ∈ ker(AN) if and only if (u, v1), . . . , (u, vN) ∈ ker(A1).

Conclusions:

I By permuting the vi we do not leave ker(AN).

I A v-minimal element of ker(AN) will always be transformed into a
v-minimal element of ker(AN).

I Thus, a Graver test set vector is transformed into a Graver test set
vector by such a permutation. This leads us to the following definition:

Definition

Let z = (u, v1, . . . , vN) ∈ ker(AN) and call the vectors u, v1, . . . , vN the
building blocks of z . Denote by GN the Graver test set associated with
AN and collect into HN all those vectors arising as building blocks of
some z ∈ GN By H∞ denote the set

⋃∞
N=1HN .
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The set H∞ contains both m-dimensional vectors u associated with
the first-stage and n-dimensional vectors v related to the second-stage
in the stochastic program. For convenience, we will arrange the
vectors in H∞ into pairs (u,Vu).

Definition

For fixed u ∈ H∞, all those vectors v ∈ H∞ are collected into Vu

for which (u, v) ∈ ker(A1).



Towards Finiteness of H∞

Reduction at pair level:

Definition

We say that (u′,Vu′) reduces (u,Vu), or (u′,Vu′) v (u,Vu)
for short, if the following conditions are satisfied:

I u′ v u,

I for every v ∈ Vu there exists a v ′ ∈ Vu′ with v ′ v v ,

I u′ 6= 0 or there exist vectors v ∈ Vu and v ′ ∈ Vu′ with
0 6= v ′ v v .



Monomials Enter

Definition

We associate with (u,Vu), u 6= 0,and with (0,V0) the monomial ideals

I (u,Vu) ∈ Q[x1, . . . , x2m+2n] and I (0,V0) ∈ Q[x1, . . . , x2n]

generated by all the monomials x (u+,u−,v+,v−) with v ∈ Vu, and by all

the monomials x (v+,v−) with v 6= 0 and v ∈ V0, respectively.

Ideal:

I ⊆ k[x1, . . . , xn] is an ideal, if (i) 0 ∈ I; (ii) If f , g ∈ I, then f + g ∈ I;
(iii) If f ∈ I and h ∈ k[x], then hf ∈ I.



Theorem (Maclagan 2001)

Let I be an infinite collection of monomial ideals in a polynomial ring.
Then there are two ideals I , , J ∈ I with I ⊆ J.

Antichains of monomial ideals
are finite.

Diane Maglagan



Computation of H∞

Idea:

I Retain the completion pattern of Graver set computation, but
work with pairs (u,Vu) instead.

I Define the two main ingredients, S-vectors and normalForm, that
means the operations ⊕ and 	, appropriately.

I Now, the objects f , g , and s all are pairs of the form (u,Vu).

Algorithm (Extended normal form algorithm)

Input: a pair s, a set G of pairs

Output: a normal form of s with respect to G

while there is some g ∈ G such that g v s do s := s 	 g

return s



Algorithm (Compute H∞)

Input: a generating set F of ker(A1) in (u,Vu)-notation to be specified
below

Output: a set G which contains H∞

G := F
C :=

⋃
f ,g∈G

{f ⊕ g} (forming S-vectors)

while C 6= ∅ do
s := an element in C
C := C \ {s}
f := normalForm(s,G)

if f 6= (0, {0}) then
C := C ∪

⋃
g∈G∪{f }

{f ⊕ g} (adding S-vectors)

G := G ∪ {f }
return G .
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Some more ?

I Graver sets of linear multistage stochastic integer programs,

I Decomposition into finitely many building blocks, independently
on number of scenarios,

I Completion-type of algorithm for computing Graver sets,

I “Theory of Better-Quasi-Orderings” (Nash-Williams) used for
termination proof.
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Matthias Aschenbrenner, Raymond Hemmecke:
Finiteness Theorems in Stochastic Integer Programming
Foundations of Computational Mathematics 7 (2007), 183-227.

Antichains of collections
of monomial ideals are

finite.



Theorem.

Let S be a collection of monomial ideals in a polynomial ring,
and let M1,M2, . . . be an infinite sequence of collections of
monomial ideals from S where each Mi is closed under
inclusion,

(if I ⊆Mi and J ⊆ S is a monomial ideal such that J ⊆ I , then

J ∈Mj)

Then Mi ⊆Mj for some indices i 6= j .

i.e. no infinite antichain of Mi .


