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Definition. (Recio-Mitter) If X is a metric space and E is a subspace of
X ×X, a geodesic motion planning rule (GMPR) on E is a continuous
map s : E → P (X) such that s(x0, x1) is a (minimal) geodesic from x0 to
x1.

Definition. (Recio-Mitter) GC(X) is the smallest k such that
X ×X = E0 t · · · t Ek with a GMPR on each Ei.

Definition. X is geodesic if for all (x0, x1) there exists a geodesic from x0
to x1.
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F (X, 2) = {(x, x′) ∈ X ×X : x′ 6= x}.

F (Rn, 2) is not geodesic. (Linear path (a, a′) to (b, b′) might “collide.”)

Fε(R
n, 2) = {(x, x′) : d(x, x′) ≥ ε} is geodesic and has same homotopy

type as F (Rn, 2). Found explicit geodesics and showed GC = TC.

We introduce “near geodesics” and use it to define and compute GC for
non-geodesic spaces, many with GC=TC, but one with GC = TC + 1.

Under certain conditions, the completion X of a metric space X is
geodesic.
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Definition. Let X be a metric space such that the completion X is
geodesic. The set of points (x0, x1) of X ×X for which there is no
geodesic from x0 to x1 is called the nogeo set of X. If x0 and x1 are in
the nogeo set of X, a near geodesic from x0 to x1 is a map
φ : I → P (X;x0, x1) satisfying

i. φ(0) is a geodesic in X from x0 to x1;

ii. φ((0, 1]) ⊂ P (X;x0, x1);

iii. if sn → 0, then length(φ(sn))→ length(φ(0)).

Definition. If E is contained in the nogeo set of X, a near geodesic
motion planning rule (NGMPR) on E is a continuous map Φ from E to
P (X)I such that, for all (x0, x1) ∈ E, Φ(x0, x1) is a near geodesic from
x0 to x1. The geodesic complexity GC(X) is defined as the smallest k
such that X ×X can be partitioned into ENRs E0, . . . , Ek such that each
Ei has either a GMPR or NGMPR. It is also allowed that Ei be the union
of topologically disjoint sets, of which one has a GMPR and the other a
NGMPR.
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Examples with explicit near geodesics and GC = TC.

1 Rn −Q, Q finite.

2 F (Rn, 2).

3 F (Rn − {x0}, 2).

4 C(Rn, 2).

5 F (Y, 2), Y the Y -graph.

Theorem. If X = F (Rn −Q, 2) with n even and Q a finite subset
containing points q1, q2, q3, q4 such that the segments q1q2 and q3q4
intersect, and no other points of Q are in an expanded disk determined by
these two segments, then GC(X) = 5, while TC(X) = 4.
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Theorem. Let Q be a finite subset of Rn with |Q| ≥ 2, and
X = Rn −Q. Then GC(X) = TC(X) = 2.

Proof. (n even). Let

Ei = {(a, b) : |ab ∩Q| = 0, 1,≥ 2}, i = 0, 1, 2.

Use linear geodesic on E0. On E1 and E2, use

Φ(a, b)(s)(t) = (1− t)a+ tb+ δ(a, b) · s · g(t) · v( a−b
‖a−b‖),

v a unit vector field on Sn−1,
g(t) = sin(πt), 0 ≤ t ≤ 1,
δ(a, b) = 1

2 min(d(ab,Q− ab), 1).

small δ
large δ •

•

•

Therefore GC(X) ≤ 2. We have GC(X) ≥ TC(X) = 2 by cup products.
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Theorem. X = F (Rn −Q, 2), n even, |Q| ≥ 4 implies GC(X) ≤ 5.
Proof. Points of X ×X are ((a, a′), (b, b′)).

Subsets E0, E1, E2, E1,1, E1,2, E2,2. ab and a′b′ don’t collide. Subscripts
are number of points of Q on the two segments.

Subsets C0, C1, C2, C1,1, C1,2, C2,2. Segments collide, but not at a point
of Q. Not collinear.

Y0, Y1, Y2. Segments collide at a point of Q. Subscript is number of
segments containing another point of Q.

L0, L1, L2. Collinear. aa′ and bb′ have opposite orientation.

Have NGMPR or GMPR on each. Can group into six batches of mutually
topologically disjoint subsets.
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Theorem. If X = F (Rn −Q, 2) with Q a finite subset containing points
q1, q2, q3, q4 such that the segments q1q2 and q3q4 intersect, and no other
points of Q are in an expanded disk determined by these two segments,
then GC(X) ≥ 5.

Sketch of proof. One domain with GMPR is the geoset E0. It cannot be
combined with any of our nogeo sets. Will show that
C0 ∪ C1 ∪ C2 ∪ C1,2 ∪ C2,2 cannot be partitioned S1 t S2 t S3 t S4 with
NGMPR on each.

Don Davis (Lehigh University) Geodesic complexity for nongeodesic spaces BIRS-CMO workshop, September, 2020 8 / 13



Theorem. If X = F (Rn −Q, 2) with Q a finite subset containing points
q1, q2, q3, q4 such that the segments q1q2 and q3q4 intersect, and no other
points of Q are in an expanded disk determined by these two segments,
then GC(X) ≥ 5.

Sketch of proof. One domain with GMPR is the geoset E0. It cannot be
combined with any of our nogeo sets. Will show that
C0 ∪ C1 ∪ C2 ∪ C1,2 ∪ C2,2 cannot be partitioned S1 t S2 t S3 t S4 with
NGMPR on each.

Don Davis (Lehigh University) Geodesic complexity for nongeodesic spaces BIRS-CMO workshop, September, 2020 8 / 13



Let x = ((a, a′), (b, b′)) ∈ S1 with pr1Φ1(x)(1) as shown.

•(1, 1)•

••

an
a(−2, 2)a′

b′b
bn pr1Φ1(x)(1)

Choose xn = ((an, a
′), (bn, b

′))→ x with anbn on side of (−1, 1) opposite
to pr1Φ1(x)(1). If xn ∈ S1, then pr1Φ1(xn)(1)→pr1Φ1(x)(1), so passes
on right of (−1, 1). But homotopy to pr1Φ1(xn)(0) can’t pass through
(−1, 1). Hence xn 6∈ S1.
Infinitely many xn in some Sj . So may say xn1 ∈ S2.
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Consider xn1,n2 = ((an1,n2 , a
′), (bn1,n2 , b

′))→ xn1 with an1,n2bn1,n2

parallel to an1bn2 . May assume all xn1,n2 ∈ Sj . Will show j 6= 2 and
j 6= 1. Then may say xn1,n2 ∈ S3.

Assume j = 2. If an1,n2bn1,n2 passes (1, 1) on side opposite to
pr1Φ2(xn1)(1), then homotopy pr1Φ2(xn1,n2) must pass through (1, 1).

an1,n2

bn1,n2

••

• •

pr1Φ2(xn1)(1)

If j = 1, get contradiction as on previous page, since an1,n2bn1,n2 is very
close to an1bn1 .
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Choose points xn1,n2,m = ((an1,n2 , a
′
m), (bn1,n2 , b

′
m))→ xn1,n2 with a′mb

′
m

passing through (−1, 1) and passing (1,−1) on the side opposite to
pr2Φ3(xn1,n2)(1), and all in the same Sj . If j = 3, since
pr2Φ3(xn1,n2,m)(1) converges uniformly to this, we obtain a contradiction
since the homotopy cannot pass through (−1, 1)

a′m an1,n2

bn1,n2

••

• •
pr2Φ3(xn1,n2)(1)

b′m

If xn1,n2,m ∈ S2, then xn1,n2,n2 → xn1 , and we can get the same
contradiction as before, using pr1Φ2, and similarly we can show j 6= 1.
Therefore, xn1,n2,m ∈ S4.
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By similar methods, we obtain a sequence xn1,n2,m,m′ not in
S1 ∪ S2 ∪ S3 ∪ S4, completing the proof.
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For X = F (Y, 2), X = Y × Y is geodesic, but some geodesics in X
cannot be approximated by paths in X; e.g., from (a, a′) to (b, b′) below.
If instead we use the intrinsic metric dI(x0, x1) defined as the infimum of
lengths of paths from x0 to x1, then the completion is F (Y, 2) ∪ {(v, v)},
path lengths and topologies are preserved, and we have near geodesics. In
this case, the geodesic goes from (a, a′) to (v, v), and then back to (b, b′),
and the near geodesics go slightly beyond (v, v).

•a′

• b′

• b

• a

v
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Thank you!
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