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1 Introduction

The Regularity Method for hypergraphs is a newly emerging technique that grew out of the famous
Regularity Lemma of Szemerédi for graphs [53]. The purpose of this Focused Research Group was to
bring together the experts who developed the Regularity Method for hypergraphs with some other
leading researchers in extremal hypergraph theory, so that all participants could learn the technical
details of the new method, and so that new applications of the method to important extremal
problems in hypergraphs could be found. The workshop was structured in a way that allowed a lot
of informal discussion. Each session was led by a workshop participant, who usually spent some time
giving something like a formal lecture on the session topic, but also strongly encouraged the other
participants to contribute ideas, ask questions and make suggestions. No time limits were imposed
on sessions and each typically lasted several hours.

This report outlines the topics of the discussion sessions, and closes with a short section high-
lighting the main accomplishments of the workshop. The topics are loosely arranged into three
categories. In Section 2 the basics of the Regularity Method are described, Section 3 details some
applications of the method, and in Section 4 other extremal hypergraph problems are discussed, in
particular two Ramsey theoretic questions that were solved at BIRS by the participants working as
a group. Each subsection heading notes the name of the participant who led the session on that
topic. Finally in Section 5 the specific results and accomplishments of the workshop are noted.

2 The Regularity Method

2.1 The regularity lemma for graphs and hypergraphs

2.1.1 The Regularity Lemma for graphs (V. Rödl)

Because it was the inspiration for the new regularity method for hypergraphs, part of a session
was devoted to the regularity lemma for graphs. While proving his famous Density Theorem [52],
E. Szemerédi invented an auxiliary lemma which later proved to be a powerful tool in extremal
graph theory. This lemma and its improved version named the Regularity Lemma [53], assert that
an arbitrary large graph can be approximated by “random-like” graphs.

More precisely, let G = (V, E) be a graph and A, B ⊂ V be a pair of disjoint sets of vertices
of G. Denote by E(A, B) the set of all edges of G between A and B, i.e., E(A, B) =

{
{a, b} ∈

1
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E : a ∈ A, b ∈ B
}

, and let e(A, B) = |E(A, B)|. The density of the pair (A, B) is defined
by d(A, B) = e(A, B)/|A||B|. The pair (A, B) is called ε-regular if for any A′ ⊂ A, B′ ⊂ B with
|A′| ≥ ε|A|, |B′| ≥ ε|B|, we have |d(A, B) − d(A′, B′)| < ε.

Theorem 1 (Szemerédi’s Regularity Lemma [53]) For every ε > 0 and l > 0, there exist
integers L and n0 such that any graph G = (V, E) with n ≥ n0 vertices admits a partition V =
V1 ∪ · · · ∪ Vt, where |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1, l ≤ t ≤ L, and all but at most ε

(
t
2

)
pairs

(Vi, Vj) are ε-regular.

The lemma below and its generalizations are crucial for most applications of the Regularity
Lemma. We refer to the combined use of the Regularity Lemma followed by the Counting Lemma
as The Regularity Method.

Lemma 2 (Counting lemma) For any ν, d > 0, there exists ε > 0 such that the following holds.
Let F be a graph with vertex set {w1, . . . , wk} and let G = (V, E) be a graph and V1, . . . , Vk be
disjoint subsets of V , all of size n. If for every edge {wi, wj} ∈ E(F ) the pair (Vi, Vj) is ε-regular
with density d, then there are (1 ± ν)d|E(F )|nk copies of F in G with wi mapped onto a vertex of Vi

for all 1 ≤ i ≤ k.

To understand this lemma it is best to look at the case in which F is the complete graph Kk.
It is easy to see that if G′ is a k-partite graph, where each partite set has size n, in which edges

between partite sets are generated with probability d, then G′ contains (1 + o(1))d(k

2)nk copies of F .
Lemma 2 says that if G is such that all pairs (Vi, Vj) are ε-regular with density d, then the number
of copies of F in G is about the same as the number of copies in G′. In other words, regularity of
G guarantees “random-like” behaviour in this sense.

2.1.2 The regularity lemma for hypergraphs (V. Rödl and J. Skokan)

Recall that in Szemerédi’s Regularity Lemma the main structure which undergoes regularization is
the edge set of a graph, and the auxiliary structure is a partition of the vertex set. Briefly, the
2-tuples (edges) are regularized with respect to the 1-tuples (vertices).

Unlike the graph case, there are several natural ways to define “regularity” for k-uniform hyper-
graphs. For example,

• for k ≥ 3, if we naturally extend the concept of a regular pair and just regularize the k-tuples
versus 1-tuples, as e.g. in [11, 23, 44], we obtain a weak δ-regularity. Then, one can easily
prove the Regularity Lemma, but the natural analogue to the counting lemma fails to be true.

• A more refined approach is to consider an auxiliary partition of the l-tuples for each l < k
(concept of (δ, 1)-regularity). This was done in [8, 21]. However, there was no attempt to
prove a companion counting statement and it is an open question whether it is even possible.

A breakthrough came when Frankl and Rödl [22] modified hypergraph (δ, 1)-regularity for k = 3 and
developed a concept of (δ, r)-regularity. They succeeded in proving both the regularity lemma

and the counting lemma for the case F = K
(3)
4 , where K

(3)
4 is the complete 3-uniform hypergraph

on 4 vertices. The general 3-uniform hypergraph counting lemma corresponding to Lemma 2 for
graphs was proved later by Nagle and Ródl [42].

Subsequently, the regularity lemma from [22] was extended by Rödl and Skokan [48] to k-uniform
hypergraphs for arbitrary k ≥ 3.

This workshop session discussed in detail all three above concepts of regularity, and the reasons
why the rather complicated concept of (δ, r)-regularity is needed (including counterexamples to the
counting statement for the weak δ-regularity). The speakers also described the statement of the
hypergraph regularity lemma.
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2.2 The counting lemma (J. Skokan)

As noted above, many applications of Szemerédi’s Regularity Lemma for graphs are based on Lemma
2. To generalize this result for k-uniform hypergraphs, we consider the following random environ-
ment:

i) a vertex partition H(1) = V1 ∪ . . . ∪ Vk+1, |V1| = . . . = |Vk+1| = n,

ii) a random (k + 1)-partite graph H(2), the edges of which are generated with probability d2,

iii) a random (k + 1)-partite 3-uniform hypergraph H(3), whose edges are chosen from triangles of
H(2) independently with probability d3, and

iv) for i = 4, . . . , k, a random (k + 1)-partite i-uniform hypergraph H(i), whose edges are chosen

from copies of K
(i−1)
i in H(i−1) independently with probability di.

It is easy to show that under the above assumptions, the number of copies of K
(k)
k+1 in H(k) is

(1 + o(1))

k∏

j=2

d
(k+1

j )
j nk+1, (1)

where o(1) → o as n → ∞. Any counting lemma should show that (1) is also true in the setup
produced by the corresponding regularity lemma for k-uniform hypergraphs.

Guided by the hypergraph regularity lemma of Frankl and Rödl [22], Nagle and Rödl [41] proved
a corresponding counting lemma for 3-uniform hypergraphs

Lemma 3 (Counting lemma for 3-uniform hypergraphs [41]) Let s ≥ 3 be an integer. For
every µ > 0 and d3 ∈ (0, 1] there exists δ > 0 such that for every d2 ∈ (0, 1] there exist ε > 0 and
integers r and m0 such that the following assertion holds.

If G is an s-partite graph with partition V =
⋃s

i=1 Vi, where
∣∣Vi

∣∣ = m > m0 for 1 ≤ i ≤ s, and
H is an s-partite 3-uniform hypergraph with the same partition such that

(1) G is (ε, d2)-regular, and

(2) G underlies H, and H is (δ, d3, r)-regular with respect to G,

then H contains (1 ± µ)d
(s

2)
2 d

(s

3)
3 ms copies of K

(3)
s .

There is hope that the concept of (δ, r)-regularity will allow one to prove a generalization of

Lemma 2 and Lemma 3, at least for F = K
(k)
k+1. This is stated as Conjecture 4 below.

Conjecture 4 (see Conjecture 1.16, p. 6 in [49]) For any ν > 0 and any k ∈ N, the following
is true: ∀dk ∃δk ∀dk−1 ∃δk−1 . . . ∀d2 ∃δ2 ∃r ∈ N such that if H(k) is a k-uniform hypergraph and
{G(l)}k

l=1 is a (δ, d, r)-regular (k + 1, k)-complex, where d = (d2, . . . , dk) and δ = (δ2, . . . , δk), with
G(k) = H(k) ∩ Kk(G(k−1)) and G(1) = W1 ∪ · · · ∪ Wk+1, where |Wi| = n for all i, then H(k) contains
at least

(1 − ν)
k∏

l=2

d
(k+1

l )
l × nk+1

copies of K
(k)
k+1.

For k = 4, Conjecture 4 was proved by Rödl and Skokan (see [49]). The techniques of [42] seem
to be extendible to the counting of arbitrary 4-uniform hypergraphs F . The presentation in this
session provided a detailed proof of Lemma 3 (focusing on s = 4) and outlined the major differences
between this proof and the proof of Conjecture 4 for k = 4.
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2.3 Alternative proof of the counting lemma (Y. Peng)

The proof of the counting lemma (Lemma 3) is rather technical, mostly due to the fact that the
‘quasi-random’ hypergraph arising after applying the regularity lemma of Frankl-Rödl is sparse and
consequently is difficult to handle. Recently, Kohayakawa, Rödl and Skokan [36] found a simpler
proof of the counting lemma in the easier dense case. Their result applies to k-uniform hypergraphs
for arbitrary k.

Lemma 5 [36] Let s ≥ 3 be an integer. For every µ > 0 and every d ∈ (0, 1], there exist δ0 > 0 and
m0 > 0 such that the following holds. If

(1) G is a complete s-partite graph with partition V =
⋃s

i=1 Vi, where
∣∣Vi

∣∣ = m ≥ m0 for 1 ≤ i ≤ s,
and

(2) H is an s-partite 3-uniform hypergraph with the same partition V =
⋃s

i=1 Vi and H is (δ, d, 1)-
regular with respect to G, where δ ≤ δ0,

then H contains (1 ± µ)d(s

3)ms copies of K
(3)
s .

The subject of this session was the paper “Counting small cliques in 3-uniform hypergraphs” by
Peng, Rödl and Skokan [43], where for k = 3, the harder, sparse case is reduced to the dense case.
In particular, it is shown that a ‘dense substructure’ randomly chosen from the ‘sparse δ-regular
structure’ is δ-regular as well. This makes it possible to count the number of cliques (and other
subhypergraphs) using the Kohayakawa-Rödl-Skokan result and provides an alternative proof of the
counting lemma in the sparse case. Since the counting lemma in the dense case applies to k-uniform
hypergraphs for arbitrary k, there is a possibility that the approach of this paper can be adapted to
the general case as well.

2.4 Characterizing Hypergraph Quasi-randomness (B. Nagle)

An important development regarding Szemerédi’s Lemma showed the equivalence between the prop-
erty of ε-regularity of a bipartite graph G and an easily verifiable property concerning the neighbor-
hoods of its vertices [1] (cf. [15]). This characterization of ε-regularity led to an algorithmic version
of Szemerédi’s Lemma [1].

Similar problems were also considered for hypergraphs. In [10], [27] and [36], various descriptions
of quasi-randomness of k-uniform hypergraphs were given. These notions of hypergraph quasi-
randomness coincided with a special case of the quasi-randomness provided by the Frankl-Rödl
Regularity Lemma.

The hypergraph regularity of [22] renders quasi-random “blocks of hyperedges” (i.e. (δ, r)-regular
triads) which are very sparse. This situation leads to technical difficulties in its application. More-
over, as was shown in [13], some easily verifiable conditions analogous to those considered in [10]
and [36] fail to be true in the setting of [22]. However, in [13] and [12], some necessary and suffi-
cient conditions for the Frankl-Rödl notion of hypergraph quasi-randomness were established. These
conditions enabled the design in [12] of an algorithmic version of a hypergraph regularity lemma in
[22].

To understand the above notions it is best to look at the graph analogues. In what follows, we
consider a fixed bipartite graph Γ with bipartition X ∪ Y . For fixed positive constants α and ε, we
assume d(X, Y ) ∼ε α, where by a ∼γ b, we mean (1 + γ)−1 ≤ a/b ≤ 1 + γ. We denote by degΓ(x)
the number of vertices that are neighbors of x in the graph Γ, and by degΓ(x1, x2) the number of
vertices that are neighbors of both x1 and x2 in Γ.

The property of ε-regularity of Γ is a “global” property in the sense that it asserts a fact about
every pair of reasonably large subsets of its vertex classes X and Y . An important development
regarding Szemerédi’s Lemma showed the equivalence between this global regularity property of
Γ and a fairly simple “local” property concerning the neighborhoods of the vertices in X . Given
positive reals α, ε and ε′, consider the following two properties:
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G1 = G1(ε) Γ is ε-regular with density d(X, Y ) ∼ε α.

G2 = G2(ε′) (i) degΓ(x) ∼ε′ α|Y | for all but ε′|X | vertices x ∈ X,

(ii) degΓ(x1, x2) ∼ε′ α2|Y | for all but ε′|X |2 pairs x1, x2 ∈ X.

It was shown in [1] (cf. [15]) that properties G1 and G2 are equivalent in the following sense.

Theorem 6 (Alon, Duke, Lefmann, Rödl, Yuster, [1]) For any ε > 0 there exists ε′ > 0 such
that

G1(ε′) ⇒ G2(ε).

Similarly, for any ε′ > 0, there exists ε > 0 such that

G2(ε) ⇒ G1(ε′).

The equivalence of Properties G1 and G2 tells us that the notion of ε-regularity is equivalent
to a condition concerning uniformity of degrees and codegrees. Since degrees and codegrees concern
only vertices and pairs of vertices, and not large subsets as in the definition of ε-regularity, Property
G2 is a “local” criterion for the regularity of graphs.

As mentioned earlier, the equivalence of Properties G1 and G2 played the crucial role in the
algorithmic version of Szemerédi’s Regularity Lemma in [1].

Theorem 7 (Constructive Regularity Lemma, [1]) For every ε > 0 and every positive integer
k, there exists an integer Q = Q(ε, k) such that every graph G with n > Q vertices admits an ε-
regular partition into t+1 classes for some k < t < Q and such a partition can be found in O(M(n))
sequential time, where M(n) denotes the time needed for the multiplication of two (0, 1) matrices of
size n.

In the hypergraph setting, there is also a natural candidate for the “local” property H2 that
should correspond to the global property H1 of regularity in the Frankl-Rödl sense. However, as
shown in Dementieva, Haxell, Nagle and Rödl [12], unfortunately these two properties are not fully
equivalent. Nevertheless, there is an equivalence in a special case, namely when the regularity
parameter r = 1. This result was discussed in detail during the session.

Despite the inequivalence of properties H1 and H2, in [12], an algorithmic version of a special
case of Frankl and Rödl’s Hypergraph Regularity Lemma was obtained, namely, when r = 1.

Theorem 8 ([12]) Let δ and γ with 0 < γ ≤ 2δ4, integers t0 and `0 and function ε(`) > 0 be given.
Let T0, L0, and N0 be those constants guaranteed by the Frankl-Rödl Regularity Lemma. There
exists a constant k so that, given any 3-uniform hypergraph H ⊆ [N ]3, N ≥ N0, one may in time
O(Nk) find a (δ, 1)-regular, (`, t, γ, ε(`))-partition of H, for some t and ` satisfying t0 ≤ t ≤ T0 and
`0 ≤ ` ≤ L0.

This restricted version of the lemma is still sufficient for some applications, for example for
Theorem 17 described below. Therefore, for such applications, corresponding efficient algorithms
exist.

The following problem attempts to make the Frankl-Rödl regularity lemma fully algorithmic.

Problem 9 Let δ and γ with 0 < γ ≤ 2δ4, integers t0 and `0 and functions ε(`) > 0, and r(t, `)
(integer valued) be given. Let T0, L0, and N0 be those constants guaranteed by the Frankl-Rödl
regularity lemma. Does there exist a constant k so that, given any 3-uniform hypergraph H ⊆ [N ]3,
N ≥ N0, one may in time O(Nk) find a (δ, r(t, `))-regular, (`, t, γ, ε(`))-partition of H, for some t
and ` satisfying t0 ≤ t ≤ T0 and `0 ≤ ` ≤ L0?

The combination of an algorithmic version of the Hypergraph Regularity Lemma and the Count-
ing Lemma would be very helpful in solving many constructive hypergraph problems.



3 APPLICATIONS OF THE REGULARITY METHOD 6

The current algorithmic version of the Hypergraph Regularity Lemma seen in Theorem 8 delivers
only the special case r = 1. As one sees in the hypothesis of the Counting Lemma, however, one
requires r > 1 to apply counting. As such, there is not a direct link between the current Theorem
8 and the Counting Lemma. A positive solution to Problem 9 would allow one to combine an
algorithmic version of the Hypergraph Regularity Lemma with the Counting Lemma.

Very recently, exciting but partial progress on Problem 9 was obtained. It was shown by De-
mentieva, Haxell, Nagle and Rödl that one can indeed combine the current algorithmic version of
the Hypergraph Regularity Lemma seen in Theorem 8 with a form of the Counting Lemma, despite
the fact that Theorem 8 only delivers r = 1. It is hoped that further constructive applications may
now ensue.

3 Applications of the Regularity Method

3.1 Thresholds for Ramsey properties of hypergraphs (M. Schacht)

We denote by G(k)(n, p) the binomial random k-uniform hypergraph with n vertices and edges
occurring independently with probability p = p(n). It is well known that for many interesting
properties P of hypergraphs there exists a critical function p̃ = p̃(n) around which the behaviour of
G(k)(n, p) suddenly changes with respect to P . More precisely, we say p̃ = p̃(n) is a threshold for
the property P if G(k)(n, p) asymptotically almost surely (with probability tending to 1 as n → ∞)
satisfies P if p � p̃ (i.e., p(n)/p̃(n) → ∞ as n → ∞), while G(k)(n, p) asymptotically almost surely
fails to satisfy P for p � p̃.

For two k-uniform hypergraphs G and H we use the arrow notation G → (H)e
r to abbreviate the

following Ramsey type statement: For every r-colouring of the edges of G there exists a monochro-

matic copy of H. Obviously, the property G → (H)e
r is increasing and hence as a consequence of [5] it

has a threshold. The study of the threshold function for the Ramsey property G(2)(n, p) → (H)e
r for

fixed graphs H and fixed integers r was initiated by  Luczak, Ruciński, and Voigt in [38]. In [45, 46],
Rödl and Ruciński solved the problem completely for graphs (k = 2). They proved the following
for graphs H different than forests. For a fixed k-uniform hypergraph H with at least one edge we
define the k-density mk(H) as follows

mk(H) = max{dk(H′) : H′ ⊆ H and eH′ ≥ 1} ,

where dk(H′) is defined as

dk(H′) =

{
eH′−1
vH′−k if eH′ > 1
1

k−1 if eH′ = 1

and eH (vH) denotes the number of edges (vertices) of H.

Theorem 10 (Rödl–Ruciński) For all graphs H with at least one cycle and for all integers r ≥ 2,
there are constants 0 < c < C such that

lim
n→∞

P

(
G

(2)(n, p) → (H)e
r

)
=

{
0 if p ≤ cn−1/m2(H)

1 if p ≥ Cn−1/m2(H)

The proof of Theorem 10 utilises the Szemerédi Regularity Lemma [53], despite the fact that the
result deals with sparse random graphs.

The general problem for k-uniform hypergraphs k > 2 is still wide open. It is conjectured that
Theorem 10 extends naturally to “most” hypergraphs H with 2 replaced by k. (There might be
some class of exceptional hypergraphs similar to forests in the graph case.)

Conjecture 11 For “most” k-uniform hypergraphs H and for all integers r ≥ 2, there are constants
0 < c < C such that

lim
n→∞

P

(
G

(k)(n, p) → (H)e
r

)
=

{
0 if p ≤ cn−1/mk(H)

1 if p ≥ Cn−1/mk(H)
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In [47] Rödl and Ruciński verified Conjecture 11 for r = 2 and H = K
(3)
4 , the complete 3-uniform

hypergraph on four vertices. The proof of that case involves the hypergraph regularity lemma of
Frankl and Rödl [22] for 3-uniform hypergraphs and a corresponding counting lemma which estimates

the number of copies of K
(3)
4 in a regular 4-partite 3-uniform hypergraph (see Section 2). We believe

that the counting tools described in Sections 2.2 and 2.3 ([41] and [43]) combined with the techniques

of [46] can be applied to establish Conjecture 11 for 3-uniform hypergraphs H different from K
(3)
4 .

Moreover, the recent progress in developing the regularity lemma for k-uniform hypergraphs and
the accompanying counting lemmas (see [48, 49]), hopefully, shed light in the study of thresholds
for other Ramsey properties of random k-uniform hypergraphs.

Rödl, Ruciński, and Schacht previously worked on that problem. As a first step they were able
to verify Conjecture 11 for arbitrary k ≥ 2 and r ≥ 2 in the case when H is a k-partite k-uniform
hypergraph.

Theorem 12 (Rödl–Ruciński–Schacht) For all integers k ≥ 2 and r ≥ 2 and every k-uniform
k-partite hypergraphs H with at least one edge, there exists a constant C > 0 such that for every
p = p(n) ≥ Cn−1/mk(H)

lim
n→∞

P

(
G

(k)(n, p) → (H)e
r

)
= 1 .

We discussed their approach in this session of the workshop. In particular, due to a discussion
initiated by  Luczak, we were interested whether this approach could be used to extend Theorem 12
to the corresponding Turán problem.

The Turán problem is a density version of the Ramsey type question. Here we are interested in
the minimum size of a colour class to ensure a monochromatic copy of H. Turán [54] first solved that
problem for complete graphs H in the deterministic setting. Erdős, Stone, and Simonovits [16, 18]
then generalised Turán’s Theorem to arbitrary graphs H.

Theorem 13 (Erdős–Stone–Simonovits) For every graph H and η > 0, there exists an n0 > 1
such that if an n-vertex graph F with n ≥ n0 contains more than

(
1 −

1

(χ(H) − 1)
+ η

) (
n

2

)

edges, where χ(H) is the chromatic number of H, then F contains at least one copy of H.

Theorem 13 can be viewed as a result for subgraphs F of the random graphs G(2)(n, p) with p ≡ 1.
Hence, naturally the question arises for which p = p(n) Theorem 13 remains asymptotically almost
surely (a.a.s.) true for subgraphs F of G(2)(n, p) with

(
n
2

)
replaced by p

(
n
2

)
(the expected number

of edges in the random graph G
(2)(n, p)). It was shown that there exists a threshold for the Turán

property discussed above (see, e.g., [28, Chapter 8]), even though it is not a monotone property. If
p = p(n) is such that the expected number of copies of subgraphs H′ of H in G(2)(n, p) is much
smaller than the expected number of edges of G(2)(n, p), then it is not hard to show that G(2)(n, p)
a.a.s. fails to satisfy the Turán property for H. Conjecture 14 below, first formulated by Kohayakawa,
 Luczak, and Rödl in [32], demonstrates the belief that this is the only obstacle.

Conjecture 14 (Kohayakawa– Luczak–Rödl) For every graph H containing at least one edge
and η > 0, there exists a constant C > 0 such that if p = p(n) ≥ Cn−1/m2(H), then G(2)(n, p) a.a.s.
satisfies the following Turán type property. If F is a subgraph of G(2)(n, p) with more than

(
1 −

1

(χ(H) − 1)
+ η

)
p

(
n

2

)

edges, then F contains at least one copy of H.

So far, there are a few results in support of Conjecture 14. Any result concerning the tree-
universality of expanding graphs, or any simple application of Szemerédi’s regularity lemma for
sparse graphs, gives Conjecture 14 for H a forest. The cases in which H = K3 and H = C4 are
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essentially proved in Frankl and Rödl [20] and Füredi [24], respectively, in connection with problems
concerning the existence of some graphs with certain extremal properties. The case for H = K4 was
proved by Kohayakawa,  Luczak, and Rödl [32] and the case in which H is a general cycle was settled
by Haxell, Kohayakawa, and  Luczak [25, 26] (see also Kohayakawa, Kreuter, and Steger [31]). Very
recently Gerke et al. settled the case H = K5. In [35] and [51] some weaker versions are obtained
for arbitrary l and H = Kl .

Due to the fruitful discussion during the workshop, mentioned earlier, some further progress
towards Conjecture 14 was achieved. Rödl, Ruciński, and Schacht may extend their proof of The-
orem 12 to the corresponding Turán problem. This, e.g., would verify Conjecture 14 for arbitrary
bipartite graphs H.

3.2 Dirac’s theorem for hypergraphs (A. Ruciński)

A substantial amount of research in graph theory continues to concentrate on the existence of
hamiltonian cycles. The following classical theorem of Dirac from 1952 [19] is one of the best known
results in graph theory.

Theorem 15 (Dirac) Every graph with n ≥ 3 vertices and minimum degree at least n/2 contains
a Hamiltonian cycle. Moreover, there is an example showing that this is best possible.

The study of hamiltonian cycles in hypergraphs was initiated by Bermond where, however, a
different definition than the one considered here was introduced. Here, by a Hamiltonian cycle in a
3-uniform hypergraph with n vertices we mean a spanning subhypergraph with n edges that admits
an ordering v1, . . . , vn of the vertices so that all n triples {vi, vi+1, vi+2} (indices modulo n) are
edges of the subhypergraph. Katona and Kierstead [29] proved that for a Hamilton cycle to exist,
it is sufficient that all pairs belong to at least 5n/6 edges. They also suggested that the following
conjecture might be true.

Conjecture 16 Every 3-uniform hypergraph with n ≥ 4 vertices in which every pair of vertices
belongs to at least n/2 edges contains a Hamilton cycle.

The support for this conjecture stems from a construction of an edge-maximal, 3-uniform hyper-
graph with each pair degree at least bn/2c−1, not containing a hamiltonian cycle (see [29, Theorem
3]).

Rödl, Ruciński and Szemerédi have proved an asymptotic version of this conjecture. We say that
a 3-uniform hypergraph H is an (n, γ)-graph if H has n vertices and every pair of vertices belongs
to at least (1/2 + γ)n edges.

Theorem 17 Let γ > 0. Then, for sufficiently large n, every (n, γ)-graph contains a hamiltonian
cycle.

The proof of this Theorem is based on the hypergraph regularity lemma and its accompanying
counting lemma for k = 3 (see Section 2). This proof was the main topic of the session.

During the workshop the three participants continued to work on the stronger version, where γ is
totally eliminated, and are now about to complete the proof of the following extension of Theorem 17.
A 3-uniform hypergraph on n vertices with every pair belonging to at least n/2 edges will be called
a Dirac 3-graph.

Theorem 18 For sufficiently large n, every Dirac 3-graph contains a hamiltonian cycle.

4 Extremal Hypergraph Problems

4.1 Stability and structure in Turán problems (D. Mubayi)

In this session, several extremal problems concerning Turán questions in hypergraphs were discussed.
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4.1.1 Ramsey-Turán problems for hypergraphs.

For an l-graph G, the Turán number ex(n,G) is the maximum number of edges in an n-vertex l-
graph H containing no copy of G. The limit π(G) = limn→∞ ex (n,G)/

(
n
l

)
is known to exist. The

Ramsey-Turán density ρ(G) is defined similarly to π(G) except that we restrict to only those H
with independence number o(n). This definition is motivated by the fact that the densest graphs
without a fixed graph usually have large independence sets; so what happens if we do not allow
large independent sets? A result of Erdős and Sós [17] states that π(G) = ρ(G) as long as G is in
some sense locally dense. Therefore a natural (first) question is whether there exist G for which
ρ(G) < π(G).

Another variant ρ̃(G) proposed in [17] requires the stronger condition that every set of vertices
of H of size at least εn (0 < ε < 1) has density bounded below by some threshold (we omit the
precise formulation). By definition, ρ̃(G) ≤ ρ(G) ≤ π(G) for every G. However, even ρ̃(G) < π(G) is
not known for very many l-graphs G when l > 2.

Let α ∈ (0, 1), l ≥ 2 and let Hn be an l-graph on n vertices. Hn is (α, ξ)-uniform if every ξn
vertices of Hn span (α ± ξ)

(
ξn
l

)
edges. A recent result of Mubayi and Rödl implies the following:

Theorem 19 (Mubayi-Rödl) For all δ̃, there exist δ, r, n0 such that, if n > n0 and Hn is (α, δ)-
uniform, then all but δ̃

(
n
r

)
r-sets of vertices of Hn induce a subsystem that is (α, δ̃)-uniform.

Theorem 19 has important consequences for Ramsey-Turán problems for hypergraphs. In par-
ticular, it allows one to prove a phenomenon similar to supersaturation for Turán problems for
hypergraphs. This could perhaps be the first step of a “Ramsey-Turán” analogue (to hypergraphs)
of the celebrated Erdős-Stone-Simonovits theorem of extremal graph theory.

A slightly weaker version of Theorem 19 was proved independently by Alon, de la Vega, Kannan,
and Karpinski [3]. Their motivation was to obtain an efficient sampling method for approximating
r-dimensional Maximum Constrained Satisfaction Problems. Another application of Theorem 19 is

Theorem 20 Let F be a fixed l-graph, and c > 0. Then there is an n0 and r′ such that: If H is an n
vertex l-graph (n > n0) such that the deletion of any cnl edges of H leaves an l-graph that admits no
homomorphism into F , then there exists H′ ⊂ H on r′ vertices, that also admits no homomorphism
into F .

The special case of Theorem 20 when F is a complete graph was also recently proved by Alon
and Shapira [2]. We hope that Theorem 19 applies more generally to show that global properties of
an l-graph imply some local structure. The following problem was posed during the session.

Problem 21 Find other applications of Theorem 19.

4.1.2 The structure of extremal hypergraphs.

The Turán problem for hypergraphs is one of the oldest unsolved problems in combinatorics. In all
known examples, there exists a 3-graph containing no copy of F with close to ex(n,F) edges with
a reasonable structure. Our goal is to make this statement precise.

Definition 22 A directed hypergraph of rank three is a hypergraph whose edges consist of one ele-
ment sets, ordered two element sets, and three element sets.

Let H be a directed hypergraph of rank three with vertex set {v1, . . . , vh}. Then G is a recursive
blow up of H if the vertices of G can be partitioned into V1 ∪ . . . ∪ Vh and

• if x ∈ Vi, y ∈ Vj , z ∈ Vk, then xyz ∈ G if and only if vivjvk ∈ H
• if x, y ∈ Vi, z ∈ Vj , then xyz ∈ G if and only if (vi, vj) ∈ G
• the construction giving directed edges and triples as above is repeated in Vi if and only if

vi ∈ H.
As an example, the standard construction of a 3-graph with density 5/9 and no copy of K

(3)
4 is

a recursive blow up of H = {(x, y), (y, z), (z, x), {x, y, z}}. This and all other known examples are
motivation for the following
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Conjecture 23 Let F be fixed a 3-graph. Then there exists a directed hypergraph of rank three
H = H(F) and an n0 such that for all ε > 0: there is a 3-graph G on n > n0 vertices

• with density at least π(F) − ε,
• containing no copy of F , and
• G is a recursive blow up of H.

A weaker version of Conjecture 23, obtained by interchanging the quantifiers ∃H, ∀ε, can be proved
by the Hypergraph Regularity Lemma. This was observed during the workshop by Rödl, and
Simonovits.

4.1.3 Cycles in hypergraphs.

The Turán problem for cycles in graphs is notoriously hard. It seems natural to ask the same question
for hypergraphs, but we need a meaningful definition of cycle. There are several possibilities (see,
e.g., Duke [14]), one of which is the following: A t-cycle Ct in a hypergraph is a sequence of t distinct
edges A1, . . . , At, with Ai ∩ Aj 6= ∅ if and only if j = i + 1 (modulo t). For r-graphs, it is now a
natural question to ask for ex(n, Ct).

This definition was also initially motivated by the following question of Erdős: Determine fr(n),
the maximum size of a family of r-sets of an n element set such that whenever A ∩B = C ∩D = ∅,
we have A ∪B 6= C ∪D. When r = 2, this is just ex(n, C4), and probably inspired Erdős’ question.
For 3-graphs the forbidden configuration in Erdős’ problem is a C4.

Theorem 24 (Mubayi-Verstraëte [39]) Let Ct be an r-uniform t-cycle. Then

⌊
t − 1

2

⌋ (
n − 1

r − 1

)
≤ ex(n, Ct) ≤ 3

⌊
t − 1

2

⌋ (
n − 1

r − 1

)
.

Conjecture 25 (Mubayi-Verstraëte) Let Ct be an r-uniform t-cycle. Then, as n → ∞, ex(n, Ct) =
(1 + o(1))

⌊
t−1
2

⌋ (
n−1
r−1

)
.

4.2 Sharp Turán results for 3-uniform hypergraphs (M. Simonovits)

The aim of this session was to discuss two new results in extremal hypergraph theory. In general,
the Turán problem in hypergraphs is very difficult, and so any particular instance that can be solved
is of significant interest.

The following theorem proves a conjecture of Mubayi and Rödl. Here the 3-uniform hypergraph
F3,2 consists of the vertices {a, b, c, d, e} and the triples abc, abd, abe and cde.

Theorem 26 (Füredi, Pikhurko, Simonovits) Let H be a 3-uniform hypergraph with n vertices
that does not contain a copy of F3,2. Then H has at most (4/9 + o(1))

(
n
3

)
triples.

This theorem is best possible, because there exists a hypergraph with (4/9)
(
n
3

)
triples that does

not contain a copy of F3,2. A notable feature of the proof is that it first establishes a stability result
for the problem. In other words, it is first shown that any F3,2-free hypergraph that has close to
(4/9)

(
n
3

)
triples must have a structure that is very close to the extremal example mentioned above.

A second significant fact about this problem is that the extremal hypergraph has two classes of
vertices, canonically joined to each other by triples, but with a high asymmetry: one of the classes is
twice as large as the other. Such asymmetry in non-degenerate hypergraph extremal configurations
is very rare. Surprisingly, similar asymmetric configurations were found for the hypergraph Ramsey
problems that were studied at the workshop (Section 4.3), in several different contexts. It would be
very interesting to understand the reasons for asymmetry in problems where the original conditions
are symmetric.

The second theorem discussed in this session was the analogous result for the Fano plane, proved
by Füredi and Simonovits. In this case the extremal configuration has (3/4)

(
n
3

)
triples.
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4.3 Hypergraph Ramsey numbers for paths (T.  Luczak)

This session focused on Ramsey numbers for paths in graphs and hypergraphs. As defined in Section
3.1, the Ramsey number Rk(H) of a graph H is defined to be the smallest integer m such that every
colouring of the edges of the complete graph Km with k colours contains a monochromatic copy of
H , that is, a copy whose edges are all the same colour. For a 3-uniform hypergraph H the Ramsey

number Rk(H) is defined analogously, for colourings of the complete 3-uniform hypergraph K
(3)
m . It

was proved by Bondy and Erdős [4] that R2(Pn) ≤ 2n− 1 for the path Pn with n vertices, and they
conjectured that R3(Pn) ≤ 4n − 3. A few years ago  Luczak [37] proved an asymptotic version of
this conjecture, using Szemerédi’s regularity lemma for graphs [53]. The aim of this session was to
investigate whether the new regularity method for hypergraphs could be used to exend the classical
Bondy-Erdős result to the much more complex problem of finding R2(P 3

n) asymptotically, where P 3
n

is a hypergraph path with n vertices. There are two natural definitions for a 3-uniform hypergraph
path with vertices v1, . . . , vn: the loose path LP 3

n with triples v1v2v3, v3v4v5, v5v6v7, . . . , vn−2vn−1vn,
and the tight path TP 3

n with triples v1v2v3, v2v3v4, v3v4v5, . . . , vn−2vn−1vn.
This proposal became the subject for a series of sessions involving all seven of the workshop

participants who were present for the first week, who with a great deal of work and discussion
succeeded in solving both of these problems. The value of R2(LP 3

n) is asymptotically 5n/4, while
R(TP 3

n) is asymptotically 4n/3. The arguments turn out to be quite different in the loose and tight
cases, and require different approaches. The loose path argument is simpler and can be solved with
a weaker form of hypergraph regularity, whereas the tight case requires the full force of the new
method. Some of the intermediate results from the proof of Theorem 17 and insights from this work
were key in the solution to the tight path problem. These two results will be joint papers and are
currently being written up by J. Skokan and P. Haxell.

5 Conclusions

Here we highlight some specific accomplishments of the Focused Research Group, with references to
the sections where they are noted in more detail.

• Two new results on hypergraph Ramsey numbers for paths (Section 4.3) were proved by the
seven participants present during the first week of the workshop.

• The progress of Rödl, Ruciński, and Szemerédi on Theorem 18 (Section 3.2) partly took place
during the workshop.

• The progress of Rödl, Ruciński, and Schacht on Conjecture 14 (Section 3.1) was prompted by
suggestions of  Luczak at the workshop.

• progress of Luczak and Simonovits on their joint project on the structure of graphs of large
minimum degree not containing subgraphs from a given family.

• A question posed by  Luczak at the workshop asks for a characterization for the notion of
(γ, δ, r)-graph regularity, which is an essential concept in the definition of the “local” hyper-
graph property H2 (see Section 2.4). During the workshop, Nagle and Rödl found an efficiently
verifiable characterization of (γ, δ, r)-regular graphs.

• The progress on Problem 9 of Dementieva, Haxell, Nagle and Rödl noted in Section 2.4 partly
took place during the workshop.

• Some progress on Conjecture 4 was made (see Section 2.2), with contributions from several
workshop participants. Proving this conjecture now seems quite feasible.
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[45] V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties. In
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