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Abstract

Motivated by the theory of self-duality which provides a variational formulation and resolution for non
self-adjoint partial differential equations [6, 7], we propose new templates for solving large non-symmetric
linear systems. The method consists of combining a new scheme that simultaneously preconditions and
symmetrizes the problem, with various well known iterative methods for solving linear and symmetric
problems. The approach seems to be efficient when dealing with certain ill-conditioned, and highly non-
symmetric systems. To show the efficiency of our method, we compare it to Widlound’s Lanczos method
and some other known iterative methods for non-symmetric systems.

1 Introduction and main results
Many problems in scientific computing lead to systems of linear equations of the form,
Ax = b where A € R"*" is a nonsingular but sparse matrix, and b is a given vector in R", (1)

and various iterative methods have been developed for a fast and efficient resolution of such systems. The
Conjugate Gradient Method (CG) which is the oldest and best known of the nonstationary iterative meth-
ods, is highly effective in solving symmetric positive definite systems. For indefinite matrices, the mini-
mization feature of CG is no longer an option, but the Minimum Residual (MINRES) and the Symmetric
LQ (SYMMLQ) methods are often computational alternatives for CG, since they are applicable to systems
whose coefficient matrices are symmetric but possibly indefinite.

The case of non-symmetric linear systems is more challenging, and again methods such as CGNE, CGNR,
GMRES, BiCG, QMR, CGS, and Bi-CGSTAB have been developed to deal with these situations (see the
survey books [9] and [11]). One approach to deal with the non-symmetric case, consists of reducing the
problem to a symmetric one to which one can apply the above mentioned schemes. The one that is normally
used consists of simply applying CG to the normal equations

AT Az = ATh or AATy =0, == ATy (2)

It is easy to understand and code this approach, and the CGNE and CGNR methods are based on this idea.
However, the convergence analysis of these methods depends closely on the condition number of the matrix
under study. For a general matrix A, the condition number is defined as

K(A) = [IA]] [ A7, (3)
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and in the case where A is positive definite and symmetric, the condition number is then equal to

)\max (A)

K(A) - )\min(A) ’

(4)
where A\pin(A) (resp., Amax(A)) is the smallest (resp., largest) eigenvalue of A). The two expressions can
be very different for non-symmetric matrices, and these are precisely the systems that seem to be the most
pathological from numerical point of view. Going back to the crudely symmetrized system (2), we echo
Greenbaum’s statement [9] that numerical analysts cringe at the thought of solving these normal equations
because the condition number (see below) of the new matrix AT A is the square of the condition number of
the original matrix A.

In this paper, we shall follow a similar approach that consists of symmetrizing the problem so as to be
able to apply CG, MINRES, or SYMMLQ. However, we argue that for a large class of non-symmetric,
ill-conditionned matrices, it is sometimes beneficial to replace problem (1) by one of the form

ATM Az = AT Mb, (5)

where M is a symmetric and positive definite matrix that can be chosen properly so as to obtain good
convergence behavior for CG when it is applied to the resulting symmetric AT M A. This reformulation
should not only be seen as a symmetrization, but also as preconditioning procedure. While it is difficult to
obtain general conditions on M that ensure higher efficiency by minimizing the condition number (A7 M A),
we shall show theoretically and numerically that by choosing M to be either the inverse of the symmetric
part of A, or its resolvent, one can get surprisingly good numerical schemes to solve (1).

The basis of our approach originates from the selfdual variational principle developed in [6, 7] to provide a
variational formulation and resolution for non self-adjoint partial differential equations that do not normally
fit in the standard Euler-Lagrangian theory. Applied to the linear system (1), the new principle yields the
following procedure. Split the matrix A into its symmetric A, (resp., anti-symmetric part A4,)

A=A+ A, (6)

where 1 1
A, = 5(A +AT) and A, := 5(A — AT, (7)
Proposition 1.1 (Selfdual symmetrization) Assume the matriz A is positive definite, i.e., for some § > 0,

(Ax,x) > d|x|? for all x € R™. (8)

The convex continuous functional
I(z) = %(Aa:,x) + %(A;l(b — Ayx),b— Ayx) — (b,x) (9)

then attains its minimum at some T in R™, in such a way that

I(z) = Iieann I(x)=0 (10)

Az = b (11)
Here (z,y) = 2Ty and |z|? = (2, ).
Symmetrization and preconditioning via selfduality: Note that the functional I can be written as
I(z) = %<Ax7x> + (A, A7'b = b,x) + %<A;1b7 b), (12)

where R
A=A, — A A7 A, = ATATI A (13)



By writing that DI(Z) = 0 (DI is the subdifferential of the functional I), one gets the following equivalent
way of solving (1).

If both A € R™*"™ and its symmetric part A are nonsingular, then x is a solution of the equation (1) if and
only if it is a solution of the linear symmetric equation

ATAT Az = (Ay — AJA Az = b— A A7 b = ATAT M. (14)

One can therefore apply to (14) all known iterative methods for symmetric systems to solve the non-

symmetric linear system (1). As mentioned before, the new equation (14) can be seen as a new symmetriza-
tion of problem (1) which also preserves positivity, i.e., AT A7 1A is positive definite if A is. This will then
allow for the use of the Conjugate Gradient Method (CG) for the functional I. More important and less
obvious than the symmetrization effect of fl, is our observation that for a large class of matrices, the conver-
gence behavior of the system (14) is more favorable than the original one. The Conjugate Gradient method
~which can now be applied to the symmetrized matrix A— has the potential of providing an efficient algorithm
for resolving non-symmetric linear systems. We shall call this scheme the Self-Dual Conjugate Gradient for
Non-symmetric matrices and we will refer to it as SD-CGN.
As mentioned above, the convergence analysis of this method depends closely on the condition number /{(/1)
of A = ATA;'A. We observe in section 2.3 that for a large class of ill-conditioned matrices, x(A) may
be very small and hence SD-CGN can be very efficient. In other words, the inverse C' of AT A1 can be
an efficient preconditioning matrix, in spite of the additional cost involved in finding the inverse of A,.
Moreover, the efficiency of C' seems to surprisingly improve in many cases as the norm of the anti-symmetric
part gets larger (Proposition 2.2). A typical example is when the anti-symmetric matrix A, is a multiple
of the symplectic matrix J (i.e. JJ* = —J? = I). Consider then a matrix A. = A, + 1J which has an
arbitrarily large anti-symmetric part. One can show that

K(Ae) < K(As) + € Amax(4s)?, (15)

which means that the larger the anti-symmetric part, the smaller our upper bound for x(A,) and consequently
the more efficient is our proposed selfdual preconditioning. Needless to say that this method is of practical
interest only when the equation A,z = d can be solved with less computational effort than the original
system, which is not always the case.

Now the relevance of this approach stems from the fact that non-symmetric Krylov subspace solvers are
costly since they require the storage of previously calculated vectors. It is however worth noting that Concus
and Golub [3] and Widlund [15] have also proposed another way to combine CG with a preconditioning
using the symmetric part A,, which does not need this extended storage. Their method has essentially the
same cost per iteration as the preconditioning with the inverse of AT A that we propose for SD-CGN and
both schemes converge to the solution in at most N iterations.

Iterated preconditioning: Another way to see the relevance of Ay as a preconditioner, is by noting that
the convergence of “simple iteration”
Asz = —AgZi—1 +0 (16)

applied to the decomposition of A into its symmetric and anti-symmetric parts, requires that the spectral
radius p(I — A;1A) = p(A;1A,) < 1. By multiplying (16) by A7 !, we see that this is equivalent to the
process of applying simple iteration to the original system (1) conditioned by A;?, i.e., to the system

A7 Az = A7, (17)
On the other hand, “simple iteration” applied to the decomposition of A into A, and A AT A, is given by
Agzp = AgA; M Ageg 1 +b— A AT, (18)

Its convergence is controlled by p(I — A7'A) = p((A7'A4)?) = p(A;'A,)? which is strictly less than
p(A;1A,), ie., an improvement when the latter is strictly less than one, which the mode in which we have
convergence. In other words, the linear system (14) can still be preconditioned one more time as follows:



If both A € R™*™ and its symmetric part As are nonsingular, then x is a solution of the equation (1) if and
only if it is a solution of the linear symmetric equation

Az = A7TATAT Ae = [T — (A7PAL)?|le = (I — ASP A AT D = AJTAT AT . (19)

Note however that with this last formulation, one has to deal with the potential loss of positivity for the
matrix A.

Anti-symmetry in transport problems: Numerical experiments on standard linear ODEs (Example 3.1)
and PDEs (Example 3.2), show the efficiency of SD-CGN for non-selfadjoint equations. Roughly speeking,
discretization of differential equations normally leads to a symmetric component coming from the Laplace
operator, while the discretization of the non-self-adjoint part leads to the anti-symmetric part of the coeffi-
cient matrix. As such, the symmetric part of the matrix is of order O(#)7 while the anti-symmetric part is
of order O(3), where h is the step size. The coefficient matrix A in the original system (1) is therefore an
O(h) perturbation of its symmetric part. However, for the new system (14) we have roughly

1 1 1 1
)= 0()0(A)0(;) = O(5) -

A=A, — A ATTA, =
£ S O( h h

o), (20)
making the matrix A an O(1) perturbation of A, and therefore a matrix of the form A, + al becomes a
natural candidate to precondition the new system (14).

Resolvents of A; as preconditioners: One may therefore consider preconditioned equations of the form
ATMAx = AT Mb, where M is of the form

My = (aAs+ (1—a))" or  Ny=BA; +(1-p), (21)

for some 0 < «, # € R, and where [ is the unit matrix.
Note that we obviously recover (2) when o = 0, and (14) when o = 1. As o — 0 the matrix ad; + (1 — )l
becomes easier to invert, but the matrix

Ao =AT @A+ (1 —a)I)tA (22)

may become more ill conditioned, eventually leading (for o = 0) to AT Az = ATb. There is therefore a
trade-off between the efficiency of CG for the system (5) and the condition number of the inner matrix
aAs + (1 — a)l, and so by an appropriate choice of the parameter o we may minimize the cost of finding a
solution for the system (1). In the case where Ay is positive definite, one can choose —and it is sometimes
preferable as shown in example (3.4)- a > 1, as long as a < ﬁ, where A5 is the smallest eigenvalue
of A,. Moreover, in the case where the matrix A is not positivrgmdeﬁnite or if its symmetric part is not
invertible, one may take o small enough, so that the matrix M, (and hence A; ) becomes positive definite,
and therefore making CG applicable (See example 3.4). Similarly, the matrix Ng = BA; '+ (1 — )1 provides

another choice for the matrix M in (5), for g < % where A2

max

we may choose « close to zero to make the matrix Ng positive definite. As we will see in the last section,
appropriate choices of 3, can lead to better convergence of CG for equation (5).
One can also combine both effects by considering matrices of the form

is the largest eigenvalue of A;. Again

Lag = (@A + (1 —a)I) " + 41, (23)

as is done in example (3.4).
We also note that the matrices M/, := (aA} + (1 — a)I)~" and Nj := B(A})~" + (1 — B)I can be other
options for the matrix M, where A/ is a suitable approximation of Ay, chosen is such a way that M/ q and
N éq can be relatively easier to compute for any given vector gq.
Finally, we observe that the above reasoning applies to any decomposition A = B + C' of the non-singular
matrix A € R"*" where B and (B—C) are both invertible. In this case, B(B—C)~! can be a preconditioner
for the equation (1). Indeed, since B — CB~!C = (B — C)B~!A, z is a solution of (1) if and only of it is a
solution of the system

(B—C)B'Axr=(B-CB 'C)xr=b—-CB'b. (24)



In the next section, we shall describe a general framework based on the ideas explained above for the use
of iterative methods for solving non-symmetric linear systems. In section 3 we present various numerical
experiments to test the effectiveness of the proposed methods.

2 Selfdual methods for non-symmetric systems

By selfdual methods we mean the ones that consist of first associating to problem (1) the equivalent system
(5) with appropriate choices of M, then exploiting the symmetry of the new system by using the various
existing iterative methods for symmetric systems such as CG, MINRES, and SYMMLQ), leading eventually
to the solution of the original problem (1). In the case where the matrix M is positive definite and symmetric,
one can then use CG on the equivalent system (5). This scheme (SD-CGN) is illustrated in Table (1) below,
in the case where the matrix M is chosen to be the inverse of the symmetric part of A. If M is not positive
definite, then one can use MINRES (or SYMMLQ) to solve the system (14). We will then refer to them as
SD-MINRESN (i.e., Self-Dual MINRES for Nonsymmetric linear equations).

2.1 Exact methods

In each iteration of CG, MINRES, or SYMMLQ), one needs to compute Mgq for certain vectors ¢q. Since
selfdual methods call for a preconditioner matrix M that involves inverting another one, the computation
of Mq can therefore be costly, and therefore not necessarily efficient for all linear equations. But as we will
see in section 3, M can sometimes be chosen so that computing Mg is much easier than solving the original
equation itself. This is the case for example when the symmetric part is either diagonal or tri-diagonal,
or when we are dealing with several linear systems all having the same symmetric part, but with different
anti-symmetric components. Moreover, one need not find the whole matrix M, in order to compute Mgq.
The following scheme illustrates the exact SD-CGN method applied in the case where the coefficient matrix
Ain (1) is positive definite, and when AT A;1Aq can be computed exactly for any given vector q.

Given an initial guess xg,

Solve Asy =b

Compute b = b — Agy.

Solve Azyo = Aqxo

Compute ro = b — Az + Agyo and set pg = ro.
For k=1,2,. . .,

Solve Az = Aupr_1

Compute w = Agpp_1 — Auz .

Set rp = rp_1 + ar_1pk_1, where a1 = PTTRIPRTSS
Cpmpute ry = rg_1 — ap_1w.

= — _ <re:sTk>
Set pr = i + bg_1pr_1, where by_1 = sl

Check convergence; continue if necessary.

Table 1: GCGN

In the case where A is not positive definite, or when it is preferable to choose a non-positive definite
conditioning matrix M, then one can apply MINRES or SYMMLQ to the equivalent system (5). These
schemes will be then called SD-MINRESN and SD-SYMMLQN respectively.

2.2 Inexact Methods
The SD-CGN, SD-MINRESN and SD-SYMMLQN are of practical interest when for example, the equation

Asz=gq (25)



can be solved with less computational effort than the original equation (1). Actually, one can use CG,
MINRES, or SYMMLQ to solve (25) in every iteration of SD-CGN, SD-MINRESN, or SD-SYMMLQN.
But since each sub-iteration may lead to an error in the computation of (25), one needs to control such
errors, in order for the method to lead to a solution of the system (1) with the desired tolerance. This
leads to the Inexact SD-CGN, SD-MINRESN and SD-SYMMLQN methods (denoted below by ISD-CGN,
ISD-MINRESN and ISD-SYMMLQN respectively).
The following proposition —which is a direct consequence of Theorem 4.4.3 in [9]- shows that if we solve
the inner equations (25) “accurately enough” then ISD-CGN and ISD-MINRESN can be used to solve (1)
with a pre-determined accuracy. Indeed, given € > 0, we assume that in each iteration of ISD-CGN or
ISD-MINRESN, we can solve the inner equation —corresponding to As— accurately enough in such a way
that

[(As = AaAT T Ad)p — (Asp — Awy)l| = [[Aa A Aap — Aayl < e, (26)

where y is the (inexact) solution of the equation
Agy = Agp. (27)

In other words, we assume CG and MINRES are implemented on (27) in a finite precision arithmetic with

machine precision €. Set

|| ‘As — AaAs_lAal |||
HAS - AaAs_lAa”

€ = 2(7’l + 4)6, €1 = 2(7 +n )Ea (28)

where | D| denotes the matrix whose terms are the absolute values of the corresponding terms in the matrix D.
Let A; < ... < A, be the eigenvalues of (4; — A, A7 A,) and let Tj41x be the (k+ 1) x k tridiagonal matrix
generated by a finite precision Lanczos computation. Suppose that there exists a symmetric tridiagonal
matrix T, with Ty41 5 as its upper left (k4 1) x k block, whose eigenvalues all lie in the intervals

S = Ui [ — 6, + 4], (29)

where none of the intervals contain the origin. Let d denote the distance from the origin to the set S, and
let p denote a polynomial of degree k.

Proposition 2.1 The ISD-MINRESN residual r,éM then satisfies

[l

[I7ol

< V(14 26)(k+1) H;in max |pe(2)] + 2@(%)61. (30)

If A is positive definite, then the ISD-CGN residual 7€ satisfies

[l

[Ioll

< VT2 0 +9)/d min max|pi(2)| + VRS )er (31)

It is shown by Greenbaum [6] that Tj41 k can be extended to a larger symmetric tridiagonal matrix 7' whose
eigenvalues all lie in tiny intervals about the eigenvalues of (Ay — A, A;1A,). Hence the above proposition
guarantees that if we solve the inner equations accurate enough, then ISD-CGN and ISD-MINRESN con-
verges to the solution of the system (1) with the desired relative residual (see the last section for numerical
experiments).

2.3 Preconditioning

As mentioned in the introduction, the convergence of iterative methods depends heavily on the spectral
properties of the coefficient matrix. Preconditioning techniques attempt to transform the linear system (1)
into an equivalent one of the form C~'Axz = C'~'b, in such a way that it has the same solution, but hopefully
with more favorable spectral properties. As such the reformulation of (1) as

ATAT Ax = AT A, (32)



can be seen as a preconditioning procedure with C' being the inverse of AT A;1. The spectral radius, and
more importantly the condition number of the coefficient matrix in linear systems, are crucial parameters for
the convergence of iterative methods. The following simple proposition gives upper bounds on the condition
number of A = AT A7 A.

Proposition 2.2 Assume A is an invertible positive definite matriz, then

k(A) < min{ky, K2}, (33)

where A2 Ag)?
= A(AD 4 sl and e = (A)R(-AD) + R oy

Proof: We have
)\mzn(A) = )\mzn(As - AaAs_lAa) > )\mzn(As)

We also have

N T A t _ -1
() = sup x TA:E _ supx (Ag ATaAS Ag)x
z#0 T~ x z#0 T~ x
|| Aq][?
< max AS *
o A ( ) + >\min (As)
Since k(A) = %, it follows that x(A) < k.
To obtain the second estimate, observe that
>\min (A) = )\min (As - AaA;IAa) > Ami71(7AaA;1Aa)
.. —aTAAT A
= inf —————
z#0 Tt T
T 4—1 T
_ inf{(Aax) As H(Agz) % (Agz) (Aax)}
w20 (Aax)T (Agz) zTx
T -1 T T
> inf (Az)TAT (Agz) o 2T (Aa)" (A2
w20 (Agx)T(Aqx) @70 zTx
1
= X A min Aa TAa
(A Amin((Aa)” Aq)
1
= — - (— A2
Aaa(Ay) < Amin{=4a)

With the same estimate for \,,qz (/1) we get kK(A) < Ka.

Remark 2.1 Inequality (33) shows that SD-CGN and SD-MINRES can be very efficient schemes for a large
class of ill conditioned non-symmetric matrices, even those that are almost singular and with arbitrary large
condition numbers. It suffices that either x; or k2 be small. Indeed,

e The inequality k(A) < k; shows that the condition number k(A) is reasonable as long as the anti-
symmetric part A, is not too large. On the other hand, even if |4, is of the order of A\yax(As), and

k(A) is then as large as k(A4)?, it may still be an improved situation, since this can happen for cases
when k(A) is exceedingly large. This can be seen in example 2.2 below.

e The inequality H(A) < K2 is even more interesting especially in situations when Amin(—A2) is arbitrarily
large while remaining of the same order as ||A4,||?. This means that x(A) can remain of the same order
as k(Ag) regardless how large is A,.

A typical example is when the anti-symmetric matrix A, is a multiple of the symplectic matrix J (i.e.
JJ* = —J? =1I). Consider then a matrix A, = A, + %J which has an arbitrarily large anti-symmetric

part. By using that k(A) < ko, one gets
K(Ae) < K(As) + EAmax(As)2. (35)



Here are other examples where the larger the condition number of A is, the more efficient is the proposed
selfdual preconditioning.

Example 2.2 Consider the matrix
1 -1
Ae[l —1+6:| (36)

which is a typical example of an ill-conditioned non-symmetric matrix. One can actually show that k(A.) =
O(%) — 00 as € — 0 with respect to any norm. However, the condition number of the associated selfdual
coefficient matrix

Ae =A, - Aa(As)ilAa = |: ? S :|

is k(Ae) = 11:, and therefore goes to 1 as ¢ — 0. Note also that the condition number of the symmetric
part of A, goes to one as € — 0. In other words, the more ill-conditioned problem (1) is, the more efficient
the selfdual conditioned system (14) is.

We also observe that x(A;1A) goes to co as € goes to zero, which means that besides making the problem
symmetric, our proposed conditioned matrix AT A7! A has a much smaller condition number than the matrix
A7YA, which uses Ay as a preconditioner.

Similarly, consider the non-symmetric linear system with coefficient matrix

AG:“ _1_1“] (37)

As ¢ — 0, the matrix becomes again more and more ill-conditioned, while the condition number of its
symmetric part converges to one. Observe now that the condition number of A, also converges to 1 as e
goes to zero. This example shows that self-dual preconditioning can also be very efficient for non-positive
definite problems.

3 Numerical Experiments

In this section we present some numerical examples to illustrate the proposed schemes and to compare them
to other known iterative methods for non-symmetric linear systems. Our experiments have been carried out
on Matlab (7.0.1.24704 (R14) Service Pack 1). In all cases the iteration was started with xg = 0.

Example 3.1 Consider the ordinary differential equation

—ey' +y' = f(x), on [0,1], y(0)=y(1)=0. (38)

By discretizing this equation with stepsize 1/65 and by using backward difference for the first order term,
one obtains a nonsymmetric system of linear equations with 64 unknowns. We present in Table 2 below, the
number of iterations needed for various decreasing values of the residual e. We use ESD-CGN and ISD-CGN
(with relative residual 10=7 for the solutions of the inner equations). We then compare them to the known
methods CGNE, BiCG, QMR, CGS, and BiCGSTAB for solving non-symmetric linear systems. We also
test preconditioned version of these methods by using the symmetric part of the corresponding matrix as a
preconditioner.



Table 2: Number of iterations to find a solution with relative residual 10~° for equation (38). f(z) is chosen
so that y = zsin(rz) is a solution.

N=64 e=102]e=103 | e=10*|e=10% | e=10"19] e=10"16
ESD-CGN 22 8 5 4 3 2
ISD-CGN(10*7) 24 9 6 4 3 2
GCNE 88 64 64 64 64 64
QMR 114 > 1000 > 1000 > 1000 > 1000 > 1000
PQMR 34 51 50 52 52 52
BiCGSTAB 63.5 78.5 92.5 98.5 100.5 103.5
PBiCGSTAB 26.5 46.5 50.5 50 51.5 51.5
BiCG 125 > 1000 > 1000 > 1000 > 1000 > 1000
PBiCG 31 44 50 50 52 52
CGS > 1000 > 1000 > 1000 > 1000 > 1000 > 1000
PCGS 27 51 46 46 46 48

so that y =

z(l—x)

Table 3: Number of iterations to find a solution with relative residual 10~° for equation (38). f(z) is chosen

is a solution, while the stepsize used is 1/129.

cos(z)
N=128 e=10"2[e=103 [ e=10"% | e=10% | e=10"10 | e=10"16
ESD-CGN 37 11 6 4 3 2
ISD-CGN(1077) 38 12 7 4 3 2
GCNE 266 140 128 128 128 128
QMR > 1000 > 1000 > 1000 > 1000 > 1000 > 1000
PQMR 40 7 87 92 90 85
BiCGSTAB 136.5 167.5 241 226.5 233.5 237.5
PBiCGSTAB 35.5 87.5 106.5 109 110.5 110.5
BiCG > 1000 > 1000 > 1000 > 1000 > 1000 > 1000
PBiCG 37 76 84 89 85 91
CGS > 1000 > 1000 > 1000 > 1000 > 1000 > 1000
PCGS 34 80 96 91 94 90

As we see in Tables 2 and and 3, a phenomenon similar to Example 2.2 is occuring. As the problem gets
harder (e smaller), SD-CGN becomes more efficient. These results can be compared with the number of
iterations that the HSS iteration method needs to solve equation (38) (Tables 3,4, and 5 in [2]).

Example 3.2 Consider the partial differential equation

—Au—!—a% = f(z,y), (39)

ox

with Dirichlet boundary condition.

The number of iterations that ESD-CGN and ISD-CGN needed to find a solution with relative residual 1075,
are presented in Table 4 below for different coefficients a.



Table 4: Number of iterations (I) for the backward scheme method to find a solution with relative residual
10~° for equation (39) (Example 3.2)

a N | I (ESD-CGN) | I (ISD-CGN) Solution
100 49 18 18 random
100 | 225 40 37 random
100 | 961 44 46 random
100 | 961 52 51 sin 7z sin 7y. exp((z/2 + y)?)
1000 | 49 10 10 random
1000 | 225 31 31 random
1000 | 961 36 37 random
1000 | 961 31 39 sin 7z sin y. exp((z/2 + y)?)
106 49 4 4 random
108 | 225 6 6 random
10% | 961 6 6 random
10° | 961 6 6 sin 7z sin y. exp((z/2 + y)?)
10%6 | 961 2 2 sin 7z sin 7y. exp((z/2 + y)?)

Table 5: Number of iterations (I) for the centered difference scheme method for equation (39) (Example 3.2)

a N | I (ESD-CGN) Solution Relative Residoual
1 49 21 random 6.71 x 106
1 225 73 random 9.95 x 10~°
1 | 961 91 random 8.09 x 106
1 961 72 sin 7 sin7y. exp((z/2 + y)3) 9.70 x 10~°
10 | 49 18 random 9.97 x 107°
10 225 65 random 5.90 x 106
10 | 961 78 random 8.95 x 107°
10 | 961 65 sin rz sin 7y. exp((x/2 + y)%) 7.78 x 107©
100 49 31 random 6.07 x 107°
100 | 225 42 random 5.20 x 10~°
100 | 961 43 random 5.03 x 107 ©
100 | 961 38 sin 7z sin 7y. exp((z/2 + y)?) 4.69 x 107°
1000 | 49 65 random 454 x 1076
1000 | 225 130 random 8.66 x 107°
1000 | 961 140 random 2.12x 1076
100 | 961 150 sin 7 sin y. exp((z/2 + y)%) 5.98 x 107°

Table 4 and 5 can be compared with Table 1 in [15], where Widlund had tested his Lanczos method for
non-symmetric linear systems. Comparing Table 5 with Table 1 in [15] we see that for small a (1 and 10)
Widlund’s method is more efficient than SD-CGN, but for large values of a, SD-CGN turns out to be more
efficient than Widlund’s Lanczos method.

Remark 3.3 As we see in Tables 2,3, and 4, the number of iterations for ESD-CGN and ISD-CGN (with
relative residual 10~7 for the solutions of the inner equations) are almost the same One might choose dynamic
relative residuals for the solutions of inner equations to decrease the average cost per iterations of ISD-CGN.
It is interesting to figure out whether there is a procedure to determine the accuracy of solutions for the inner
equations to minimize the total cost of finding a solution.
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Example 3.4 Consider the partial differential equation

+10exp(3.5(z% + y%)% = f(x), on [0,1] x[0,1], (40)

A(exp(3.5(z2 + y*)u)
ox

—Au+10

with Dirichlet boundary condition, and choose f so that sin(wz) sin(my) exp((x/2+1y)3) is the solution of the
equation. We take the stepsize h = 1/31 which leads to a linear system Az = b with 900 unknowns. Table 5
includes the number of iterations which CG needs to converge to a solution with relative residual 10~° when

applied to the preconditioned matrix
AT (A7 + (1 - a)D)A. (41)

Table 5 can be compared with Table 1 in [15], where Widlund has presented the number of iterations needed
to solve equation (40).

Table 6: Number of iterations for a solution with relative residual 1076 for example 3.3 when SD-CGN is
used with the preconditioner (41) for different values of a.

N2 |1 N (5] |1
oo(a=0) | > 5000 0.1 232
0O(a=1) 229 0.2 237

-0.1 221 0.4 249
-0.25 216 0.8 263
-0.5 201 1 272
-0.7 191 5 384
-0.8 186 10 474
-0.9 180 20 642
-0.95 179 50 890
-0.99 177 100 1170
-0.999 180 1000 2790
-0.9999 234 10000 4807
Remark 3.5 As we see in Table 5, for )\fn(m(lfT") = —.99 we have the minimum number of iterations.

Actually, this is the case in some other experiments, but for many other system the minimum number of
iterations accrues for some other o with —1 < A%, .. (1=2) < 0. Our experiments show that for a well chosen
a > 1, one may considerably decrease the number of iterations. Obtaining theoretical results on how to choose

parameter o in 41 seems to be an interesting problem.

Note that the coefficient matrix of the linear system corresponding to (40) is positive definite. Hence we
may also apply CG with the preconditioned symmetric system of equations

AT(Ay —aXs )TPA= AT (A, —a)s, )7, (42)

min min

S.in 15 the smallest eigenvalue of A; and o < 1. The number of iterations function of «, that CG
needs to converges to a solution with relative residual 1076 are presented in Table 7.

where \*
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Table 7: Number of iterations to find a solution with relative residual 107¢ for equation (40) when SD-CGN
is used with the preconditioner (42) for different values of a.

« I
0 229
0.5 204
0.9 177
0.99 166
0.999 168
0.9999 181
0.99999 194
0.999999 | 222
0.9999999 | 248
0.99999999 | 257

Remark 3.6 As we see in the above table, for a = 0.99 in (42) we have the minimum number of iterations.
Obtaining theoretical results on how to choose the parameter a seems to be an interesting problem to study.

We also repeat the experiment by applying CG to the system of equations

_ 099

S
max

AT (As —0.99\5 . 1)~ 1) A=AT ((As — 099\, 1)t — 2;99 I) b.

max

(43)

Then CG needs 131 iterations to converge to a solution with relative residual 107°.
As another experiment we apply CG to the preconditioned linear system

ATTAT AT Ae = A7 AT AT,

to solve the non-symmetric linear system obtained from discritization of the Equation (40). The CG converges
in 31 iterations to a solution with relative residual less than 107%. Since, we need to solve two equations
with the coefficient matrix As, the cost of each iteration in this case is twice as much as SD-CGN. So, by the
above preconditioning we decrease cost of finding a solution to less that 62/131 of that of SD-CGN (System

(43)).
Example 3.7 Consider now the following equation

A(exp(3.5(x2 + y?)u)

—A 1
u+ 10 D

0
+10exp(3.5(x2 + y2))a—” —200u= f(z), on [0,1]x[0,1],  (44)
x
If we discretize this equation with stepsize 1/31 and use backward differences for the first order term, we
get a linear system of equations Az = b with A being a non-symmetric and non-positive definite coefficient
matriz. We then apply CG to the following preconditioned, symmetrized and positive definite matriz
AT((As = aXin ) ™H+ 8D A = AT((As — aXj D)™+ B, (45)
with a < 1. For different values of a the number of iterations which CG needs to converge to a solution with
the relative residual 1075 are presented in Table 8.
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Table 8: Number of iterations to find a solution with relative residual 1076 for equation (44) when SD-CGN
is used with the preconditioner (45) for different values of « and £.

a | B=0]F=—.99/x
10 543 124
5 446 352
25 369 288
15 342 264
1.1 331 258
101 | 327 259
1.001 | 333 271
1.0001 | 368 289
1.00001 | 401 317

We repeat our experiment with stepsize 1/61 and get a system with 3600 unknowns. With @ = —1.00000001
and 8 = 0, CG converges in one single iteration to a solution with relative residual less than 1076. We also
apply QMR, BiCGSTAB, BiCG, and CGS (also preconditioned with the symmetric part as well) to solve the
corresponding system of linear equations with stepsize 1/31. The number of iterations needed to converge
to a solution with relative residual 1075 are presented in Table 9.

Table 9: Number of iterations to find a solution with relative residual 107% for equation (44) using various
algorithms.

N=900 I
CGNE > 5000
QMR 3544
PQMR 490
BiCGSTAB > 5000
PBiCGSTAB | Breaks down
BiCG 4527
PBiCG > 1000
CGS 1915
PCGS 649
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