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Abstract

We introduce and study the class of linear transfers between probability distributions
and the dual class of Kantorovich operators between function spaces. Linear transfers
can be seen as an extension of convex lower semi-continuous energies on Wasserstein
space, of cost minimizing mass transports, as well as many other couplings between
probability measures to which Monge-Kantorovich theory does not readily apply. Basic
examples include balayage of measures, martingale transports, optimal Skorokhod em-
beddings, and the weak mass transports of Talagrand, Marton, Gozlan and others. The
class also includes various stochastic mass transports such as the Schrödinger bridge
associated to a reversible Markov process, and the Arnold-Brenier variational principle
for the incompressible Euler equations.

We associate to most linear transfers, a critical constant, a corresponding effective
linear transfer and additive eigenfunctions to their dual Kantorovich operators, that
extend Mané’s critical value, Aubry-Mather invariant tori, and Fathi’s weak KAM solu-
tions for Hamiltonian systems. This amounts to studying the asymptotic properties of
Kantorovich operators, which appear as non-linear counterparts of the Markov opera-
tors in classical ergodic theory. This allows for the extension of Mather theory to other
settings such as its stochastic counterpart and the framework of ergodic optimization
in the holonomic case.

We also introduce the class of convex transfers, which includes p-powers (p > 1) of
linear transfers, the logarithmic entropy, the Donsker-Varadhan information, optimal
mean field plans, and certain free energies as functions of two probability measures,
i.e., where the reference measure is also a variable. Duality formulae for general trans-
fer inequalities follow in a very natural way. This paper is an expanded version of a
previously posted but not published work by the authors [13].
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†Both authors have been partially supported by a grant from the Natural Sciences and Engineering

Research Council of Canada.
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1 Introduction

Our main objective is to study the ergodic properties of Kantorovich operators, which are
at the heart of the theory of mass transport summarized in the books of Villani [64] and
Santambrogio [55], as well as the so-called weak KAM theory developed by Mather [49],
Fathi [25], Aubry [1], Mané [45] and many others. Consider two compact spaces X and Y ,
and the corresponding spaces C(Y ) (resp., USC(X)) of continuous functions on Y (resp.,
bounded above upper semi-continuous functions on X). A backward Kantorovich operator
is a map (mostly non-linear) T− : C(Y )→ USC(X) verifying the following 3 properties:

a) T− is monotone, i.e., f1 6 f2 in C(Y ), then T−f1 6 T−f2.

b) T− is a convex operator, that is for any λ ∈ [0, 1], f1, f2 in C(Y ), we have

T −(λf1 + (1− λ)f2) 6 λT−f1 + (1− λ)T−f2.

c) T− is affine on the constants, i.e., for any c ∈ R and f ∈ C(Y ), there holds

T−(f + c) = T−f + c.

Forward Kantorovich operators T+ : C(X)→ LSC(Y ) are those that verify (a), (c), and
the concave counterpart of (b), that is

T+(λf1 + (1− λ)f2) > λT+f1 + (1− λ)T+f2,

where LSC(Y ) is the space of bounded below lower semi-continuous functions on Y .
We shall say that T− (resp., T+) is non-trivial if there is at least one function f ∈ C(Y )
(resp., C(X)) such that T−f 6≡ −∞ (resp., T+f 6≡ +∞).

Kantorovich operators are important extensions of Markov operators and are ubiqui-
tous in mathematical analysis and differential equations. Even affine operators of the form
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T−f(x) = Tf(x)−A(x), where T is a Markov operator and A is a given function (observ-
able) allows the asymptotic theory of Kantorovich operators to incorporate ergodic opti-
mization for expanding dynamical systems. Non-linear Kantorovich operators also appear
for example as the maps that associate to an initial state of a Hamilton-Jacobi equation the
solution at a given time t, as general value functions in dynamic programming principles
([26] Section II.3), and also in the mathematical theory of image processing [3].

The rich structure of Kantorovich operators stems from their duality -via Legendre
transform- with certain lower semi-continuous and convex functionals T onM(X)×M(Y ),
where M(K) is the space of signed measures on a compact space K equipped with the
weak∗-topology in duality with C(K). Indeed, to any map T− : C(Y ) → USC(X)
(resp., T+ : C(X) → LSC(Y )), one can associate a corresponding convex and lower
semi-continuous functional TT− (resp., TT+) on M(X)×M(Y ) via the following –possibly
infinite– expressions: If (µ, ν) ∈ P(X)×P(Y ), where P(K) denotes the space of probability
measures on K, then set

TT−(µ, ν) = sup
{∫

Y
g dν −

∫
X
T−g dµ; g ∈ C(Y )

}
, (1)

(resp.,

TT+(µ, ν) = sup
{∫

Y
T+f dν −

∫
X
f dµ; f ∈ C(X)}), (2)

If (µ, ν) /∈ P(X)× P(Y ), then set TT−(µ, ν) = +∞ (resp., TT+(µ, ν) = +∞).
Dually, we introduce the following notions.

Definition 1.1. Let T :M(X)×M(Y )→ R∪{+∞} be a bounded below functional with
a non-empty effective domain D(T ).

1. We say that T is a backward (resp., forward) linear coupling, if

D(T ) ⊂ P(X)× P(Y ), (3)

and
T = TT− (resp., T = TT+), (4)

for some T− : C(Y )→ USC(X) (resp., T+ : C(X)→ LSC(Y )).

2. We say that T is a backward (resp., forward) linear transfer, if it is a linear coupling
with T− (resp., T+) being backward (resp., forward) Kantorovich operators.

It is easy to see that in either case, T is then a proper, bounded below, lower semi-
continuous and convex functional on M(X) ×M(Y ). Moreover, if we consider for each
µ ∈ M(X) (resp., ν ∈ M(Y )) the partial maps Tµ on P(Y ) (resp., Tν on P(X)) given
by ν → T (µ, ν) (resp., µ → T (µ, ν)), their Legendre transforms are then the following
functionals on C(Y ) (resp., C(X)) defined by,

T ∗µ (g) = sup{
∫
X
gdν − Tµ(ν);µ ∈ P(X)} = sup{

∫
X
gdν − T (µ, ν); µ ∈ P(X)},

and

T ∗ν (f) = sup{
∫
X
fdµ− Tν(µ);µ ∈ P(X)} = sup{

∫
X
fdµ− T (µ, ν); µ ∈ P(X)},
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respectively, since Tν and Tµ are equal to +∞ whenever µ and ν are not probability mea-
sures. Note also that

T ∗µ (g) 6
∫
X T

−g(x) dµ(x) for any g ∈ C(Y ), (5)

(resp.,
T ∗ν (g) 6 −

∫
Y T

+(−f)(x) dν(x) for any f ∈ C(X). (6)

We shall later prove that we have equality if and only if T is a linear transfer.
Note that if T is a backward linear coupling with an operator T−, then T̃ (µ, ν) := T (ν, µ)

is a forward linear coupling with the operator T̃+f = −T−(−f). We shall therefore focus on
the properties of backward linear couplings and transfers since their “forward counterparts”
could be derived from that relation. There are however special characteristics to those that
are simultaneously forward and backward linear transfers (see Sections 3 and 6). We shall
say that a coupling T is symmetric if T̃ = T , in which case T+f = −T−(−f).

The “partial domain” of T will be denoted by

D1(T ) = {µ ∈ P(X);∃ν ∈ P(Y ), (µ, ν) ∈ D(T )}.

The following characterization of linear transfers is the starting point of our analysis.

Theorem 1.2. Let T : M(X) ×M(Y ) be a functional such that D(T ) ⊂ P(X) × P(Y )
and {δx;x ∈ X} ⊂ D1(T ). Then, the following are equivalent:

1. T is a backward linear transfer.

2. There is a map T : C(Y ) → USC(X) such that for each µ ∈ D1(T ), Tµ is convex
lower semi-continuous on P(Y ) and

T ∗µ (g) =
∫
X Tg(x) dµ(x) for any g ∈ C(Y ). (7)

3. There exists a proper bounded below lower semi-continuous function c : X × P(Y )→
R ∪ {+∞} with σ → c(x, σ) convex such that for any (µ, ν) ∈M(X)×M(Y ),

T (µ, ν) =

{
infπ{

∫
X c(x, πx) dµ(x);π ∈ K(µ, ν)} if µ, ν ∈ P(X)× P(Y ),

+∞ otherwise,
(8)

where K(µ, ν) is the set of probability measures π on X × Y whose marginal on X
(resp. on Y ) is µ (resp., ν) (i.e., the transport plans), and (πx)x is the disintegration
of π with respect to µ.

This characterization makes a link between linear transfers and mass transport theory, and
also explains the terminology we chose. Indeed, the class of linear transfers contains all cost
minimizing mass transports, that is functionals on P(X)× P(Y ) of the form,

Tc(µ, ν) := inf
{∫

X×Y
c(x, y)) dπ;π ∈ K(µ, ν)

}
, (9)

where c(x, y) is a continuous cost function on the product measure space X × Y . A con-
sequence of the Monge-Kantorovich theory is that cost minimizing transports Tc are both
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forward and backward linear transfers with Kantorovich operators given for any f ∈ C(X)
(resp., g ∈ C(Y )) by

T+
c f(y) = inf

x∈X
{c(x, y) + f(x)} and T−c g(x) = sup

y∈Y
{g(y)− c(x, y)}. (10)

However, many couplings between probability measures cannot be formulated as optimal
mass transportation problems, since they do not arise as cost minimizing problems asso-
ciated to functionals c(x, y) that assign a price for moving one particle x to another y.
Moreover, they are often not symmetric, meaning that the problem imposes a specific di-
rection from one of the marginal distributions to the other. The notion of transfers between
probability measures is therefore much more encompassing than mass transportation, yet is
still amenable to –at least a one-sided version– of the duality theory of Monge-Kantorovich
[64].

The notion of linear transfer is general enough to encapsulate all bounded below con-
vex lower semi-continuous functions on Wasserstein space and Markov operators, but also
the Choquet-Mokobodzki balayage theory [19, 53], the deterministic version of optimal
mass transport (e.g., Villani [64], Ambrosio-Gigli-Savare [4]), their stochastic counterparts
(Mikami-Thieulin [52]), Barton-Ghoussoub [8] and others), optimal Skorokhod embeddings
(Ghoussoub-Kim-Pallmer [34, 35]), the Schrödinger bridge, and the Arnold-Brenier varia-
tional descriptions of the incompressible Euler equation. Linear transfers turned out to be
essentially equivalent to the notion of weak mass transports recently developed by Gozlan
et al. [38, 40]), and motivated by earlier work of Talagrand [62, 63], Marton [47, 48] and
others.

This paper has two objectives. First, it introduces the unifying concepts of linear and
convex mass transfers and exhibits several examples that illustrate the potential scope of
this approach. The underlying idea has been implicit in many related works and should
be familiar to the experts. But, as we shall see, the systematic study of these structures
add clarity and understanding, allow for non-trivial extensions, and open up a whole new
set of interesting problems. In other words, there are by now enough examples that share
common structural features that the situation warrants the formalization of their unifying
concept. The ultimate purpose is to extend many of the remarkable properties enjoyed by
energy functionals on Wasserstein space and standard optimal mass transportations to a
larger class of couplings that is stable under addition, convex combinations, convolutions,
and tensorizations. We exhibit the basic permanence properties of the convex cones of
transfers, and extend several results known for mass transports including general duality
formulas for inequalities between various transfers that extend the work of Bobkov-Götze
[8], Gozlan-Leonard [38], Maurey [50] and others.

The second objective is to show that the approach of Bernard-Buffoni [6, 7] to the Fathi-
Mather weak KAM theory ([25] [49]), which is based on optimal mass transport associated
to a cost given by a generating function of a Lagrangian, extend to transfers and therefore
applies to other couplings, including stochastic transportation. We do that by associating
to any linear transfer a corresponding effective linear transfer in the same way that weak
KAM theory associates an effective Lagrangian (and Hamiltonian) to many problems of the
calculus of variations [25, 21]. With such a perspective, Mather theory seems to rely on the
ergodic properties of the nonlinear Kantorovich operators as opposed to classical ergodic
theory, which deals with linear Markov operators.
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We shall focus here on probability measures on compact spaces, even though the right
settings for most applications and examples are complete metric spaces, Riemannian mani-
folds, or at least Rn. This will allow us to avoid the usual functional analytic complications,
and concentrate on the algebraic aspects of the theory. The simple compact case will at
least point to results that can be expected to hold and be proved –albeit with additional
analysis and suitable hypothesis – in more general situations. In the case of Rn, which is
the setting for many examples stated below, the right duality is between the space Lip(Rn)
of all bounded and Lipschitz functions and the space of Radon measures with finite first
moment.

In Section 3, we study in detail the duality between Kantorovich operators and linear
transfers. We actually associate to essentially any map T : C(Y ) → USC(X) (resp., any
convex functional T on P(X) × P(Y )) an “optimal” Kantorovich map T (resp., linear
transfer T ) that can be seen as “envelopes”.

Proposition 1.3. (The transfer envelope of a correlation functional) Let T : P(X)×
P(Y )→ R ∪ {+∞} be a bounded below lower semi-continuous functional that is convex in
each of the variables such that {δx;x ∈ X} ⊂ D1(T ). Then, there exists a functional T > T
on P(X)× P(Y ) that is the smallest backward linear transfer above T .

Dually, we say that T− is proper at x ∈ X, if

inf
ν∈P(Y )

sup
g∈C(Y )

{ ∫
Y g dν − T

−g(x)
}
< +∞. (11)

This then implies that Tf(x) > −∞ for every f ∈ C(Y ), and translates into the condition
that the associated coupling T is proper as a convex function in the following way:

δx ∈ D1(T ) := {µ ∈ P(X); ∃ν ∈ P(Y ), T −(µ, ν) < +∞}. (12)

Proposition 1.4. (The Kantorovich envelope of a non-linear map) Let T : C(Y )→
USC(X) be a proper map. Then, there exists T : C(Y ) → USC(X) that is the largest
Kantorovich operator below T on C(Y ).

In anticipation to the study of the ergodic properties of a Kantorovich operators, where
we will need to consider iterates of T , we proceed to extend in Section 4 any Kantorovich
operator T : C(Y ) → USC(X) to a map from USC(Y ) into USC(X) while retaining
properties (a), (b) and (c) that characterize Kantorovich operators.

In section 5, we exhibit a large number of (basic) examples of linear transfers which do not
fit in standard mass transport theory. The various optimal martingale mass transports and
weak mass transports of Marton, Gozlan and collaborators are examples of one-directional
linear transfers. However, what motivated us to develop the concept of transfers are the
stochastic mass transports, which do not minimize a given cost function between point
particles, since the cost of transporting a Dirac measure to another is often infinite.

In Section 6, we show that the class of linear transfers has remarkable permanence
properties under various operations. The most important one for our study is the stability
under inf-convolution: If T1 (resp., T2) are backward linear transfers on P(X1) × P(X2)
(resp., P(X2)× P(X3)), then their inf-convolution

T (µ, ν) := T1 ? T2(µ, ν) = inf{T1(µ, σ) + T2(σ, ν); σ ∈ P(X2)} (13)
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is a backward linear transfer on P(X1) × P(X3). This leads to an even richer class of
transfers, such as the ballistic stochastic optimal transport, broken geodesics of transfers,
and projections onto certain subsets of Wasserstein space.

In anticipation to the extension of Mather theory, and motivated by the work of Bernard-
Buffoni [6], we study in Section 7 those linear transfers that are distance-like, that is satisfy
the triangular inequality,

T (µ, ν) 6 T (µ, σ) + T (σ, ν) for all µ, ν, σ ∈ P(X), (14)

as well as the T -Lipschitz functionals on the set A = {µ ∈ P(X); T (µ, µ) = 0}.

Theorem 1.5. Let T is a backward linear transfer on P(X) × P(X) with T− as a Kan-
torovich operator. Assume that T satisfies (14) and that for all µ, ν ∈ P(X),

T (µ, ν) = inf{T (µ, σ) + T (σ, ν); σ ∈ A}. (15)

The following then hold:

1. A functional Φ on A is T -Lipschitz if and only if there exists a function f ∈ C(X)
such that

Φ(µ) =

∫
X
fdµ =

∫
X
T−fdµ for all µ ∈ A. (16)

2. If T is also a forward transfer with T+ as a Kantorovich operator, then

Φ(µ) =

∫
X
fdµ =

∫
X
T−fdµ =

∫
X
T+ ◦ T−fdµ for all µ ∈ A. (17)

We note that the functions ψ0 = T−f and ψ1 = T+ ◦ T−f are conjugate in the sense that
ψ0 = T−ψ1 and ψ1 = T+ψ0.

In Sections 8-10 we associate to any given linear transfer T , a distance-like transfer T∞,
by exploiting the ergodic properties of the corresponding Kantorovich operators. For each
n ∈ N, we let Tn = T ? T ? .... ? T be the transfer obtained from a backward linear transfer
T by iterating its convolution n-times. The Kantorovich operator associated to Tn is given
by the n-th iterate (T−)n of the Kantorovich operator T− associated to T . We will be
interested in the limiting behavior of Tn and (T−)n as n goes to infinity. The following
identifies a critical constant associated to a given linear transfer.

Theorem 1.6. Suppose T is a backward linear transfer on P(X)×P(X) and let T := T−

be its backward Kantorovich operator. Assume

T (µ0, µ0) < +∞ for some probability measure µ0. (18)

1. Then, there exists a finite constant c(T ) such that

c(T ) := sup
n

1

n
inf

µ,ν∈P(X)
Tn(µ, ν) = inf

n

1

n
inf

µ∈P(X)
Tn(µ, µ). (19)

It will be called the “Mané constant” associated to T .
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2. It is also characterized by
c(T ) = inf

µ∈P(X)
T (µ, µ), (20)

and the probabilitiy distributions where the infimum is attained will be called “Mather
measures” for T .

3. Moreover, c(T ) is the unique constant for which there may be u ∈ C(X) such that

Tu+ c = u. (21)

Such a function u will be called a “backward weak KAM solution” for T .

Similar definitions can be made for forward linear transfers. Actually, when T is continuous
on P(X)×P(X) for the Wasserstein metric, much more can be said since we should be able
to associate to T an idempotent transfer T∞, i.e., one that verify T ? T = T , in which case
its corresponding Kantorovich map T∞ is idempotent for the composition operation (i.e.,
T 2
∞ = T∞), while its range correspond to all weak KAM solutions for T . The most known

ones are the Monge optimal mass transport or more generally, the Rubinstein-Kantorovich
mass transports, where the cost c(x, y) is a distance on a metric space. In reality, many
more examples satisfy this property, such as transfers induced by convex energies with 0 as
an infimum, the balayage transfer, and certain optimal Skorokhod embeddings in Brownian
motion. The following shows that one can associate such an idempotent transfer under
equi-continuity conditions on T .

Theorem 1.7. Let T be a backward linear transfer on P(X) × P(X) that is continuous
for the Wasserstein metric, and let T := T− : C(X) → C(X) be the corresponding back-
ward Kantorovich operator. Then, there exist a Mané critical value c = c(T ) ∈ R and
an idempotent backward linear transfer T∞ such that if T∞ is its corresponding idempotent
Kantorovich operator, then the following hold:

1. For every f ∈ C(X) and x ∈ X, lim
n→+∞

Tnf(x)
n = −c(T ):

2. T∞ is the largest linear transfer below lim infn(Tn − nc) and T∞ = (T − c) ? T∞;

3. T ◦ T∞f + c = T∞f for all f ∈ C(X), that is u := T∞f is a backward weak KAM
solution.

4. The set A := {µ ∈ P(X); T∞(µ, µ) = 0} is non-empty and for every µ, ν ∈ P(X), we
have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A}, (22)

and the infimum on A is attained.

5. The Mané constant c(T ) = inf{T (µ, µ);µ ∈ P(X)} is attained by a probability µ̄ in
A.

6. If T is also a forward transfer, then similar results hold for the forward operator T+.
Moreover, the associated effective transfer T∞ can then be expressed as

T∞(µ, ν) = sup
{∫

X
f+ dν −

∫
X
f− dµ; (f−, f+) ∈ I

}
, (23)
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where

I =
{

(f−, f+); f− (resp., f+) is a backward (resp., forward) weak KAM solution

and
∫
X f
−dµ =

∫
X f

+dµ for all µ ∈ A
}

.

By analogy with the weak KAM theory of Mather-Aubry-Fathi –briefly described in the
next paragraph– we shall say that T∞ (resp., T∞) is the effective transfer or the generalized
Peierls barrier (resp., effective Kantorovich operator) associated to T . The set A is the
analogue of the projected Aubry set, and

D := {(µ, ν) ∈ P(X)× P(X) : T (µ, ν) + T∞(ν, µ) = c(T )}

can be seen as a generalized Aubry set [25].
As mentioned above, the effective transfer T∞ is obtained by an infinite inf-convolution

process, while T∞ is obtained by an infinite iteration procedure, which lead to fixed points
(additive eigenfunctions) for such a non-linear operator. The same procedure actually ap-
plies for any semi-group of backward linear transfers (for the convolution operation) and the
corresponding semi-group of Kantorovich maps (for the composition operation). This will
be established in Section 7 for an equicontinuous semi-group of backward linear transfers.

In Section 9, we deal with the case of a general linear transfer, where we do not as-
sume continuity of T , but that the corresponding Kantorovich operator T maps C(X) to
USC(X). We then consider the following measure of the oscillation of the iterates of T :

K(n) := inf
µ∈P(X)

Tn(µ, µ)− inf
µ,ν∈P(X)

Tn(µ, ν). (24)

Note that Theorem 1.6 already asserts that K(n)
n decreases to zero, but we shall need a

slightly stronger condition to prove in section 8 the existence of weak KAM solutions.

Theorem 1.8. Let T be a backward linear transfer on P(X) × P(X) such that its corre-
sponding Kantorovich operator maps C(X) to USC(X). Assume (18) and the following
two conditions:

sup
x∈X

inf
σ∈P(X)

T (x, σ) < +∞, (25)

and
lim inf

n
K(n) < +∞. (26)

1. Then, there exists a backward weak KAM solution for T at the level c := c(T ).

2. The Mané constant c is unique in the following sense

c(T ) = sup{d ∈ R; there exists u ∈ USC(X) with Tu+ d 6 u} (27)

= inf{d ∈ R; there exists v ∈ USC(X) with Tv + d > v}.

Note that (25) merely states that the function T1 is bounded below, while (18) yields
that T1 is not identically −∞. This will allow us to prove the following.
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Theorem 1.9. Let T be a backward linear transfer that is also bounded above on P(X)×
P(X), then

Tn(µ, ν)

n
→ c uniformly on P(X)× P(X). (28)

Moreover, there exists an idempotent operator T∞ : C(X) → USC(X) such that for each
f ∈ C(X), T∞f is a backward weak KAM solution for T .

In Section 10, we use a regularization procedure to show that many of the conclusions
in Theorem 1.7 can hold for transfers that are neither necessarily continuous nor bounded.
This holds for example when the following condition is satisfied.

inf
µ∈P(X)

T (µ, µ) = inf
µ,ν∈P(X)

T (µ, ν), (29)

which holds in many situations. This will allow us to prove the following general result.

Theorem 1.10. Let T be a backward linear transfer on P(X)×P(X), where X is a bounded
domain in Rn. Then, for every λ ∈ (0, 1), there exists a convex function ϕ, a constant c ∈ R
and a function g ∈ USC(X) such that

T−g + c = λ g(∇ϕ) + (1− λ) g. (30)

Note that if ϕ is the quadratic function, then g is a weak KAM solution for T .
To make the connection with Mather-Aubry-Fathi theory, consider Tt to be the cost

minimizing transport

Tt(µ, ν) = inf{
∫
M×M

ct(x, y) dπ(x, y) ; π ∈ K(µ, ν)}, (31)

where

ct(x, y) := inf{
∫ t

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t];M), γ(0) = x, γ(t) = y}, (32)

for some given (time-independent) Tonelli Lagrangian L possessing suitable regularity prop-
erties on a compact state space M . The backward Kantorovich operators associated to Tt
are nothing but the Lax-Oleinik semi-group S−t , t > 0, defined as

S−t u(x) := inf{u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t];M), γ(t) = x}. (33)

Recall from [25] that a function u ∈ C(M) is said to be a negative weak KAM solution if
for some c ∈ R, we have

S−t u+ ct = u for all t > 0, (34)

these solutions are then given by any function in the range of the effective Kantorovich
map associated to (S−t )t. Actually, these solutions were obtained this way by Bernard and
Buffoni [6, 7], who capitalized on the fact that in this case, the transfers (Tt)t are actually
given by optimal mass transports associated to the cost ct, and that the Lax-Oleinik semi-
groups are obtained via Monge-Kantorovich theory. This general asymptotic theory applies
to both the linear setting such as the heat semi-group and to non-linear contexts including
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the Schrödinger bridge. It also applies to settings where transfers are neither given by
optimal transport problems nor are they continuous on Wasserstein space.

In section 11, we apply the general theory to the following semi-group of stochastic op-
timal mass transports: Let (Ω,F ,P) be a complete probability space with normal filtration
{Ft}t>0, and define A[0,t] to be the set of continuous semi-martingales X : Ω × [0, t] → M

such that there exists a Borel measurable drift β : [0, t]× C([0, t])→ Rd for which

1. ω 7→ β(s, ω) is B(C([0, s]))+-measurable for all s ∈ [0, t], where B(C([0, s])) is the
Borel σ-algbera of C[0, s].

2. W (s) := X(s)−X(0)−
∫ s

0 β(s′) ds′ is a σ(X(s) ; 0 6 s 6 t) is an M -valued Brownian
motion.

For each β, we shall denote the corresponding X by Xβ in such a way that

dXβ(t) = β(t)dt+ dW (t). (35)

The stochastic transport from µ ∈ P(M) to ν ∈ P(M) on the interval [0, t], t > 0, is then
defined as

Tt(µ, ν) := inf

{
E
∫ t

0
L(Xβ(s), β(s)) ds ; Xβ(0) ∼ µ,Xβ(t) ∼ ν,Xβ ∈ A[0,t]

}
. (36)

Note that these couplings do not fit in the Monge-Kantorovich framework as they are
not optimal mass transportations that correspond to a cost function between two states,
but they are backward linear transfers according to our definition thanks to the work of
Mikami-Tieullin [52]. In this case, they only have backward Kantorovich operators given
by the stochastic Lax-Oleinik operator,

Stf(x) := sup
X∈A[0,t]

{
E
[(
f(X(t))−

∫ t

0
L(X(s), βX(s,X)) ds

)
|X(0) = x

]}
, (37)

in such a way that

Tt(µ, ν) = sup
{∫

M
u(y) dν(y)−

∫
M
Stu(x) dµ(x);u ∈ C(M)

}
. (38)

In addition, for each end-time T > 0, u(t, x) = ST−tu(x) is a viscosity solution to the
following backward Hamilton-Jacobi-Bellman equation{

∂u
∂t (t, x) + 1

2∆u(t, x) +H(x,∇u(t, x)) = 0, on [0, T )×M
u(T, x) = u(x) on M.

(39)

The existing of corresponding stochastic weak KAM solutions (i.e., fixed points for u →
Stu+ct) will then be viscosity solutions of second order stationary Hamilton-Jacobi-Bellman
equation

1

2
∆u(x) +H(x,∇u(x)) = c, x ∈M. (40)

We shall consider the case of a torus, already studied by Gomez [36], and capitalize on his
work to show that just like in the deterministic case, the Mané constant c, for which there

12



exists a backward weak KAM solution is unique and is connected to a stochastic analogue
of Mather’s problem via

c = inf{T1(µ, µ);µ ∈ P(M)} = inf{
∫
TM

L(x, v) dm(x, v);m ∈ N0(TM)}, (41)

where N0(TM) is the set of probability measures m on phase space that verify for every
ϕ ∈ C1,2([0, 1]×M),∫

[0,1]

∫
TM

[
∂tϕ(x, t) + v · ∇ϕ(x, t) +

1

2
∆ϕ(x, t)

]
dm(x, v) dt =

∫
TM

[ϕ(x, 1)−ϕ(x, 0)] dm(x, v).

(42)
The stochastic Mather measures are those that are minimizing Problem (41).

In section 12, we introduce a natural and richer family of transfers: the class of convex
transfers.

Definition 1.11. A proper convex and weak∗ lower semi-continuous functional T :M(X)×
M(Y )→ R∪{+∞} is said to be a backward convex coupling (resp., forward convex coupling),
if there exists a family of maps T−i : C(Y )→ USC(X) (resp., T+

i : C(X)→ LSC(Y )) such
that:
If (µ, ν) ∈ P(X)× P(Y ), then

T (µ, ν) = sup
{∫

Y
g(y) dν(y)−

∫
X
T−i g(x) dµ(x); g ∈ C(Y ), i ∈ I

}
, (43)

(resp.,

T (µ, ν) = sup
{∫

Y
T+
i f(y) dν(y)−

∫
X
f(x) dµ(x); f ∈ C(X), i ∈ I

}
, (44)

If (µ, ν) /∈ P(X)× P(Y ), then T (µ, ν) +∞.

In other words,
T (µ, ν) = sup

i∈I
Ti(µ, ν), (45)

where each Ti is a linear transfer on P(X) × P(Y ) induced by each T−i (resp., T+
i ). Note

that we do not assume in general that each T−i (resp., T+
i ) is a Kantorovich operator.

Typical examples are p-powers (for p > 1) of a linear transfer, which will then be a convex
couplings in the same direction. More generally, for any convex increasing real function
γ on R+ and any linear backward (resp., forward) transfer, the map γ(T ) is a backward
(resp., forward) convex coupling. Actually, in this case, each of the associated Ti can be
taken to be a linear transfer.

Note that a convex coupling T of the form (45) only implies that for g ∈ C(Y ) (resp.,
f ∈ C(X)),

T ∗µ (g) 6 inf
i∈I

∫
X T

−
i g(x) dµ(x) and T ∗ν (f) 6 inf

i∈I

∫
Y −T

+
i (−f)(y) dν(y). (46)

We therefore introduce the following stronger notion.

Definition 1.12. Say that T is a backward convex transfer (resp., forward convex transfer)
if for g ∈ C(Y ) (resp., f ∈ C(X)),

T ∗µ (g) = inf
i∈I

∫
X T

−
i g(x) dµ(x) (resp., T ∗ν (f) = inf

i∈I

∫
Y −T

+
i (−f)(y) dν(y)). (47)
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Again, the T ′is are not necessarily Kantorovich maps, i.e., they don’t correspond to Legendre
transforms of linear transfers T ′i s, however, the map g → inf

i∈I

∫
X T

−
i g(x) dµ(x) does in this

case possess the properties of a Legendre transform. We give an example in Section 12 of
a convex coupling that is not a convex transfer.

Typical examples of convex backward transfers include generalized entropies of the fol-
lowing form, but as a function of both measures, i.e., including the reference measure,

T (µ, ν) =

∫
X
α(
dν

dµ
) dµ, if ν << µ and +∞ otherwise, (48)

whenever α is a strictly convex lower semi-continuous superlinear real-valued function on
R+.

The Donsker-Varadhan information is defined as

I(µ, ν) :=

{
E(
√
f,
√
f), if µ = fν,

√
f ∈ D(E)

+∞, otherwise,
(49)

where E is a Dirichlet form with domain D(E) on L2(ν). It is another example of a backward
completely convex transfer, since it can also be written as

I(µ, ν) = sup{
∫
X
f dν − log ‖P f1 ‖L2(µ); f ∈ C(X)}, (50)

where P ft is an associated (Feynman-Kac) semi-group of operators on L2(µ).
The important example of the logarithmic entropy

H(µ, ν) =

∫
X

log(
dν

dµ
) dν, if ν << µ and +∞ otherwise, (51)

is of course one of them, but it is much more as we now focus on a remarkable subset of
the class of convex transfers: the class of entropic transfers, defined as follows:

Definition 1.13. Let α (resp., β) be a convex increasing (resp., concave increasing) real
function on R, and let T : P(X) × P(Y ) → R ∪ {+∞} be a proper (jointly) convex and
weak∗ lower semi-continuous functional. We say that

• T is a β-entropic backward transfer, if there exists a map T− : C(Y )→ USC(X) such
that for each µ ∈ D1(T ), the Legendre transform of Tµ on M(Y ) satisfies:

T ∗µ (g) = β
(∫
X T

−g(x) dµ(x)
)

for any g ∈ C(Y ). (52)

• T is an α-entropic forward transfer, if there exists a map T+ : C(X)→ LSC(Y ) such
that for each ν ∈ D2(T ), the Legendre transform of Tν on M(X) satisfies:

T ∗ν (f) = −α
(∫
Y T

+(−f)(y) dν(y)
)

for any f ∈ C(X). (53)

So, if T is an α-entropic forward transfer on X × Y , then for any probability measures
(µ, ν) ∈ D(T ), we have

T (µ, ν) = sup
{
α

(∫
Y
T+f(y) dν(y)

)
−
∫
X
f(x) dµ(x); f ∈ C(X)

}
, (54)
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while if T is a β-entropic backward transfer, then

T (µ, ν) = sup
{∫

Y
g(y) dν(y)− β

(∫
X
T−g(x) dµ(x)

)
; g ∈ C(Y )

}
. (55)

Again, the associated maps T− and T+ are not necessarily Kantorovich maps, however, the
map g → β

(∫
X T

−g(x) dµ(x)
)

and f → α
(∫
X T

+f(x) dν(x)
)

inherit special (convexity and
lower semi-continuity) properties from the fact that they are Legendre transforms.

We observe in Section 12 that entropic transfers are completely convex transfers. A
typical example is of course the logarithmic entropy, since it can be written as

H(µ, ν) = sup{
∫
X
f dν − log(

∫
X
ef dµ); f ∈ C(X)}, (56)

making it a log-entropic backward transfer. More examples of α-entropic forward transfers
and β-entropic backward transfers can be obtained by convolving entropic transfers with
linear transfers of the same direction.

In section 13, we show how the concepts of linear and convex transfers lead naturally
to more transparent proofs and vast extensions of many well known duality formulae for
transport-entropy inequalities, such as Maurey-type inequalities of the following type [50]:
Given linear transfers T1, T2, entropic transfers H1,H2 and a convex transfer F , find a
reference pair (µ, ν) ∈ P(X1)× P(X2) such that

F(σ1, σ2) 6 λ1T1 ?H1(σ1, µ) + λ2T2 ?H2(σ2, ν) for all (σ1, σ2) ∈ P(X1)× P(X2). (57)

This is then equivalent to the non-negativity of an expression of the form Ẽ1 ? (−T ) ? E2,
which could be obtained from the following dual formula:

Ẽ1 ? (−F) ? E2 (µ, ν) = inf
i∈I

inf
f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ) + α2(

∫
X2

E+
2 (f) dν)

}
, (58)

where F is a convex backward transfer on Y1 × Y2 with Kantorovich family (F−i )i∈I , E1

(resp., E2) is a forward α1-transfer on Y1 × X1 (resp., a forward α2-transfer on Y2 × X2)
with Kantorovich operator E+

1 (resp., E+
2 ).

2 First examples of linear mass transfers

The class of linear transfers is quite large and ubiquitous in analysis.

2.1 Convex energies on Wasserstein space are linear transfers

The class of linear transfers is a natural extension of the convex energies on Wasserstein
space.

Example 2.1: Convex energies
If I : P(Y ) → R is a bounded below convex weak∗-lower semi-continuous functions on

P(Y ). One can then associate a backward linear transfer

T (µ, ν) = I(ν) for all (µ, ν) ∈ P(X)× P(Y ), (59)
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in such a way that the corresponding Kantorovich map is T− : C(Y ) → R ⊂ C(X) is
T−f(x) = I∗(f) for every x ∈ X.

For example, if I is the linear functional I(ν) =
∫
Y V (y) dν(y), where V is a lower

semi-continuous potential on Y , then for every x ∈ X,

T−f(x) = sup
y∈Y

(f(y)− V (y)).

If I is the relative entropy with respect to Lebesgue measure, that is I(ν) =
∫
Y log dν

dydy
when ν is absolutely continuous with respect to Lebesgue measure and +∞ otherwise, then
it induces a linear transfer with backward Kantorovich map being for all x,

T−f(x) = log

∫
Y
ef dy.

The same holds for the variance functional I(ν) := −var(ν) := |
∫
Y y dν|

2−
∫
Y |y|

2 dν(y),
where the associated Kantorovich map is given by

T−f(x) = sup{f̂ + q(z)− |z|2; z ∈ Y },

where q is the quadratic function q(x) = 1
2 |x|

2 and ĝ is the concave envelope of the function
g. See (5.1) below.

2.2 Mass transfers with positively homogenous Kantorovich operators

To any Markov operator, i.e., bounded linear positive operator T : C(Y )→ C(X) such that
T1 = 1, one can associate a backward linear transfer in the following way:

TT (µ, ν) =

{
0 if T ∗(µ) = ν
+∞ otherwise,

(60)

where T ∗ :M(X) →M(Y ) is the adjoint operator. It is then easy to see that T− = T is
the corresponding backward Kantorovich map. If now πx = T ∗(δx), then one can easily see
that T−f(x) =

∫
Y f(y)d πx(y) and that

TT (µ, ν) = 0 if and only if ν(B) =
∫
X πx(B) dµ(x) for any Borel B ⊂ Y .

Conversely, any probability measure π on X × Y induces a forward and backward linear
transfer in the following way:

Iπ(µ, ν) =

{
0 if µ = π1 and ν = π2.
+∞ otherwise,

(61)

where π1 (resp., π2) is the first (resp., second) marginal of π. In this case,

T−f(x) =

∫
Y
f(y)d πx(y) and T+f(y) =

∫
X f(x)d πy(x), (62)

where (πx)x (resp., (πy)y) is the disintegration of π with respect to π1 (resp., π2). Note
however, that we don’t necessarily have here that x → πx is weak∗-continuous, that is T
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maps L1(Y, π2)→ L1(X,π1) and not necessarily C(Y ) to C(X).

Example 2.2: The prescribed push-forward transfer
If σ is a continuous map from X to Y , then

Iσ(µ, ν) =

{
0 if σ#µ = ν
+∞ otherwise,

(63)

is a backward linear transfer with Kantorovich operator given by T−f = f ◦ σ.

The identity transfer corresponds to when X = Y and σ(x) = x, in which case the
corresponding Kantorovich operators are the identity map, that is T+f = T−f = f .

Example 2.3: The prescribed Balayage transfer
Given a convex cone of continuous functions A ⊂ C(X), where X is a compact space, one

can define an order relation between probability measures µ, ν on X, called the A-balayage,
in the following way.

µ ≺A ν if and only if
∫
X ϕdµ 6

∫
X ϕdν for all ϕ in A.

Suppose now that T : C(X) → C(X) is a Markov operator such that δx ≺A πx := T ∗(δx)
for all x ∈ X, we will then call it – as well as its associated transfer TT – an A-dilation.
Similarly, a probability measure π on X ×X is an A-dilation if δx ≺A πx, where (πx)x is
the disintegration of π with respect to its first marginal π1. To each A-dilation π, one can
define a backward linear transfer as above.

Example 2.4: The prescribed Skorokhod transfer
Writing Z ∼ ρ if Z is a random variable with distribution ρ, and letting (Bt)t denote

Brownian motion, and S the corresponding class of –possibly randomized– stopping times.
For a fixed τ ∈ S, one can associate a backward linear transfer in the following way:

Tτ (µ, ν) =

{
0 if B0 ∼ µ and Bτ ∼ ν.
+∞ otherwise.

(64)

Its backward Kantorovich operator is then T−f(x) = Ex[f(Bτ )], where the expectation is
with respect to Brownian motion satisfying B0 = x.

2.3 Optimal linear transfers with zero cost

Let C be a class of positive bounded linear operators T from C(Y ) → C(X) such that
T1 = 1. We can then consider the following correlation,

TC(µ, ν) =

{
0 if there exists T ∈ C with T ∗(µ) = ν
+∞ otherwise.

(65)

In other words,
TC(µ, ν) = inf{TT (µ, ν);T ∈ C}. (66)

We now give a few interesting examples, where TC is again a linear mass transfer.
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Example 2.5: The null transfer
This is simply the map N (µ, ν) = 0 for all probability measures µ on X and ν on Y .

It is easy to see that it is both a backward and forward linear transfer with Kantorovich
operators,

T−f ≡ supy∈Y f(y) and T+f ≡ infx∈X f(x). (67)

Note that

N (µ, ν) = inf{Tσ(µ, ν);σ ∈ C(X;Y )}
= inf{Tπ(µ, ν);π is a transfer plan on X × Y }
= inf{TT (µ, ν);T ∈ C(Y.X), T positive and T1 = 1},

where Iσ and Iπ are the push-forward transfers defined in Example 2.2. This is a particular
case, i.e., when the cost is trivial, of a relaxation result of Kantorovich (e.g., see Villani [64]).

Example 3.6: The Balayage transfer
Let A be a proper closed convex cone in C(X), and define now the balayage transfer B

on P(X)× P(X) via

B(µ, ν) =

{
0 if µ ≺A ν
+∞ otherwise.

(68)

A generalized version of a Theorem of Strassen [60] yields the following relations:

Proposition 2.1. Assume the cone A separates the points of X and that it is stable un-
der finite suprema. Then, for any two probability measures µ, ν on X, the following are
equivalent:

1. µ ≺A ν.

2. There exists an A-dilation π on X ×X such that µ = π1 and ν = π2.

From this follows that

B(µ, ν) = inf{Bπ(µ, ν);π is an A-dilation}. (69)

Moreover, a generalization of Choquet theory developed by Mokobodoski and others [53]
yields that for every µ ∈ P(X), we have

sup{
∫
X
f dσ; µ ≺A σ} =

∫
X
f̂ dµ,

where

f̂(x) = inf{g(x); g ∈ −A, g > f on X} = sup{
∫
X
fdσ; εx ≺A σ}.

It follows that B∗µ(f) =
∫
X f̂ dµ, which means that B is a backward linear transfer whose

Kantorovich operator is T−f = f̂ .
B is also a forward linear transfer with a forward Kantorovich operator is T+f = f̌ ,

where

f̌(x) = sup{h(x);h ∈ A, h 6 f on X} = inf{
∫
X
fdσ; εx ≺A σ}.
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• A typical example is when X is a convex compact space in a locally convex topological
vector space and A is the cone of continuous convex functions. In this case, T−f = f̂
(resp., T+f = f̌) is the concave (resp., convex) envelope of f , and which was the
context of the original Choquet theory.

• If X is a bounded subset of a normed space (E, ‖ · ‖), then A can be taken to be the
cone of all norm-Lipschitz convex functions.

• If X is an interval of the real line, then one can consider A to be the cone of increasing
functions.

• If X is a pseudo-convex domain of Cn, then one can take A to be the cone of Lipschitz
plurisubharmonic functions (see [30]). In this case, if ϕ is a Lipschitz function, then
the Lipschitz plurisubharmonic envelope of ϕ, i.e., the largest Lipschitz PSH function
below ϕ is given by the formula

ϕ̌(x) = inf{
∫ 2π

0
ϕ(P (eiθ)

dθ

2π
;P : C→ X polynonial withP (0) = x}.

Note that ϕ̂ = −ψ̌, where ψ = −ϕ.

Example 2.7: The Skorokhod transfer
Again, letting S be the class of –possibly randomized– Brownian stopping times, and

define

SK(µ, ν) =

{
0 if B0 ∼ µ and Bτ ∼ ν for some τ ∈ S,
+∞ otherwise.

(70)

The following is a classical result of Skorokhod. See, for example [32] for a proof in higher
dimension.

Proposition 2.2. Let A be the cone of Lipschitz subharmonic functions on a domain Ω in
Rn. Then, the following are equivalent for two probability measures µ and ν on Ω.

1. µ ≺A ν (i.e, µ and ν are in subharmonic order).

2. There exists a stopping time τ ∈ S such that B0 ∼ µ and Bτ ∼ ν.

This means that SK is a backward linear transfer with Kantorovich operator given by
T−f = f∗∗, which is the smallest Lipschitz superharmonic function above f . This can
also be written as T−f = Jf , where Jf (x) is a viscosity solution for the heat variational
inequality,

max {f(x)− J(x),∆J(x)} = 0. (71)

Another representation for Jf is given by the following dynamic programming principle,

Jf (x) := sup
τ∈S

Ex
[
f(Bτ )

]
. (72)
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2.4 Mass transfers minimizing a transport cost between two points

The examples in this subsection correspond to cost minimizing transfers, where a cost c(x, y)
of moving state x to y is given.

Example 2.8: Monge-Kantorovich transfers
Any proper, bounded below, function c on X × Y determines a backward and forward

linear transfer. This is Monge-Kantorovich theory of optimal transport. One associates
the map Tc on P(X) × P(Y ) to be the optimal mass transport between two probability
measures µ on X and ν on Y , that is

Tc(µ, ν) := inf
{∫

X×Y
c(x, y)) dπ;π ∈ K(µ, ν)

}
, (73)

where K(µ, ν) is the set of probability measures π on X × Y whose marginal on X (resp.
on Y ) is µ (resp., ν) (i.e., the transport plans). Monge-Kantorovich theory readily yields
that Tc is a linear transfer. Indeed, if we define the operators

T+
c f(y) = inf

x∈X
{c(x, y) + f(x)} and T−c g(x) = sup

y∈Y
{g(y)− c(x, y)}, (74)

for any f ∈ C(X) (resp., g ∈ C(Y )), then Monge-Kantorovich duality yields that for any
probability measures µ on X and ν on Y , we have

Tc(µ, ν) = sup
{∫

Y
T+
c f(y) dν(y)−

∫
X
f(x) dµ(x); f ∈ C(X)

}
= sup

{∫
Y
g(y) dν(y)−

∫
X
T−c g(x) dµ(x); g ∈ C(Y )

}
.

This means that the Legendre transform (Tc)∗µ(g) =
∫
X T

−
c g(x) dµ(x) and T−c is the corre-

sponding backward Kantorovich operator. Similarly, (Tc)∗ν(f) = −
∫
Y T

+
c (−f)(y) dν(y) on

C(X) and T+
c is the corresponding forward Kantorovich operator. See for example Villani

[64].

Example 2.9: The trivial Kantorovich transfer
Any pair of functions c1 ∈ USC(X), c2 ∈ LSC(Y ) defines trivially a linear transfer via

T (µ, ν) =

∫
Y
c2 dν −

∫
X
c1 dµ.

The Kantorovich operators are then T+f = c2 + inf(f − c1) and T−g = c1 + sup(g − c2).

Example 2.10: The Kantorovich-Rubinstein transport
If d : X ×X → R is a lower semi-continuous metric on X, then

T (µ, ν) = ‖ν − µ‖∗Lip := sup

{∫
X
u d(ν − µ);u measurable, ‖u‖Lip 6 1

}
(75)

is a linear transfer, where here ‖u‖Lip := supx6=y
|u(y)−u(x)|
d(x,y) . The corresponding forward Kan-

torovich operator is then the Lipschitz regularization T+f(x) = inf{f(y) + d(y, x); y ∈ X},
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while T−f(x) = sup{f(y)− d(x, y); y ∈ X}. Note that T+ ◦ T−f = T−f .

Example 2.11: The Brenier-Wasserstein distance [15]
We mention this important example even though it is not in a compact setting. If

c(x, y) = 〈x, y〉 on Rd × Rd, and µ, ν are two probability measures of compact support on
Rd, then

W2(µ, ν) = inf
{∫

Rd×Rd
〈x, y〉 dπ;π ∈ K(µ, ν)

}
.

Here, the Kantorovich operators are

T+f(x) = −f∗(−x) and T−g(y) = (−g)∗(−y), (76)

where f∗ is the convex Legendre transform of f .

Example 2.12: Optimal transport for a cost given by a generating function
(Bernard-Buffoni [6])

This important example links the Kantorovich backward and forward operators with the
forward and backward Hopf-Lax operators that solve first order Hamilton-Jacobi equations.
Indeed, on a given compact manifold M , consider the cost:

cL(y, x) := inf{
∫ 1

0
L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, 1),M); γ(0) = y, γ(1) = x}, (77)

where [0, 1] is a fixed time interval, and L : TM → R∪{+∞} is a given Tonelli Lagrangian
that is convex in the second variable of the tangent bundle TM . If now µ and ν are two
probability measures on M , then

TL(µ, ν) := inf
{∫

M×M
cL(y, x) dπ;π ∈ K(µ, ν)

}
is a linear transfer with forward Kantorovich operator given by T+

1 f(x) = Vf (1, x), where
Vf (t, x) being the value functional

Vf (t, x) = inf
{
f(γ(0)) +

∫ t

0
L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, 1),M); γ(t) = x

}
. (78)

Note that Vf is –at least formally– a solution for the Hamilton-Jacobi equation{
∂tV +H(t, x,∇xV ) = 0 on [0, 1]×M,

V (0, x) = f(x).
(79)

Similarly, the backward Kantorovich potential is given by T−1 g(y) = Wg(0, y), Wg(t, y) being
the value functional

Wg(t, y) = sup
{
g(γ(1))−

∫ 1

t
L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, 1),M); γ(t) = y

}
, (80)

which is a solution for the backward Hamilton-Jacobi equation{
∂tW +H(t, x,∇xW ) = 0 on [0, 1]×M,

W (1, y) = g(y).
(81)
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3 Envelopes and representation of Linear transfers

The following relates mass transfers with the optimal weak transports of Gozlan et al. [40].

3.1 Representation of linear transfers as weak transports

Theorem 3.1. Let T : M(X) ×M(Y ) → R ∪ {+∞} be a functional such that {δx;x ∈
X} ⊂ D1(T ). Then, the following are equivalent:

1. T is a backward linear transfer.

2. There is a map T : C(Y ) → USC(X), such that for each µ ∈ D1(T ), Tµ is convex
lower semi-continuous on P(Y ) and

T ∗µ (g) =
∫
X Tg(x) dµ(x) for any g ∈ C(Y ). (82)

3. There exists a bounded below lower semi-continuous function c : X × P(Y ) → R ∪
{+∞} with σ → c(x, σ) convex such that for any pair (µ, ν) ∈ P(X)× P(Y ),

T (µ, ν) =

{
infπ{

∫
X c(x, πx) dµ(x);π ∈ K(µ, ν)}, if µ, ν ∈ P(X)× P(Y ),

+∞ otherwise.
(83)

where (πx)x is the disintegration of π with respect to µ.

The proof of this theorem will be split in Propositions 3.2, 3.3 and 3.4, where we can
provide more details about the needed conditions. The first establishes the easy equivalence
between (1) and (2).

Proposition 3.2. 1) If T is a backward linear transfer with Kantorovich operator T , then

T ∗µ (g) =
∫
X Tg(x) dµ(x) for any g ∈ C(Y ). (84)

2) Conversely, if T satisfies (2) in the above Theorem, then T is a backward linear transfer
and T is a Kantorovich operator.

Proof: 1) Since

T (µ, ν) =

{
sup

{ ∫
Y g dν −

∫
X T

−g dµ; g ∈ C(Y )
}

if µ, ν ∈ P(X)× P(Y ),
+∞ otherwise.

(85)

we have that Tµ > Γ∗
T,µ

, where ΓT,µ is the convex lower semi-continuous function on C(Y )

defined by ΓT,µ(g) =
∫
X Tg(x) dµ(x) since T is a Kantorovich operator. Moreover, Tµ = Γ∗

T,µ

on the probability measures on Y . If now ν is a positive measure with λ := ν(Y ) > 1, then

Γ∗
T,µ

(ν) = sup
{∫

Y
g(y) dν(y)−

∫
X
Tg(x) dµ(x); g ∈ C(Y )

}
> nλ−

∫
X
T (n) dµ

= n(λ− 1)−
∫
X
T (0) dµ,
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where we have used property (3) to say that T (n) = n + T (0). Hence Γ∗
T,µ

(ν) = +∞.
A similar reasoning applies to when λ < 1, and it follows that Tµ = Γ∗

T,µ
and therefore

(Tµ)∗ = Γ∗∗
T,µ

= ΓT,µ since the latter is convex and lower semi-continuous on C(Y ).
2) Conversely, it is clear that since Tµ is convex lower semi-continuous, we have for any

µ ∈ D1(T ),

T (µ, ν) = Tµ(ν) = (Tµ)∗∗(ν) = sup
{∫

Y
g dν −

∫
X
T−g dµ; g ∈ C(Y )

}
.

Moreover, Tg(x) = (Tδx)∗(g), which easily implies that T is a Kantorovich operator.

3.2 Linear transfers and Kantorovich operators as envelopes

We now associate to any convex lower semi-continuous functional on P(X)×P(Y ) a back-
ward and a forward linear transfer. This is closely related to the work of Gozlan et al. [40],
who introduced the notion of weak transport. These are cost minimizing transport plans,
where cost functions between two points are replaced by generalized costs c on X × P(Y ),
where σ → c(x, σ) is convex and lower semi-continuous. We now show that this notion is
essentially equivalent to the notion of backward linear transfer, at least in the case where
Dirac measures belong to the first partial effective domain of the map T , that is when
{δx;x ∈ X} ⊂ D1(T ). We shall prove the following.

Proposition 3.3. Let c : X×P(Y )→ R∪{+∞} be a bounded below, lower semi-continuous
function such that σ → c(x, σ) is convex, and define for any pair (µ, ν) ∈ M(X)×M(Y ),
the functional

Tc(µ, ν) =

{
infπ{

∫
X c(x, πx) dµ(x);π ∈ K(µ, ν)}, if µ, ν ∈ P(X)× P(Y ),

+∞ otherwise.
(86)

where (πx)x is the disintegration of π with respect to µ.
Then, Tc is a backward linear transfer with Kantorovich operator

T−c g(x) = sup{
∫
Y
g(y) dσ(y)− c(x, σ);σ ∈ P(Y )}. (87)

Proof: We first compute the Legendre transform of the functional (Tc)µ. Since Tc is +∞
outside of the probability measures, we can write

(Tc)∗µ(g) = sup{
∫
Y
g dν − Tc(µ, ν); ν ∈ P(Y )}

= sup{
∫
Y
g(y) dν(y)−

∫
X
c(x, πx) dµ(x); ν ∈ P(Y ), π ∈ K(µ, ν)}

= sup{
∫
X

∫
Y
g(y)dπx(y) dµ(x)−

∫
X
c(x, πx) dµ(x);π ∈ K(µ, ν)}

6 sup{
∫
X

∫
Y
g(y)dσ(y) dµ(x)−

∫
X
c(x, σ) dµ(x);σ ∈ P(Y )}

6
∫
X
{ sup
σ∈P(Y )

{
∫
Y
g(y)dσ(y)− c(x, σ) dµ}}

=

∫
X
T−c g(x)dµ(x).
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On the other hand, use your favorite selection theorem to find a measurable selection x→ π̄x
from X to P(Y ) such that T−c g(x) =

∫
Y g(y)dπ̄x(y) − c(x, π̄x) for every x ∈ X. It follows

that

(Tc)∗µ(g) = sup{
∫
Y
g dν − Tc(µ, ν); ν ∈ P(Y )}

= sup{
∫
Y
g dν −

∫
X
c(x, πx)dµ(x); ν ∈ P(Y ), π ∈ K(µ, ν)}.

Let ν̄(A) =
∫
X π̄x(A) dµ(x). Then, π̄(A×B) =

∫
A π̄x(B) dµ belongs to K(µ, ν̄), hence

(Tc)∗µ(g) >
∫
Y
g dν̄ −

∫
X
c(x, π̄x)dµ(x)

=

∫
Y

∫
X
g(y)dπ̄x(y) dµ(x)−

∫
X
c(x, π̄x)dµ(x)

=

∫
X
{
∫
Y
g(y)dπ̄x(y)− c(x, π̄x)} dµ(x)

=

∫
X
T−c g(x)dµ(x),

hence (Tc)∗µ(g) =
∫
X T

−
c g(x)dµ(x).

We now show that Tµ is convex. For that let ν = λν1 + (1 − λ)ν2 and find (π1
x)x and

(π2
x)x in P(Y ) such that∫

X π
i
xdµ(x) = νi and

∫
X c(x, π

i
x) dµ(x) 6 Tc(µ, νi) + ε for i = 1, 2.

It is clear that the plan defined by π(A × B) :=
∫
A(λπ1

x(B) + (1 − λ)π2
x(B))dµ(x) belongs

to K(µ, ν) and therefore, using the convexity of c in the second variable, we have

Tc(µ, ν) 6
∫
X
c(x, πx) dµ(x) 6

∫
X
λc(x, πix) dµ(x) +

∫
X

(1− λ)c(x, πix) dµ(x)

6 λTc(µ, ν1) + (1− λ)Tc(µ, ν2) + ε.

It follows that for every ν ∈ P(Y ),

Tµ(ν) = (Tc)∗∗µ = sup{
∫
Y
f(y)dν −

∫
X
T−c fdµ; f ∈ C(Y )}.

Moreover, it is easy to see that Tc satisfies properties a), b) and c) of a Kantorovich opera-
tor. We can therefore conclude that T is a backward linear transfer. This establishes that
3) implies 1) in Theorem 3.1.

That (1) implies 3) in Theorem 3.1 will follow from the following general result.

Proposition 3.4. Let T : P(X) × P(Y ) → R ∪ {+∞} be a bounded below lower semi-
continuous functional that is convex in each of the variables such that {δx;x ∈ X} ⊂ D1(T ),
and consider T to be the backward linear transfer associated to c(x, σ) = T (δx, σ) by the
previous proposition, and let

T̃ (µ, ν) :=

∫
X
T (x, ν)dµ(x). (88)

Then, T 6 T 6 T̃ , and
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1. T is the smallest backward linear transfer greater than T .

2. T is the largest backward linear transfer smaller than T̃ .

Proof: Note that

T−g(x) = sup{
∫
Y
g(y) dσ(y)− T (δx, σ);σ ∈ P(Y )}, (89)

and therefore for each x ∈ X, we have for each g ∈ C(Y )

T−g(x) = (T δx)∗(g) = (Tδx)∗(g). (90)

To show that T 6 T̃ , write for an arbitrary µ ∈ P(X),

(T µ)∗(g) =

∫
X
T−c g(x)dµ(x)

=

∫
X

sup
σ
{
∫
Y
g dσ − T (x, σ);σ ∈ P(Y )}dµ(x)

> sup
σ
{
∫
Y
g dσ −

∫
X
T (x, σ)dµ(x);σ ∈ P(Y )}

= sup{
∫
Y
g dσ − T̃ (µ, σ);σ ∈ P(Y )}

= (T̃µ)∗(g),

hence T 6 T̃ since both of them are convex in the second variable.
Note that T (δx, ν) = T̃ (δx, ν), hence if S 6 T̃ and S is a backward linear transfer with S−

as a Kantorovich operator, then

S−g(x) = (Sδx)∗(g) > (T̃δx)∗(g) = (T ∗δx(g) = T−g(x),

and therefore S 6 T . It follows that T is the greatest backward linear transfer smaller than
T̃ .

To show that T 6 T , note that since T is jointly convex and lower semi-continuous,
then for each f ∈ C(Y ), the functional

µ→ (Tµ)∗(f) := sup{
∫
Y
fdσ − T (µ, σ);σ ∈ P(Y )}

is upper semi-continuous and concave. It follows from Jensen’s inequality that

(Tµ)∗(f) >
∫
X

(Tδx)∗(f)dµ(x) =

∫
X
T−f(x)dµ(x),

hence

T (µ, ν) = (Tµ)∗∗(ν) 6 sup{
∫
Y
fdν −

∫
X
T−fdµ; f ∈ C(Y )} = T (µ, ν).

If now S > T , then S > T , and if S is a linear transfer, then S = S > T , and therefore T
is the smallest backward linear transfer greater than T .
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Remark 3.5. A similar construction can be done to associate a forward linear transfer T +

to a given functional T on P(X)×P(Y ) provided {δy; y ∈ Y } ⊂ D2(T ). Note that one can
then define T as a backward (resp., forward) linear transfer if T = T − (resp., if T = T +).

Remark 3.6. Any lower continuous convex functional T on P(X) × P(Y ) that is finite
on the set of Dirac measures gives rise to a backward and forward optimal mass transport
Tc(µ, ν) associated to the cost function c(x, y) = T (δx, δy). It is then easy to see that

T ∗δx(g) = sup{
∫
Y gdν − T (δx, ν); ν ∈ P(Y )} > sup{g(y)− c(x, y); y ∈ Y } = T−c g(x),

hence
Tc(µ, ν) > T (µ, ν) > T (µ, ν). (91)

However, the inequality (91) is often strict. Moreover, transfers need not be defined on
Dirac measures, a prevalent situation in stochastic transport problems.

Dually, we give the following characterization of Kantorovich operators, which in partic-
ular, yields a uniqueness statement for the duality between them and linear transfers.

Theorem 3.7. Let T : C(Y )→ USC(X) be a map such that for every x ∈ X,

inf
ν∈P(Y )

sup
g∈C(Y )

{ ∫
Y g dν − Tg(x)

}
< +∞. (92)

Then, there exists a Kantorovich operator T such that

1. T is the largest Kantorovich operator smaller than T on C(Y ).

2. T can be written as

Tf(x) = sup
σ∈P(Y )

inf
g∈C(Y )

{
∫
Y

(f − g) dσ + Tg(x)}. (93)

Proof. Consider the functional on M(X)×M(Y ) given by

T (µ, ν) =

{
sup

{ ∫
Y g dν −

∫
X Tg dµ; g ∈ C(Y )

}
if µ, ν ∈ P(X)× P(Y ),

+∞ otherwise.
(94)

Note that T is bounded below, convex, lower semi-continuous functional and condition
(92) means that {δx;x ∈ X} ⊂ D1(T ). Hence Proposition 3.3 applies to yield a backward
linear transfer T with a corresponding backward Kantorovich operator defined as Tf(x) =
sup
σ
{
∫
fdσ − T (δx, σ)}. Note now that

(Tδx)∗f = Tf(x)

= sup
σ
{
∫
fdσ − T (δx, σ)}

= sup
σ

inf
g
{
∫
fdσ −

∫
gdσ + Tg(x)}

6 inf
g

sup
σ
{
∫
fdσ −

∫
gdσ + Tg(x)}

= inf
g
{sup(f − g) + Tg(x)}

= Tf(x),
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If now S is a Kantorovich map such that S 6 T , then

Tf(x) = sup
σ
{
∫
fdσ − T (δx, σ)}

= sup
σ

inf
g
{
∫
fdσ −

∫
gdσ + Tg(x)}

> sup
σ

inf
g
{
∫
fdσ −

∫
gdσ + Sg(x)}

= inf
g

sup
σ
{
∫
fdσ −

∫
gdσ + Sg(x)}

= inf
g
{sup(f − g) + Sg(x)}

= inf
g
{S[sup(f − g) + g](x)}

> Sf(x).

where the last three steps used the fact that S satisfies properties (a), (b) and (c) of a
Kantorovich operator.

3.3 Powers and recessions of linear transfers

Proposition 3.8. Let T be a convex coupling on P(X)× P(Y ) of the form

T (µ, ν) := sup
i∈I
Ti(µ, ν) (95)

where for each i ∈ I, Ti(µ, ν) = sup
f∈C(Y )

{
∫
Y fdν −

∫
X Tifdµ} for some map Ti : C(Y ) →

USC(X). Assume {δx;x ∈ X} ⊂ D1(T ) and consider the envelope T of T and the corre-
sponding Kantorvich operator T . Then,

1. T is given by the formula

Tf(x) = sup
σ∈P(Y )

inf
g∈C(Y )

{
∫
Y

(f − g) dσ + inf
i
Tig(x)}. (96)

and therefore satsifies Tf 6 infi Tif on C(Y ).

2. If each Ti is a Kantorovich operator, then Tf = infi Tif if and only if f → inf
i
Tif(x)

is convex .

Proof. Note first that

T (µ, ν) = sup
i
Ti(µ, ν) = sup

i
sup

f∈C(Y )
{
∫
Y
fdν −

∫
X
Tifdµ}

= sup{
∫
Y
fdν − inf

i

∫
X
Tifdµ; f ∈ C(Y )}
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and (Tµ)∗(f) 6 inf
i

∫
X Tifdµ. Moreover, f → (Tµ)∗(f) is the convex envelope of f →

inf
i

∫
X Tifdµ. If now T is the Kantorovich operator for the envelope T , then

Tf(x) = sup
σ∈P(Y )

inf
g∈C(Y )

{
∫
Y

(f − g) dσ + inf
i
Tif},

and consequently, Tf(x) = (Tδx)∗(f) 6 infi Tif(x).
If f → inf

i
Tif(x) is convex and lower semi-continuous for any x ∈ X, then the envelope

property of f → Tf(x) yield that Tf(x) = infi Tif(x). Note that if each Ti is a Kantorovich
operator, then f → infi Tif satisfies properties (a) and (c) of a Kantorovich operator but
not necessarily the convexity assumption (b).

Corollary 3.9. Let T be a backward linear transfer with Kantorovich operator T−.

1. If α : R+ → R is a convex increasing function on R, then α(T ) is a backward convex
transfer, whose envelope α(T ) has a Kantorovich operator equal to

T−α f = inf
s>0
{sT−(

f

s
) + α⊕(s)}, (97)

where α⊕(t) = sup{ts− α(s); s > 0}.

2. In particular, ifWc(µ, ν) := inf
{ ∫

X×Y c(x, y)) dπ;π ∈ K(µ, ν)
}

is the Monge-Kantorovich
transport associated to a cost c, and p > 1, then

Wp
c (µ, ν) 6Wp

c(µ, ν) = inf
π
{
∫
X
Wp
c (δx, πx) dµ(x);π ∈ K(µ, ν)}.

Proof: It suffices to note that α(t) = sup{ts− α⊕(s); s > 0}, hence

α(T (µ, ν)) = sup
{
s

∫
Y
f dν − s

∫
X
T−f dµ− α⊕(s); s ∈ R+, f ∈ C(Y )

}
= sup

{∫
Y
h dν − s

∫
X
T−(

h

s
) dµ− α⊕(s); s ∈ R+, h ∈ C(Y )

}
.

Therefore α(T ) is a convex coupling and its envelope α(T ) has a Kantorovich operator

T−α f 6 inf
s>0
{sT−(

f

s
) + α⊕(s)}. (98)

Note however that for each s > 0, T−s f := sT−(hs ) + α⊕(s) is a backward Kantorovich

operator. Moreover, the function (s, f)→ sT−(fs ) +α⊕(s) is jointly convex on R+×C(Y ),
hence the infimum in s is convex in f and therefore we have equality in (97).

Corollary 3.10. Let T be a backward linear transfer with Kantorovich operator T−. Then,
the functional

Tf (µ, ν) =

{
0 if T (µ, ν) < +∞
+∞ otherwise,

(99)

is a backward linear transfer with Kantorovich operator equal to

T−r f(x) = lim
λ→+∞

T−(λf)(x)

λ
. (100)
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Proof: Given any bounded below, lower semi-continuous and convex functional T : P(X)×
P(Y ) → R ∪ {+∞} such that {δx;x ∈ X} ⊂ D1(T ), we can consider the Kantorovich
operator that generates its backward linear transfer envelope T̄ , that is

T−g(x) = sup{
∫
Y
g(y) dσ(y)− T (δx, σ);σ ∈ P(Y )}, (101)

and its corresponding recession function

T−r f(x) = lim
λ→+∞

T−(λf)(x)

λ
.

It is then clear that T−r is a Kantorovich operator and

T−r f(x) = sup{
∫
Y
fdσ;σ ∈ P(Y ), T (δx, σ) < +∞}. (102)

The corresponding linear transfer

Tr(µ, ν) = sup
{∫

Y
g(y) dν(y)−

∫
X
T−r g(x) dµ(x); g ∈ C(Y )

}
. (103)

Since T−r is positively homogenous, its associated transfer Tr can only take the values 0 and
+∞. It is also clear that Tr is the envelope of Tf , and therefore Tf 6 T̄f = Tr. We now
show that if T is a linear transfer, then Tr 6 Tf . Indeed, assume that Tf (µ, ν) = 0, then
T (µ, ν) < +∞, hence for every f ∈ C(X) we have∫

X
T−(tf)dµ > t

∫
X
f dν − T (µ, ν),

hence by dividing by t and letting t→∞, we get from the monotone convergence theorem
that

∫
X Trfdµ >

∫
X fdν and hence Tr(µ, ν) 6 0 = Tf (µ, ν).

Remark 3.11. Note that the above shows that for a general backward linear transfer T
with Kantorovich operator T− and Recession operator T−r , we have

T (µ, ν) < +∞ if and only if
∫
X Trfdµ >

∫
X fdν for every f ∈ C(Y ). (104)

The latter condition can be seen as a generalized order condition between µ and ν that
extends the notion of convex order. Indeed, if T is the balayage transfer, then T−f =
T−r f = f̂ , which is the concave envelope of f , and the condition does coincide with the
convex order between measures.

4 Extension of Kantorovich operators

In order to study the ergodic properties of a Kantorovich operator T : C(X) → USC(X),
one needs to iterate it and therefore it is necessary to extend it to an operator T :
USC(X)→ USC(X) and eventually to T : USCσ(X)→ USCσ(X) with the same proper-
ties (a), (b), (c) of a Kantorovich operator.
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In order to define such an extension, we assume that T is proper so that we can associate
a linear transfer T on P(X)× P(Y ) in such a way that

Tf(x) = sup{
∫
Y
fdν − T (δx, ν); ν ∈ P(Y )} for every f ∈ C(Y ). (105)

We shall then extend T in such a way that (105) holds for every f ∈ USCσ(Y ). Properties
(a), (b) and (c) will then follow.

4.1 Extension of Kantorovich operators from C(Y ) to USCσ(Y )

Theorem 4.1. Let T be a backward linear transfer such that {δx;x ∈ X} ⊂ D1(T ), and
let T : C(Y )→ USCσ(X) be the associated Kantorovich operator.

1. For f ∈ USC(Y ), define T f̂(x) := inf{Tg(x) ; g ∈ C(Y ), g > f}, then

T f̂(x) = sup{
∫
Y fdν − T (δx, ν); ν ∈ P(Y )}, (106)

and T̂ maps USC(Y ) to USCσ(X).

Moreover, if T : C(Y )→ USC(X), then T̂ maps USC(Y ) to USC(X).

2. For f ∈ USCσ(Y ), define T̂̂f := sup{T ĝ ; g ∈ USC(Y ) , g 6 f}, then

T̂̂f(x) = sup{
∫
Y
fdν − T (δx, ν); ν ∈ P(Y )}, (107)

and T̂̂ maps USCσ(Y ) to USCσ(X).

Proof. 1) It is clear that for any g ∈ C(Y ), g > f ,

sup{
∫
Y
f dσ − T (δx, σ) ; σ ∈ P(Y )} 6 sup{

∫
Y
g dσ − T (δx, σ) ; σ ∈ P(Y )} = Tg(x).

Therefore sup{
∫
Y f dσ − T (δx, σ) ; σ ∈ P(Y )} 6 inf{Tg(x) ; g ∈ C(Y ), g > f} = T f̂(x).

On the other hand, let gn ↘ f be a decreasing sequence of continuous functions. Then,

T f̂(x) 6 Tgn(x) = sup{
∫
Y
gn dσ − T (δx, σ) ; σ ∈ P(Y )} =

∫
Y
gn dσn − T (δx, σn),

for some probability measure σn. Consider an increasing subsequence nk so that σnk → σ̄.
Then for any j 6 k, T f̂(x) 6

∫
Y gnj dσnk − T (δx, σnk) where we have used the fact that

gnk 6 gnj whenever j 6 k. For this fixed j, we have that gnj ∈ C(Y ) and so
∫
gnj dσnk →∫

gnj dσ̄ as k →∞. Hence we obtain

T f̂(x) 6 lim
k→∞

∫
Y
gnj dσnk − lim inf

k→∞
T (δx, σnk) 6

∫
Y
gnj dσ̄ − T (δx, σ̄).

Finally we take a limit as j →∞ to obtain T f̂(x) 6 sup{
∫
Y f dσ−T (δx, σ) ; σ ∈ P(Y )}. It

follows that T f̂ satisfies (106) and therefore T f̂ ∈ USCσ. Note that T f̂ is bounded above
since T f̂(x) 6 supy∈Y f(y)−mT , where mT is a lower bounded for T .
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If now T : C(Y )→ USC(X), then T̂ is in USC(X) by its definition.
2) For f ∈ USCσ(Y ), we use the first part to write for any g ∈ USC(Y ), g 6 f ,

sup{
∫
f dσ − T (δx, σ) ; σ ∈ P(Y )} > T̃ g(x)

and so it is greater than T̂̂f(x). On the other hand, for an increasing gn ↗ f , gn ∈ USC(Y ),

T̂̂f(x) > T ĝn(x) >
∫
gn dσ − T (δx, σ), for any σ ∈ P(Y ).

By the monotone convergence of gn to f , we may take the limit as n → ∞ in the above
inequality, and conclude

T̂̂f(x) >
∫
f dσ − T (δx, σ) for any σ ∈ P(Y ),

whereby taking the supremum in σ yields T̂̂f(x) > sup{
∫
f dσ−T (δx, σ) ; σ ∈ P(Y )}, and

we are done showing that T̂̂ maps USCσ(Y ) to USCσ(X), while satisfying (107).

The following continuity properties of T along monotone sequences of USC(Y ) and
USCσ(Y ) will be crucial for Sections 8 and 9.

Lemma 4.2. Let T be a backward linear transfer as above, and let T denote its correspond-
ing Kantorovich operator, extended to USCσ(Y ).

1. If fn ∈ USC(Y ), f ∈ USCσ(Y ) with fn ↘ f , then limn→∞ Tfn = Tf .

2. If fn ∈ USCσ(Y ), f ∈ USCσ(Y ) with fn ↗ f , then limn→∞ Tfn = Tf .

Proof. 1) By monotonicity, Tf 6 lim infn Tfn. On the other hand let σn achieve the
supremum in the definition of Tfn(x), i.e.,

Tfn(x) =

∫
fn dσn − T (δx, σn).

Extract an increasing subsequence nk so that lim supn Tfn(x) = limk Tfnk(x) and σnk → σ̄.
Then as before, we have Tfnk(x) 6

∫
fnj dσnk − T (δx, σnk) for fixed j 6 k. As fnj ∈

USC(Y ), it follows that lim supn Tfn(x) 6
∫
fnj dσ̄ − T (δx, σ̄). Then we let j → ∞ and

use monotone convergence.
2) Again, by monotoncity, Tf > lim supn Tfn(x). On the other hand, Tfn(x) >

∫
fn dσ−

T (δx, σ) for all σ. Hence by monotone convergence, lim infn Tfn(x) >
∫
f dσ−T (δx, σ) for

all σ. Taking the supremum over σ yields lim infn Tfn(x) > Tf(x).

Remark 4.3. We note that In general, the operator T cannot be extended to the class
Cδσδ(Y ) = USCσδ(Y ), and the continuity property of T in item (1) of the above lemma
cannot be extended to sequence fn ∈ USCσ(Y ).

Corollary 4.4. Let T : P(X)×P(Y )→ R∪{+∞} be a backward linear transfer such that
{δx;x ∈ X} ⊂ D1(T ). Then,
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1. For any (µ, ν) ∈ P(X)× P(Y ), we have

T (µ, ν) = sup
{∫

Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x); g ∈ LSC(Y )

}
= sup

{∫
Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x); g ∈ USC(Y )

}
= sup

{∫
Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x); g ∈ USCσ(Y )

}
.

2. The Legendre transform formula (82) for Tµ, which holds for continuous functions on
Y , also holds for g ∈ USCσ(Y ), that is

T ∗µ (g) := sup{
∫
Y g dσ − T (µ.σ);σ ∈ P(Y )} =

∫
X T

−g dµ for all g ∈ USCσ(Y ).
(108)

Proof. It is clear that T (µ, ν) is smaller than all the expressions on its right. It is also
clear that it suffices to show that

T (µ, ν) > sup
{∫

Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x); g ∈ USCσ(Y )

}
.

For that recall from Section 2 that for any g ∈ USCσ(Y ) we have for every x ∈ X,

T−g(x) = sup{
∫
Y
g(y) dσ(y)− T (x, σ);σ ∈ P(Y )}. (109)

Take now any π ∈ K(µ, ν) and its disintegration (πx)x in such a way that ν(A) =
∫
X πx(A) dµ(x),

then

T−g(x) >
∫
Y
g(y) dπx(y)− T (x, πx),

hence,∫
Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x) 6

∫
Y
g(y) dν(y)−

∫
X

∫
Y
g(y) dπx(y) dµ(x) +

∫
X
T (x, πx) dµ(x)

6
∫
X
T (x, πx) dµ.

It follows from Theorem 3.1 that∫
Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x) 6 T (µ, ν), (110)

and (1) is done.
For (2) note first that (110) yields that

∫
X T

−g(x) dµ(x) > T ∗µ (g). On the other hand,
assume g ∈ USC(Y ) and use (109) to find a measurable selection x→ π̄x from X to P(Y )
such that

T−g(x) =

∫
Y
g(y)dπ̄x(y)− c(x, π̄x) for every x ∈ X,
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and let σ(A) =
∫
X π̄x(A) dµ(x), then∫

X
T−g(x) dµ(x) =

∫
X

∫
Y
g(y)dπ̄x(y) dµ(x)−

∫
Z
c(x, πx) dµ(x)

6
∫
Y
g(y) dσ(y)− T (µ, σ),

hence
∫
X T

−g(x) dµ(x) 6 T ∗µ (g). Note now that (108) carries through increasing limits,
hence it also holds for g ∈ USCσ(Y ).

4.2 Conjugate functions for bi-directional transfers

Suppose now that T is both a backward and forward transfer with Kantorovich operators
T− and T+. We have the following notion motivated by the theory of mass transport.

Definition 4.5. Say that a pair (f1, f2) ∈ USC(Y )× LSC(X) are conjugate if:

T−f1 = f2 and T+f2 = f1. (111)

The following proposition shows in particular that for any function g ∈ C(Y ), the couple
(T−g, T+ ◦ T−g) form a conjugate pair.

Proposition 4.6. Suppose T : P(X)×P(Y )→ R∪{+∞} is both a forward and backward
linear transfer, and that {(δx, δy); (x, y) ∈ X × Y } ⊂ D(T ). Assume that T− : C(Y ) →
USC(X) and that T+ : C(X)→ LSC(Y ), then for any g ∈ C(Y ) (resp.,f ∈ C(X))

T+ ◦ T−g(y) > g(y) for y ∈ Y, T− ◦ T+f(x) 6 f(x) for x ∈ X, (112)

and
T− ◦ T+ ◦ T−g = T−g and T+ ◦ T− ◦ T+f = T+f. (113)

In particular,

T (µ, ν) = sup
{∫

Y
T+ ◦ T−g(y) dν(y)−

∫
X
T−g dµ(x); g ∈ C(Y )

}
(114)

= sup
{∫

Y
T+f(y) dν(y)−

∫
X
T− ◦ T+f dµ(x); f ∈ C(X)

}
. (115)

Proof: Note that USC(X) ⊂ LSCδ(X), hence for ν ∈ P(Y ),∫
Y
T+ ◦ T−g dν = −T ∗ν (−T−g)

= − sup{−
∫
X
T ∗δx(g) dµ(x)− T (µ, ν);µ ∈ P(X)}

= inf{
∫
X
T ∗δx(g) dµ(x) + T (µ, ν);µ ∈ P(X)}

> inf{
∫
X
T ∗δx(g) dµ(x) +

∫
Y
g dν −

∫
X
T ∗δx(g) dµ;µ ∈ P(X)}

=

∫
Y
g dν.

The last item follows from the above and the monotonicity property of the Kantorovich
operators.
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5 Linear transfers which are not mass transports

We now give examples of linear transfers, which do not fit in the framework of Monge-
Kantorovich theory.

5.1 Linear transfers associated to weak mass transports

Weak mass transportations also arise from the work of Marton, who extended the work of
Talagrand. The paper of Gozlan et al. [40] exhibit many examples of which we single out
the following.

Example 4.2: Marton transports are backward linear transfers (Marton [47, 48])
These are transports of the following type:

Tγ,d(µ, ν) = inf

{∫
X
γ

(∫
Y
d(x, y)dπx(y)

)
dµ(x);π ∈ K(µ, ν)

}
, (116)

where γ is a convex function on R+ and d : X×Y → R is a lower semi-continuous functions.
Marton’s weak transfer correspond to γ(t) = t2 and d(x, y) = |x− y|, which in probabilistic
terms reduces to

T2(µ, ν) = inf
{
E[E[|X − Y | |Y ]2];X ∼ µ, Y ∼ ν

}
. (117)

This is a backward linear transfer with Kantorovich potential

T−f(x) = sup

{∫
Y
f(y)dσ(y)− γ

(∫
Y
d(x, y) dσ(y)

)
; σ ∈ P(Y )

}
.

We now give applications to transfers that are mostly dependent on the barycenter of the
measures involved.

Proposition 5.1. Let T be a backward linear transfer on P(X)×P(Y ), where Y is convex
compact such that for some lower semi-continuous functional c : X × Y → R, we have

T (x, σ) = c(x,

∫
Y
y dσ(y)) for all x ∈ X and σ ∈ P(Y ),

where
∫
Y y dσ(y) denotes the barycenter of σ. Then, for every f ∈ C(Y ),

T−f(x) = sup{f̂(y)− c(x, y); y ∈ Y },

where f̂ is the concave envelope of f , i.e., the smallest concave usc function above f .

Proof: Note that z is the barycenter of a probability measure σ if and only if δz ≺C σ
where C is the cone of convex functions. Write now

T−f(x) = sup{
∫
Y
f dσ − c(x,

∫
Y
y dσ(y));σ ∈ P(Y )}

= sup
z∈Y

sup{
∫
f dσ − c(x, y);σ ∈ P(Y ), δy ≺ σ}

= sup
z∈Y
{f̂(z)− c(x, z)}.
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Example 4.3: A barycentric cost function (Gozlan et al. [40])
Consider the (weak) transport

T (µ, ν) = inf

{∫
X
‖x−

∫
Y
ydπx(y)‖ dµ(x);π ∈ K(µ, ν)

}
. (118)

Again, this is a backward linear transfer, with Kantorovich potential

T−f(x) = sup{f̂(y)− ‖y − x‖; y ∈ Rn},

where f̂ is the concave envelope of f .
Note that the same holds if one uses other cones for balayage, such as the cone of sub-

harmonic or plurisubharmonic functions.

Example 4.4: The variance functional
If the transfer is given by the variance functional

T (µ, ν) := I(ν) = −var(ν) := |
∫
Y
y dν|2 −

∫
Y
|y|2 dν(y),

then, by letting q be the quadratic function q(y) = |y|2, we have

T−f(x) = sup{
∫
Y
f dσ − |

∫
Y
y dσ|2 +

∫
Y
|y|2 dσ(y);σ ∈ P(Y )}

= sup{
∫
Y

(f + q) dσ − |
∫
Y
y dσ|2;σ ∈ P(Y )}

=S−(f + q)(x),

where S− is the Kantorovich operator associated to the transfer S(µ, ν) := |
∫
Y y dσ|2,

which only depends on the barycenter and therefore S−g = sup{ĝ(z) − |z|2; z ∈ Y }. It
follows that

T−f = sup{f̂ + q(z)− |z|2; z ∈ Y }.

Cost minimizing mass transport with additional constraints give examples of one-directional
linear transfers. We single out the following:

Example 4.5: Martingale transports are backward linear transfers
Martingale transports are C-dilations where C is the cone of convex continuous functions

on Rn. If c : Rd × Rd → R is a continuous cost function, then define the weak cost as

c̃(x, σ) =

{ ∫
Rd c(x, y) dσ(y) if δx ≺C σ,

+∞ if not.
(119)

The corresponding martingale transport is then

TM (µ, ν) = inf{
∫
Rd×Rd

c̃(x, πx) d µ;π ∈ K(µ, ν)}.

Equivalently, if µ, ν are two probability measures we then consider MT (µ, ν) to be the
subset of K(µ, ν) consisting of the martingale transport plans, that is the set of probabilities
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π on Rd × Rd with marginals µ and ν, such that for µ-almost x ∈ Rd, the component πx
of its disintegration (πx)x with respect to µ, i.e. dπ(x, y) = dπx(y)dµ(x), has its barycenter
at x. As mentioned above,

MT (µ, ν) 6= ∅ if and only if µ ≺C ν. (120)

One can also use the probabilistic notation, which amounts to minimize EP c(X,Y ) over all
martingales (X,Y ) on a probability space (Ω,F , P ) into Rd × Rd (i.e. E[Y |X] = X) with
laws X ∼ µ and Y ∼ ν (i.e., P (X ∈ A) = µ(A) and P (Y ∈ A) = ν(A) for all Borel set
A in Rd). Note that in this case, the disintegration of π can be written as the conditional
probability πx(A) = PY ∈ A|X = x.

The martingale transport can be written as

TM (µ, ν) =

{
inf{

∫
Rd×Rd c(x, y) dπ(x, y);π ∈MT (µ, ν)} if µ ≺C ν

+∞ if not.
(121)

This s a backward linear transfer with a backward Kantorovich operator given by

T−Mf(x) = f̂c,x(x), where f̂c,x is the concave envelope of the function fc,x : y → f(y)− c(x, y).

See Henri-Labordère [42] and Ghoussoub-Kim-Lim [31] for higher dimensions.

Example 4.6: Schrödinger bridge (Gentil-Leonard-Ripani [29])
Let M be a compact Riemannian manifold and fix some reference non-negative measure

R on path space Ω = C([0, 1],M). Let (Xt)t be a random process on M whose law is
R, and denote by R01 the joint law of the initial position X0 and the final position X1,
that is R01 = (X0, X1)#R. For example (see [29]), assume R is the reversible Kolmogorov
continuous Markov process associated with the generator 1

2(∆ − ∇V · ∇) and the initial

measure m = e−V (x)dx for some function V .
For probability measures µ and ν on M , define

TR01(µ, ν) := inf{
∫
M
H(rx1 , πx)dµ(x) ; π ∈ K(µ, ν), dπ(x, y) = dµ(x)dπx(y)} (122)

where dR01(x, y) = dm(x)drx1 (y) is the disintegration of R01 with respect to its initial
measure m. By Theorem ??, TR01 is a backward linear transfer (corresponding to the weak
cost c(x, p) = H(rx1 , p)). Its Kantorovich operator is given by

T−f(x) = logERxe
f(X1) = logS1(ef )(x),

where (St) is the semi-group associated to R.
The transfer (122) is associated to the maximum entropy formulation of the Schrödinger

bridge problem in the following way: Define the entropic transportation cost between µ and
ν via the formula

SR(µ, ν) = inf{
∫
M×M

log(
dπ

dR01
) dπ;π ∈ K(µ, ν)}. (123)

Then, under appropriate conditions on V (e.g., if V is uniformly convex), then

TR01(µ, ν) = SR(µ, ν)−
∫
M

log(
dµ

dm
) dµ.
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Note that when V = 0, the process is Brownian motion with Lebesgue measure as its initial

reversing measure, while when V (x) = |x|2
2 , R is the path measure associated with the

Ornstein-Uhlenbeck process with the Gaussian as its initial reversing measure.

5.2 One-sided transfers associated to stochastic mass transport

Let M be a manifold (compact manifold or Rn) and consider a Lagrangian on phase space
L : TM → [0,∞). Let (Ω,F ,P) be a complete probability space with normal filtration
{Ft}t>0, and define A[0,t] to be the set of continuous semi-martingales X : Ω × [0, t] → M

such that there exists a Borel measurable drift β : [0, t]× C([0, t])→ Rd for which

1. ω 7→ β(s, ω) is B(C([0, s]))+-measurable for all s ∈ [0, t], where B(C([0, s])) is the
Borel σ-algbera of C[0, s].

2. W (s) := X(s) − X(0) −
∫ s

0 β(s′) ds′ is a σ(X(s) ; 0 6 s 6 t) M -valued Brownian
motion.

For each β, we shall denote the corresponding X by Xβ in such a way that

dXβ(t) = β(t)dt+ dW (t). (124)

Example 4.7: Stochastic mass transport between two probability measures
Consider the following functional T : P(M)× P(M) → R ∪ {+∞} defined for any pair

of probability measures µ0 and µ1 on M via the formula:

T (µ0, µ1) := inf

{
E
∫ 1

0
L(Xβ(s), β(s)) ds ; X(0) ∼ µ0, X(1) ∼ µ1, X ∈ A[0,1]

}
, (125)

This stochastic transport does not fit in the standard optimal mass transport theory since it
does not originate in the optimization according to a cost between two deterministic states.
However, it still enjoy a dual formulation (first proven in Mikami-Thieullin [52] for the space
Rd) that permits it to be realised as a backward linear transfer. In fact, by introducing the
operator Tt : C(M)→ USC(M) via the formula

Ttf(x) := sup
X∈A[0,t]

{
E [f(X(t))|X(0) = x]− E

[∫ t

0
L(X(s), βX(s,X)) ds|X(0) = x

]}
,

(126)
then the duality relation between T and Tt can be readily detailed. Indeed, an adaptation
of the proofs of Mikami-Thieullin [52] yields the following.

Proposition 5.2. Under suitable conditions on L (for example if L(x, β) = 1
2 |β|

2), the
following assertions hold:

1. T is a backward linear transfer on P(M) × P(M) with Kantorovich operator T1. is
the unique viscosity solution of

∂u

∂t
(t, x) +

1

2
∆xu(t, x) +H(x,∇xu(t, x)) = 0, (t, x) ∈ [0, 1)×M, (127)

with u(1, x) = f(x).
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2. In particular, for any pair of probability measures µ0 and µ1 on M , we have

T (µ0, µ1) = sup{
∫
M
u(1, x)dµ1(x)−

∫
M
u(0, x)dµ0(x);u(t, x) solution of (127)}.

(128)

Example 4.8: Stochastic mass transport with fixed distribution at all time
Suppose now µ0 ∈ P(M) and µ ∈ P([0, 1] ×M). If the latter has Lebesgue measure

as a first marginal, then we can disintegrate it and write it as dµ = dµt dt, where µt is a
probability measure on M . Consider the following functional on P(M)× P([0, 1]×M),

T (µ0, ν) := T (µ0, (µt)t>0)

:= inf

{
E
∫ 1

0
L(Xβ(s), β(s)) ds ; X ∈ A[0,1], X(t) ∼ µt ∀t ∈ [0, 1]

}
, (129)

if the first marginal of µ is Lebesgue measure and +∞ otherwise.

Proposition 5.3. Under suitable conditions on L (for example if L(x, β) = 1
2 |β|

2), the
following assertions hold:

1. T is a backward linear transfer on P(M) × P([0, 1] ×M) with corresponding Kan-
torovich operator T : C([0, 1] × M) → C(M) defined for any f ∈ C([0, 1] × M)
as uf (0, x), where uf is a bounded continuous viscosity solution of the following
Hamilton-Jacobi equation,

∂u

∂t
(t, x) +

1

2
∆xu(t, x) +H(x,∇xu(t, x)) + f(t, x) = 0, (t, x) ∈ [0, 1)×M, (130)

with uf (1, x) = 0.

2. In particular, for any probability measures µ0 ∈ P(M) and ν ∈ P([0, 1]×M), we have

T (µ0, µ) = sup{
∫ 1

0

∫
M
f(t, x)dµt(x)dt−

∫
M
uf (0, x)dµ0;uf solves (130)}. (131)

Example 4.9: The Arnold-Brenier variational principle for the incompressible
Euler equation

In [16, 17, 18], Brenier proposed several relaxed versions of the Arnold geodesic formula-
tion of the incompressible Euler equation. We describe the following model which, strictly
speaking is not stochastic, yet we include it in this section for comparison purposes.

For a smooth domain D in Rd consider the space

H1
t (Rd) = {ξ ∈ L2([0, 1],Rd) such that ξ̇ ∈ L2([0, 1],Rd)}

and denote by H1
t (D) the subset of H1

t (Rd) consisting of those paths valued in D.
For any (s, t) ∈ [0, 1]2, we consider the projections πs,t : C([0, 1];D) → D × D (resp.,
πt : C([0, 1];D)→ D) defined by πs,tf = (f(s), f(t)) (resp., πtf = f(t)).

For µ ∈ P(C([0, 1];D)), we denote by µs,t := (πs,t)#µ µt := (πt)#µ. Similarly, for
ν ∈ P(D ×D), we denote by ν0 and ν1 its first (resp., second) marginal on D.

If λ is the normalized Lebesgue measure on D, we consider the functional

T (µ, ν) =

{
inf{Eµ

∫ 1
0

1
2 |ξ̇|

2dt; if µt = λ, ∀t ∈ [0, 1] and µ0,1 = ν

+∞ otherwise.
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Proposition 5.4. The following assertions hold:

1. T is a backward linear transfer on P(C([0, 1];D)) × P(D × D) with corresponding
Kantorovich operator T : C([0, 1]×D)→ C(D×D) defined for any f ∈ C([0, 1]×D)
as

Tf(x, y) = inf{
∫ 1

0
[
1

2
|ξ̇|2 − f(t, ξt)]dt; ξ ∈ H1

t (D), ξ(0) = x, ξ(1) = y}. (132)

2. Tf (x, y) = uf (0, x, y), where uf is a bounded continuous viscosity solution of the
Hamilton-Jacobi equation,

∂u

∂t
(t, x, y) +

1

2
|∇u(t, x, y)|2 + f(t, x) = 0, (t, x, y) ∈ [0, 1)×D ×D, (133)

with uf (1, x, y) = 0.

5.3 Transfers associated to optimally stopped stochastic transports

In dimension d > 2, there are many different types of martingales. If one chooses those that
essentially follow a Brownian path, then we have the following linear transfers.

Example 4.10: Optimal subharmonic Martingale transfers (Ghoussoub-Kim-Palmer
[24])

Confining the problem to a convex bounded domain O in Rd, then if (µ, ν) are in sub-
harmonic order, i.e. µ ≺SH ν, where SH is the cone of subharmonic functions on O, we
set,

Pc(µ, ν) = inf
π∈BM(µ,ν)

∫
O×O

c(x, y)π(dx, dy), (134)

where each π ∈ BM(µ, ν) is a probability measure on O × O with marginals µ and ν,
satisfying δx ≺SH πx for µ−a.e. x, where πx is the disintegration of π(dx, dy) = πx(dy)µ(dx).
Otherwise, set Pc(µ, ν) = +∞.

By a remarkable theorem of Skorokhod [59], such transport plans π can be seen as joint
distributions of (B0, Bτ ) ∼ π, where B0 ∼ µ, Bτ ∼ ν and τ is a possibly randomized stop-
ping time for the Brownian filtration. See for example [32]. The above problem associated
to a cost c can then be formulated as

Pc(µ, ν) = inf
τ

{
E
[
c(B0, Bτ )

]
; B0 ∼ µ & Bτ ∼ ν

}
, (135)

where (Bt)t is Brownian motion starting with distribution µ and ending at a stopping time
τ such that Bτ realizes the distribution ν.
In [24] it is shown that Pc is a backward linear transfer with a backward Kantorovich map
given by T−f(x) = Jf (x, x), where

Jf (x, y) = sup
τ6τO

E
[
ψ(By

τ )− c(x,By
τ )
]
, (136)
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and τO is the first exit time of the set O. Under some regularity assumptions on f and c,
and for each fixed x ∈ O, the function y 7→ Jf (x, y) is the unique viscosity solution to the
obstacle problem for u ∈ C(O):

u(y) > f(y)− c(x, y), for y ∈ O,
u(y) = f(y)− c(x, y) for y ∈ ∂O,
∆u(y) 6 0 for y ∈ O,
∆u(y) = 0 whenever u(y) > f(y)− c(x, y),

as well as the unique minimizer of the variational problem

inf
{∫

O

∣∣∇u∣∣2dy; u > f − c(x, ·), u ∈ H1(O)}.

Example 4.11: Optimally stopped stochastic transport [33, 24]
Given a Lagrangian L : [0, 1]× Rd × Rd → R, consider the optimal stopping problem

TL(µ, ν) = inf

{
E
[∫ τ

0
L(t,X(t), βX(t,X(t))) dt

]
;X(0) ∼ µ, τ ∈ S, Xτ ∼ ν,X(·) ∈ A

}
,

(137)
where S is the set of possibly randomized stopping times, and A is the class of processes
defined in Section 4.3. In this case, TL is a backward linear transfer with Kantorovich
potential given by T−L f = V̂f (0, ·), where

V̂f (t, x) = sup
X∈A

sup
T∈S

{
E
[
f(X(T ))−

∫ T

t
L(s,X(s), βX(s,X)) ds

∣∣∣∣X(t) = x

]}
, (138)

which is –at least formally– a solution V̂f (t, x) of the quasi-variational Hamilton-Jacobi-
Bellman inequality,

min
{
Vf (t, x)− f(x),−∂tVf (t, x)−H

(
t, x,∇Vf (t, x)

)
− 1

2∆Vf (t, x)
}

= 0. (139)

In Section 9, we shall deal in detail with optimal stochastic transports as a semi-group
of backward linear transfers in conjunction with a stochastic Mather theory.

6 Operations on linear mass transfers

Denote by LT −(X × Y ) (resp., LT +(X × Y )) the class of backward (resp., forward) linear
transfers on X × Y .

Proposition 6.1. The class LT −(X ×Y ) (resp., LT +(X ×Y )) is a convex subcone in the
cone of convex weak∗ lower continuous functions on P(X)× P(Y ).

1. (Scalar multiplication) If a ∈ R+ \ {0} and T is a backward linear transfer with
Kantorovich operator T−, then the transfer (aT ) defined by (aT )(µ, ν) = aT (µ, ν) is
also a backward linear transfer with Kantorovich operator on C(Y ) defined by,

T−a (f) = aT−(
f

a
). (140)
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2. (Addition) If T1 and T2 are backward linear transfers on X × Y with Kantorovich
operator T−1 , T−2 respectively, and such that X ⊂ D(T1)∩D(T2), then the sum defined
as

T1 ⊕ T2)(µ, ν) := inf{
∫
X

{
T1(x, πx) + T2(x, πx)

}
dµ(x);π ∈ K(µ, ν)} (141)

is a backward linear transfer on X × Y , with Kantorovich operator given on C(Y ) by

T−f(x) = sup{
∫
Y
f dσ − T1(x, σ)− T2(x, σ);σ ∈ P(Y )}

= inf{T−1 g(x) + T−2 (f − g)(x); g ∈ C(Y )}.

6.1 Convolution and tensor products of transfers

Definition 6.2. Consider the following operations on transfers.

1. (Dual Sum) If T1 and T2 are backward linear transfers on X × Y with Kantorovich
operator T−1 , T−2 respectively, and such that X ⊂ D(T1)∩D(T2), then T1�T2 is defined
as the transfer whose Kantorovich operator is T1 + T2, that is

T1�T2(µ, ν) = sup{
∫
Y
fdν −

∫
X

(T1f + T2f)dµ; f ∈ C(Y )} (142)

2. (Inf-convolution) Let X1, X2, X3 be 3 spaces, and suppose T1 (resp., T2) are func-
tionals on P(X1)× P(X2) (resp., P(X2)× P(X3)). The convolution of T1 and T2 is
the functional on P(X1)× P(X3) given by

T (µ, ν) := T1 ? T2 = inf{T1(µ, σ) + T2(σ, ν); σ ∈ P(X2)}. (143)

3. (Tensor product) If T1 (resp., T2) are functionals on P(X1)×P(Y1) (resp., P(X2)×
P(Y2)) such that X1 ⊂ D(T1) and X2 ⊂ D(T2), then the tensor product of T1 and T2

is the functional on P(X1 ×X2)× P(Y1 × Y2) defined by:

T1 ⊗ T2(µ, ν) = inf

{∫
X1×X2

(
T1(x1, πx1,x2) + T2(x2, πx1,x2)

)
dµ(x1, x2);π ∈ K(µ, ν)

}
.

Similar statements hold for LT +(X × Y ).

The following easy proposition is important to what follows.

Proposition 6.3. The following stability properties hold for the class of backward linear
transfers.

1. If T1 (resp., T2) is a backward linear transfer on X1 × X2 (resp., on X2 × X3) with
Kantorovich operator T−1 (resp., T−2 ), then T1 ? T2 is also a backward linear transfer
on X1 ×X3 with Kantorovich operator equal to T−1 ◦ T

−
2 .
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2. If T1 (resp., T2) is a backward linear transfer on X1 × Y1 (resp., X2 × Y2) such
that X1 ⊂ D(T1) and X2 ⊂ D(T2), then T1 ⊗ T2 is a backward linear transfer on
(X1 ×X2)× (Y1 × Y2), with Kantorovich operator given by

T−g(x1, x2) = sup{
∫
Y1×Y2

f(y1, y2)dσ(y1, y2)−T1(x1, σ1)−T2(x2, σ2); σ ∈ K(σ1, σ2)}.

(144)
Moreover,

T1 ⊗ T2(µ, ν1 ⊗ ν2) 6 T1(µ1, ν1) +

∫
X1

T2(µx12 , ν2) dµ1(x1), (145)

where dµ(x1, x2) = dµ1(x1)dµx12 (x2).

Note that a similar statement holds for forward linear transfers, modulo order reversals.
For example, if T1 and T2) are forward linear transfer, then T1 ?T2 is a forward linear trans-
feron X1 ×X3 with Kantorovich operator equal to T+

2 ◦ T
+
1 .

Proof: For 1), we note first that if T1 (resp., T2) is jointly convex and weak∗-lower semi-
continuous on P(X1) × P(X2) (resp., P(X2) × P(X3)), then both (T1 ? T2)ν : µ → (T1 ?
T2)(µ, ν) and (T1 ? T2)µ : ν → (T1 ? T2)(µ.ν) are convex and weak∗-lower semi-continuous.
We now calculate their Legendre transform. For g ∈ C(X3),

(T1 ? T2)∗µ(g) = sup
ν∈P(X3)

sup
σ∈P(X2)

{∫
X3

g dν − T1(µ, σ)− T2(σ, ν)

}
= sup

σ∈P(X2)
{(T2)∗σ(g)− T1(µ, σ)}

= sup
σ∈P(X2)

{∫
X2

T−2 (g) dσ − T1(µ, σ)

}
= (T1)∗µ(T−2 (g))

=

∫
X1

T−1 ◦ T
−
2 g dµ.

In other words, T1 ? T2(µ, ν) = sup
{ ∫

X3
g(x) dν(x)−

∫
X1
T−1 ◦ T

−
2 g dµ; f ∈ C(X3)

}
.

2) follows immediately from the last section since we are defining the tensor product as
a generalized cost minimizing transport, where the cost ion X1×X2×P(Y1×Y2) is simply,

T ((x1, x2), π) = T1(x1, π1) + T2(x1, π2),

where π1, π2 are the marginals of π on Y1 and Y2 respectively. T1 ⊗ T2 is clearly its corre-
sponding backward transfer with T− being its Kantorovich operator.

More notationally cumbersome but straightforward is how to write the Kantorovich
operators of the tensor product T−g(x1, x2) in terms of T−1 and T−2 , in order to establish
(145).

Remark 6.4. Note that if T is any backward linear transfer on X × Y , and Tσ is the one
induced by a point transformation σ : Z → X, then one can easily check that for µ ∈ P(Z)
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and ν ∈ P(Y ), we have Tσ ? T (µ, ν) = T (σ#µ, ν), and its backward Kantorovich operator
is given by T̃ f(z) = (T−f)(σ(z)). Similarly, if τ : Z → Y , µ ∈ P(X) and ν ∈ P(Z), then
T ? Tτ (µ, ν) = T (µ, τ#ν), hence

Tσ ? T ? Tτ (µ, ν) = T (σ#µ, τ#ν).

6.2 Hopf-Lax formulae and projections in Wasserstein space

By an obvious induction on the convolution property enjoyed by linear transfers, one can
immediately show the following.

Proposition 6.5. Let X0, X1, ...., Xn be (n + 1) compact spaces, and suppose for each
i = 1, ..., n, we have functionals Ti on P(Xi−1)×P(Xi). For any probability measures µ on
X0 (resp., ν on Xn), define

T (µ, ν) = inf{T1(µ, ν1) + T2(ν1, ν2)...+ Tn(νn−1, ν); νi ∈ P(Xi), i = 1, ..., n− 1}. (146)

If each Ti is a linear forward (resp., backward) transfer with a corresponding Kantorovich
operator T+

i : C(Xi)→ C(Xi+1) (resp., T−i : C(Xi)→ C(Xi−1)), then T is a linear forward
(resp., backward) transfer with a Kantorovich operator given by

T+ = T+
n ◦ T+

n−1 ◦ ... ◦ T
+
1 (resp., T− = T−1 ◦ T

−
2 ◦ ... ◦ T−n )

In other words, the following duality formula holds:

Tc(µ, ν) = sup
{∫

Xn

T+
n ◦ T+

n−1 ◦ ...T
+
1 f(y) dν(y)−

∫
X0

f(x) dµ(x); f ∈ C(X0)
}

(147)

respectively,

Tc(µ, ν) = sup
{∫

Xn

g(y) dν(y)−
∫
X0

T−1 ◦ T
−
2 ◦ ... ◦ T

−
n g(x); g ∈ C(Xn)

}
. (148)

The convolution of two linear transfers associated to optimal mass transports with costs
c1 and c2 respectively, is also a mass transport corresponding to a cost functional given by
the convolution c1 ?c2. However, the above calculus allows us to convolute a mass transport
with a general linear transfer, and to define a broken geodesic problems for stochastic
processes.

Proposition 6.6. (Lifting convolutions to Wasserstein space) Let X0, X1, ...., Xn be com-
pact spaces, and suppose for each i = 1, ..., n, we have a cost function ci : Xi−1 × Xi, its
corresponding optimal mass transport

Tci(µ, ν) = inf{
∫
Xi−1×Xi

ci(x, y) dπ;π ∈ K(µ.ν)},

and its forward and backward transfers T+
ci and T−ci defined in Example 3.7. Consider the

following cost function on X0 ×Xn, defined by

c(x, x′) = inf
{
c1(x, x1) + c2(x1, x2)....+ cn(xn−1, x

′); x1 ∈ X1, x2 ∈ X2, ..., xn−1 ∈ Xn−1

}
.
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Let µ (resp., ν be probability measures on X0 (resp., Xn), then the following holds

Tc(µ, ν) = inf{Tc1(µ, ν1) + Tc2(ν1, ν2)...+ Tcn(νn−1, ν); νi ∈ P(Xi), i = 1, ..., n− 1}, (149)

and the infimum is attained at ν̄1, ν̄2, ..., ν̄n−1.

Tc(µ, ν) = sup
{∫

Xn

T+
cn ◦ T

+
cn−1
◦ ...T+

c1f(x) dν(x)−
∫
X0

f(y) dµ(y); f ∈ C(X0)
}
(150)

= sup
{∫

Xn

g(x) dν(x)−
∫
X0

T−cn ◦ T
−
cn−1

... ◦ T−c1g(x); g ∈ C(Xn)
}
. (151)

Proof: It suffices to verify these formulas in the case of two cost functions. We do so using
duality by noting that both Tc1?c2 and Tc1 ? Tc2 have the same backward Kantorovich map
equal to

T−c1 ◦ T
−
c2f(x) = sup

x1∈X1

{T−c2f(x1)− c1(x, x1)}

= sup
x1∈X1,x2∈X2

{f(x2)− c2(x1, x2)− c1(x, x1)}

= sup
x2∈X2

{f(x2)− c(x, x2)} = T−c f(x).

This is illustrated by the following example.

Example 5.1: The ballistic transfer (Barton-Ghoussoub [8])
Let L be a Tonelli Lagrangian, then the deterministic ballistic mass transport is defined as

Bd(µ, ν) := inf

{
E
[
〈V,X(0)〉+

∫ T

0
L(t,X, Ẋ(t)) dt

]
; V ∼ µ, X ∈ A, X(T ) ∼ ν

}
, (152)

where A is the space of random processes Xt such that Ẋ ∈ L2[0, T ],M). This corresponds
to the following cost functional defined on phase space M∗ ×M by

b(v, x) := inf{〈v, γ(0)〉+

∫ 1

0
L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M); γ(1) = x}. (153)

It is then clear that
b(t, v, x) = inf{〈v, y〉+ c(t, y, x); y ∈M}, (154)

where the cost c is given by the generating function associated to L in Example 3.11, which
means that Bd is the convolution of the Brenier cost with the cost induced by the Lagrangian
L. The corresponding forward Kantorovich operator is then

T+
b f(x) = T+

c ◦ T+
2 f(x) = Vf̃ (1, x), (155)

where Vf̃ (T, x) is the final state of the solution of the Hamilton-Jacobi equation (81) starting

at T+
2 f(x) := f̃(x) = −f∗(−x). So, if µ (resp., ν) is a given probability measure on M∗

(resp., M), then we have

Tb(µ, ν) = inf{
∫
M∗×M

b(v, x) dπ; π ∈ K(µ, ν)} (156)

= sup

{∫
M
Vf̃ (T, x) dν(x)−

∫
M∗

f(v) dµ(v); f convex on M∗
}
. (157)
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A similar formula holds for the backward Kantorovich operator.
However, we can now convolute a mass transport with a general linear transfer as in the

following example.

Example 5.2: Stochastic ballistic transfer (Barton-Ghoussoub [8])
Consider the stochastic ballistic transportation problem defined as:

B(µ, ν) := inf

{
E
[
〈V,X(0)〉+

∫ T

0
L(t,Xβ, β(t)) dt

]∣∣∣∣V ∼ µ,X(·) ∈ A, X(T ) ∼ ν
}
, (158)

where we are using the notation of Example 4.4. Note that this a convolution of the Brenier-
Wasserstein transfer of Example 3.12 with the general stochastic transfer of Example 4.4.
Under suitable conditions on L, one gets that

B(µ, ν) = sup

{∫
g dν −

∫
ψ̃g dµ; g ∈ Cb

}
, (159)

where h̃ is the concave legendre transform of −h and ψg is the solution to the Hamilton-
Jacobi-Bellman equation

∂ψ

∂t
+

1

2
∆ψ(t, x) +H(t, x,∇ψ) = 0, ψ(1, x) = g(x). (HJB)

In other words, B is a backward linear transform with Kantorovich operator T−g = ψ̃g.

Example 5.3: Broken geodesics on Wasserstein space
Let L be a Lagrangian as above, then for any finite sequence of times t1 < t1 < .... < tn,

we consider the cost functions ci, i = 1, ..., n,

ci(x, y) = cti,ti+1 = inf

{∫ ti+1

ti

L(t, γ(t), γ̇(t)) dt; γ(ti) = x, γ(ti+1) = y

}
.

The theory of broken geodesics consist of finding for any fixed x, y, the critical points of the
function (t1, t2, ..., tn)→ ct1,...,tn(x, y) given by

ct1,...,tn(x, y) = inf {c1(x, x1) + c2(x1, x2)....+ cn(xn−1, y); x1, x2, ..., xn−1 ∈M} . (160)

Thanks to Proposition 6.5, one can consider a broken geodesic problem for stochastic pro-
cesses by considering for any finite sequence of times t1 < t1 < .... < tn the backward
transfer

Tti,ti+1(µ, ν) = inf

{
E
[∫ ti+1

ti

L(t,X(t), βX(t,X(t))) dt

]
;X(ti) ∼ µ,Xti+1 ∼ ν,X(·) ∈ A

}
,

(161)
where again A is the class of processes defined in Section 4.3.

This stochastic transport does not fit in the standard optimal mass transport theory
since it does not originate in optimizing a cost between two deterministic states. However,
by a result of Mikami-Thieulin [52], Tti,ti+1 is a backward linear transfer with Kantorovich
potential given by Ti+1,if = Vf (ti, ·), where

Vf (t, x) = sup
X∈A

E
[
f(X(T ))−

∫ ti+1

t
L(s,X(s), βX(s,X)) ds

∣∣∣∣X(t) = x

]
, (162)
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which is –at least formally– a solution of the Hamilton-Jacobi equation{
∂tV +H(t, x,∇xV ) + 1

2∆V = 0 on (ti, ti+1)×M,
V (ti+1, y) = f(y).

(163)

One can then define the bacward linear transfer

Tt1,...,tn(µ, ν) = inf
{
Tt1,t2(µ, σ1) + Tt2,t3(σ1, σ2)...+ Ttn−1,tn(σn−1, ν); σ1, ...σn−1 ∈ P(M)

}
,

(164)
in such a way that

Tt1,...,tn(µ, ν) = sup
{∫

M
f(x) dν(x)−

∫
M
Tt2,t1 ◦ ... ◦Ttn,tn−1f(y) dµ(y); f ∈ C(M)

}
. (165)

The broken stochastic geodesics consist of finding for any pair (µ, ν), the critical points of
the function (t1, t2, ..., tn)→ Tt1,...,tn(µ, ν) on Wasserstein space.

Example 5.4: Projection on the set of balayées of a given measure
Let T be a linear transfer on X × Y and K a closed convex set of probability measures

on Y . We consider the following minimization problem

inf{T (µ, σ);σ ∈ K}, (166)

which amounts to finding “the projection” of µ on K, when the “distance” is given by the
transfer T . In some cases, the set K := C(ν) is a convex compact subset of P(Y ) that
depends on a probability measure ν in such a way that the following map

S(σ, ν) =

{
0 if σ ∈ C(ν)
+∞ otherwise.

is a backward transfer on Y × Y . It then follows that

inf{T (µ, σ);σ ∈ C(ν)} = inf{T (µ, σ) + S(σ, ν);σ ∈ P(X )} = T ? S(µ, ν).

If now T− (resp., S−) are the backward Kantorovich operators for T (resp., S), then by
Proposition 13.4, the Kantorovich operator for T ? S is T− ◦ S−, that is

inf{T (µ, σ);σ ∈ C(ν)} = sup{
∫
Y
g dν −

∫
X
T− ◦ S−g dµ; g ∈ C(Y )}. (167)

Here is an example motivated by a recent result in [41].

Consider now the problem

P(µ, ν) = inf{Tc(µ, σ);σ ≺C ν}, (168)

where Tc is the optimal mass transport associated to a cost c(x, y) on X × Y , and ≺C is
the convex order on a convex compact set Y . Then,

P(µ, ν) = Tc ? B(µ, ν)
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where B is the Balayage transfer. It follows that P is a linear transfer with backward
Kantorovich operator given by the composition of those for Tc and B, that is

T−f(x) = sup{f̂(y)− c(x, y); y ∈ Y },

where f̂ is the concave envelope of f on Y . We note that this is the same Kantorovich
operator as for the (weak) barycentric transport (See Proposition 5.1). In other words, we
can then deduce the following result of Gozlan-Juillet [41]. Write

T cB(µ, ν) := inf

{∫
X
c(x,

∫
Y
ydπx(y)) dµ(x);π ∈ K(µ, ν)

}
.

Corollary 6.7. Let c be a lower semi-continuous cost functional on X × Y , where Y is
convex compact. Then the following holds:

1. Tc ? B = T cB.

2. Tc ⊕ B = T cM , where the latter is the martingale transport of Example 4.4.

Similar manipulations can be done when the balayage is given by the cones of subhar-
monic or plurisubharmonic functions.

7 Distance-like transfers

Suppose now that T is a functional on P(X) × P(Y ) satisfying the triangular inequality,
that is

T (µ, ν) 6 T (µ, σ) + T (σ, ν) for all µ, ν and σ in P(X), (169)

which translates into T 6 T ? T and if T is a backward transfer to T− ◦ T− 6 T−.
Note that if in addition T (µ, µ) = 0 for every µ ∈ P(X), then T = T ? T . We shall call

such a transfer idempotent. It is easy to see that T is idempotent if and only if (T−)2 = T−

on USC(X).

7.1 Characterization of T -Lipschitz functions on Wasserstein space

Proposition 7.1. Let T be a backward linear transfer on a compact space X and T− be
its associated backward Kantorovich map. If T satisfies (169), then

T (µ, ν) > sup{
∫
X
T−f d(ν − µ); f ∈ C(X)} for any µ ∈ P(X) and ν ∈ A. (170)

Moreover, if T is also a forward transfer, then for any µ, ν ∈ A.

T (µ, ν) = sup{
∫
X
T−f d(ν−µ); f ∈ C(X)} = sup{

∫
X
T−◦T+f d(ν−µ); f ∈ C(X)}. (171)

Proof: The proof is straightforward since for every ν ∈ A, we have∫
X
T−g dν >

∫
X
g dν for every g ∈ C(X). (172)
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while if T satisfies (169), then
∫
X(T−)2g dµ 6

∫
X T

−g dµ for every µ ∈ P(X).
If now T is also a forward transfer, then

∫
X T

+f dν = inf{
∫
X fdσ+ T (σ, ν);σ ∈ P(X)},

hence for every µ ∈ A,∫
X T

+g dµ 6
∫
X g dµ 6

∫
X T

−g dµ for every g ∈ C(X).

Since by (112) of Proposition 4.6, we have

T+ ◦ T−g(y) > g(y) for y ∈ Y, T− ◦ T+f(x) 6 f(x) for x ∈ X, (173)

it follows that for every µ ∈ A∫
X T

+ ◦ T−g dµ =
∫
X T

−g dµ for every g ∈ C(X).

and ∫
X T

− ◦ T+f dµ =
∫
X T

+f dµ for every g ∈ C(X).

Assertion (??) follows by recalling from Proposition 4.6 that

T (µ, ν) = sup
{∫

Y
T+ ◦ T−g(y) dν(y)−

∫
X
T−g dµ(x); g ∈ C(Y )

}
= sup

{∫
Y
T+f(y) dν(y)−

∫
X
T− ◦ T+f dµ(x); f ∈ C(X)

}
.

The above proposition states that the maps µ →
∫
X T

−f dµ and µ →
∫
X T

+ ◦ T−g dµ are
1-Lipschitz for the metric-like T on the subset A of Wasserstein space. We now show the
converse, that is all Lipschitz maps on A are of this form.

Theorem 7.2. Suppose T : P(X) × P(X) → R ∪ {+∞} is bounded below, weak∗-lower
semi-continuous and convex metric-like functional such that A := {µ ∈ P(X); T (µ, µ) = 0}
is non-empty. Assume in addition that for any µ, ν ∈ P(X), we have

T (µ, ν) = inf{T (µ, σ) + T (σ, ν);σ ∈ A}. (174)

Then the following hold:

1. For any functional Φ : A → R that is T -Lipschitz, there exists f ∈ C(X) such that

Φ(µ) =

∫
X
fdµ for every µ ∈ A. (175)

2. If T is also a backward linear transfer, then

Φ(µ) =

∫
X
fdµ =

∫
X
T−fdµ for every µ ∈ A. (176)

3. If in addition T is also a forward linear transfer, then

Φ(µ) =

∫
X
fdµ =

∫
X
T−fdµ =

∫
X
T+ ◦ T−fdµ for every µ ∈ A. (177)

Note that the functions ψ0 := T−f and ψ1 := T+ ◦ T−f are conjugate in the sense
that ψ0 = T−ψ1 and ψ1 = T+ψ0.
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4. Moreover, if g is a function in C(X) such that
∫
X gdµ = Φ(µ) for all µ ∈ A, then

ψ0 6 T
−g and ψ1 > T

+g. (178)

Proof: Let Φ be such that µ→ Φ(µ) is T -Lipschitz on A and define

Φ0(µ) = sup
σ∈A
{Φ(σ)− T (µ, σ)} and Φ1(ν) = inf

σ∈A
{Φ(σ) + T (σ, ν)}.

It is clear that
Φ1(µ) 6 Φ(µ) 6 Φ0(µ) for all µ ∈ A. (179)

We now show that
Φ0(µ) 6 Φ1(µ) for all µ ∈ P(X). (180)

For that note that (169) and the fact that µ→ Φ(µ) is T -Lipschitz on A yield

Φ0(µ)− Φ1(µ) = sup
σ,τ∈A

{Φ(σ)− T (µ, σ)− Φ(τ)− T (τ, µ)}

6 sup
σ,τ∈A

{Φ(σ)− Φ(τ)− T (τ, σ)} 6 0.

This combined with (179) shows that

Φ1(µ) = Φ(µ) = Φ0(µ) for all µ ∈ A.

We now show that for every µ ∈ P(X),

Φ0(µ) = sup{Φ1(σ)− T (µ, σ);σ ∈ P(X)}. (181)

For every µ ∈ P(X), we have

Φ0(µ) = sup
σ∈A
{Φ(σ)− T (µ, σ)} = sup

σ∈A
{Φ1(σ)− T (µ, σ)} 6 sup

σ∈P(X)
{Φ1(σ)− T (µ, σ)}.

On the other hand, for any ν, µ ∈ P(X), we have

Φ1(ν)− Φ0(µ) = inf
σ,τ∈A

{Φ(σ) + T (σ, ν)− Φ(τ) + T (µ, τ)}

6 inf
σ,τ∈A

{T (σ, ν) + T (τ, σ) + T (µ, τ)}

6 inf
σ∈A
{T (σ, ν) + T (µ, σ)}

= T (µ, ν).

This shows (181). The other conjugate formula

Φ1(ν) = inf{Φ0(σ) + T (σ, ν);σ ∈ P(X)} (182)

can be proved in a similar fashion.
Note now that Φ0 is a concave weak∗-upper semi-continuous function on P(X), while Φ1

is a convex weak∗-lower semi-continuous. Since Φ0 6 Φ1 on P(X), there exists f ∈ C(X)
such that

Φ0(µ) 6
∫
X
fdµ 6 Φ1(µ) for all µ ∈ P(X), (183)
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hence

Φ0(µ) =

∫
X
fdµ = Φ1(µ) = Φ(µ) for all µ ∈ A. (184)

2) Suppose now T is also a backward linear transfer with T− as a Kantorovich operator,
then ∫

X
T−fdµ = sup

σ∈P(X)
{
∫
X
fdσ − T (µ, σ)} 6 sup

σ∈P(X)
{Φ1(σ)− T (µ, σ)} = Φ0(µ).

On the other hand, if µ ∈ A,∫
X
T−fdµ > sup

σ∈A
{
∫
X
fdσ − T (µ, σ)} >

∫
X
fdµ− T (µ, µ) =

∫
X
fdµ.

3) Suppose in addition that T is a forward linear transfer with T+ as a Kantorovich operator,
then∫

X
T+ ◦ T−fdµ = inf

σ∈P(X)
{
∫
X
T−fdσ + T (σ, µ)} 6 inf

σ∈P(X)
{Φ0(σ) + T (σ, µ)} = Φ1(µ).

On the other hand, T+ ◦ T−f > f in such a way that∫
X
T+ ◦ T−fdµ >

∫
X
fdµ > Φ0(µ).

In other words, T−f and T+ ◦ T−f are two conjugate functions verifying∫
X
T+ ◦ T−fdµ =

∫
X
T−fdµ = Φ(µ) for all µ ∈ A.

4) To prove (178), first note that∫
X
T−fdµ 6 Φ0(µ) = sup{Φ(σ)− T (µ, σ);σ ∈ A}

6 sup{
∫
X
gdσ − T (µ, σ);σ ∈ P(X)}

=

∫
X
T−gdµ.
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On the other hand,∫
X
T+ ◦ T−fdµ = inf{

∫
X
T−fdσ + T (σ, µ);σ ∈ P(X)}

= inf{
∫
X
T−fdσ + T (σ, λ) + T (λ, µ);λ ∈ A, σ ∈ P(X)}

= inf{
∫
X
T+ ◦ T−fdλ+ T (λ, µ);λ ∈ A}

= inf{
∫
X
gdλ+ T (λ, µ);λ ∈ A}

= inf{
∫
X
gdλ+ T (λ, µ);λ ∈ A}

> inf{
∫
X
gdλ+ T (λ, µ);λ ∈ P(X)}

=

∫
X
T+gdµ,

which completes the proof of the theorem.

7.2 Examples of idempotent transfers

In the next sections, we shall associate to any backward or forward linear transfer an
idempotent linear transfer. For now, we give a few examples of some transfers that are
readily idempotent.

1. If I is any bounded below convex lower semi-continuous functional on Wasserstein
space P(Y ), and m = inf{I(σ);σ ∈ P(Y ), then T (µ, ν) = I(ν)−m is an idempotent
backward linear transfer with an idempotent Kantorovich map T−f = I∗(f) +m.

2. Any transfer induced by a bounded positive linear operator T with T 2 = T and
T1 = 1, and in particular, any point transformation σ such that σ2 = σ as per
Example 3. 2.

3. The balayage transfer B since its Kantorovich map is Tf = f̂ , where for example in
the case of balayage with convex functions, f̂ is the concave envelope of f .

4. If Tc is an optimal mass transport associated to a cost function c, then Tc is idempotent
if c(x, x) = 0 for every x ∈ X and c satisfies the triangular inequality

c(x, z) 6 c(x, y) + c(y, z) for all x, y, z in X, (185)

in which case

Tc(µ, ν) = sup{
∫
X
Tcf d(ν − µ); f ∈ C(X)}. (186)

A typical example is the Rubinstein-Kantorovich optimal mass transport associated
to any metric -such as in the original Monge problem- since the latter satisfies the
triangular inequality and is zero on the diagonal. If cp(x, y) = |x− y|p and 0 < p 6 1,
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then the corresponding optimal mass transport is idempotent since cp again satisfies
the triangular inequality. cp ? cp(x, y) = cp(x, y), so T 2f(x) = Tf(x), i.e. T is
idempotent.

Example 6.7: An idempotent optimal Skorohod embedding
The following transfer was considered in Ghoussoub-Kim-Palmer [35].

T (µ, ν) := inf
{
E
[ ∫ τ

0
L(t, Bt)dt

]
; τ ∈ S(µ, ν)

}
, (187)

where S(µ, ν) denotes the set of –possibly randomized– stopping times with finite expecta-
tion such that ν is realized by the distribution of Bτ (i.e, Bτ ∼ ν in our notation), where
Bt is Brownian motion starting with µ as a source distribution, i.e., B0 ∼ µ. Note that
T (µ, ν) = +∞ if S(µ, ν) = ∅, which is the case if and only if µ and ν are not in subharmonic
order. In this case, It has been proved in [35] that under suitable conditions, the backward
linear transfer is given by T−ψ = Jψ(0, ·), where Jψ : R+ × Rd → R is defined via the
dynamic programming principle

Jψ(t, x) := sup
τ∈Rt,x

{
Et,x

[
ψ(Bτ )−

∫ τ

t
L(s,Bs)ds

]}
, (188)

where the expectation superscripted with t, x is with respect to the Brownian motions
satisfying Bt = x, and the minimization is over all finite-expectation stopping times Rt,x on
this restricted probability space such that τ ≥ t. Jψ(t, x) is actually a “variational solution”
for the quasi-variational Hamilton-Jacobi-Bellman equation:

min

{
J(t, x)− ψ(x)

− ∂
∂tJ(t, x)− 1

2∆J(t, x) + L(t, x)

}
= 0. (189)

Note that Jψ(t, x) > ψ(x), that is T−ψ > ψ for every ψ.
Assume now t → L(t, x) is decreasing, which yields that t → J(t, x) is increasing (see

[35]). if ψ(x) = T−ϕ = Jϕ(0, x) for some ϕ, then for each ε > 0, there is τ such that

Jψ(0, x) 6 Et,x
[
ψ(Bτ )−

∫ τ

t
L(s,Bs)ds

]
+ ε

6 Et,x
[
Jϕ(t, Bτ )−

∫ τ

t
L(s,Bs)ds

]
+ ε

6 Jϕ(0, x) + ε.

where the last inequality uses the supermartingale property of the process t→ Jϕ(t, Bτ )−∫ τ
t L(s,Bs)ds. It follows that

T−ϕ(x) 6 (T−)2ϕ(x) = Jψ(0, x) 6 Jϕ(0, x) = T−ϕ(x),

and T− is therefore idempotent.
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8 Ergodic properties of equicontinuous semigroups of trans-
fers

Let X be a compact space. Our main purpose is to associate to any backward linear transfer
T on P(X)×P(X), an idempotent backward linear transfer T∞ with the properties listed
in Theorem 8.1 below. For that, we shall associate to T , the semi-group of transfers (Tn)n
defined for each n ∈ N, as Tn = T ? T ? .... ? T n-times and study its limit as n→∞. This
section deals with the case where T is continuous, hence the sequence of transfers (Tn)n is
equicontinuous for the Wasserstein metric. We shall prove the following.

Theorem 8.1 (Fixed point of weak∗ continuous backward linear transfers). Suppose T is a
backward linear transfer on P(X)×P(X) that is weak∗-continuous onM(X), and let T− be
the corresponding backward Kantorovich operator that maps C(X) into C(X). Then, there
exists a constant c = c(T ) ∈ R, an idempotent backward linear transfer T −∞ on P(X)×P(X)
with Kantorovich operator T−∞ : C(X)→ C(X) such that,

1. The constant c(T ) = inf{T (µ, µ);µ ∈ P(X)};

2. For every f ∈ C(X) and x ∈ X, lim
n→+∞

(T−)nf(x)
n = −c:

3. T∞ = (T − c) ? T∞ and T− ◦ T−∞f + c = T−∞f for all f ∈ C(X);

4. The set A := {µ ∈ P(X); T∞(µ, µ) = 0} is non-empty and for every µ, ν ∈ P(X), we
have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A}. (190)

This will follow from the following more general result. But first, we mention that there
is an analogous result for the case when T is a forward linear transfer with operator T+.
The same statements hold as above, the only difference being that

lim
n→+∞

(T+)nf(x)
n = c for every f ∈ C(X) and x ∈ X, (191)

and
T+ ◦ T+

∞f − c = T+
∞f for all f ∈ C(X). (192)

If now T is simultaneously a backward and forward transfer, then we have the following,

Corollary 8.2. Suppose T is a backward and forward linear transfer on P(X)×P(X) that
is continuous for the Wasserstein metric, then the associated effective transfer T∞ is also a
backward and forward linear transfer on P(X)×P(X), with T−∞ (resp., T+

∞) as corresponding
backward (resp., forward) effective Kantorovich operator. Moreover, The associated effective
transfer T∞ can be expressed as

T∞(µ, ν) = sup
{∫

X
f+ dν −

∫
X
f− dµ; (f−, f+) ∈ I

}
, (193)

where

I =
{

(f−, f+); f− (resp., f+) is a backward (resp., forward) solution and f− = f+ on A
}

.
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Proof: Since T+
∞ and T−∞ are the Kantorovich opeartors for T∞, we can use (174) of

Proposition 4.6 to write

T∞(µ, ν) = sup
{∫

X
T+
∞ ◦ T−∞g dν −

∫
X
T−∞g dµ; g ∈ C(X)

}
(194)

= sup
{∫

X
T+
∞f dν −

∫
X
T−∞ ◦ T+

∞f dµ; f ∈ C(X)
}
. (195)

Note now that f− = T−∞g (resp., f+ = T+
∞f
−) is a backward (resp., forward) weak KAM

solution for T and in view of Proposition 7.1,
∫
X f
− dµ =

∫
X f

+ dµ for every µ ∈ A. It
follows that

T∞(µ, ν) 6 sup
{∫

X
f+ dν −

∫
X
f− dµ; (f−, f+) ∈ I

}
, (196)

For the reverse inequality, note first that if f−, f+ ∈ I, then since f− = T−f− and f+ =
T+f+, the functions µ →

∫
X f
−dµ and µ →

∫
X f

+dµ are T∞-Lipschitz on the set A.
Hence Theorem 7.2 applies and we get a function χ such that T−χ 6 T−f− = f− and
T+ ◦T−χ > T+f+ = f+. This readily implies the reverse inequality, hence that (193) hold.

8.1 Effective Kantorovich operator associated to a semi-group of linear
transfers

Let {Tt}t>0 be a family of backward linear transfers on P(X) × P(X) with associated
Kantorovich operators {Tt}t>0, where T0 is the identity transfer,

T0(µ, ν) =

{
0 if µ = ν ∈ P(X)

+∞ otherwise.

We make the following assumptions:

(H0) The family {Tt}t>0 is a semi-group under inf-convolution: Tt+s = Tt?Ts for all s, t > 0.

(H1) For every t > 0, the transfer Tt is weak∗-continuous, and the Dirac measures are
contained in D1(Tt).

(H2) For any ε > 0, {Tt}t>ε has common modulus of continuity δ (possibly depending on
ε).

The hypotheses (H1) and (H2) amount to an equi-continuity assumption for the family
{Ttf}t>0 for each f , and is an artifact to ensure that we remain within the class of continuous
functions in the limit t → +∞ (thanks to Arzela-Ascoli). It is likely these hypotheses can
be weakened. Note in relation to (H2) that the semi-group property (H0) implies that a
modulus of continuity for Tt is also one for TNt, N ∈ N. In the following, where we will be
concerned with taking limits as t→ +∞, it suffices to take ε = 1.

Proposition 8.3. Under condition (H0), there exists a finite constant c and a positive
constant C > 0 such that

|Tt(µ, ν)− tc| 6 C, for every t > 1 and all µ, ν ∈ P(X).
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In particular,

c = lim
t→+∞

inf{Tt(µ, ν) ; µ, ν ∈ P(X)}
t

.

We shall call the constant c(T ) in Proposition 8.3 the Mañé critical value, while the
solutions u ∈ C(X) of the functional equation Ttu + ct = u for all t > 0, will be called
backward weak KAM solutions.

Proof: Define Mt := maxµ,ν Tt(µ, ν) and M := inft>1{Mt
t } > −∞. The sequence {Mt}t>1

is subadditive, that is Mt+s 6Mt +Ms, hence it is well known (see e.g. [12]) that {Mt
t }t>1

decreases to its infimum M as t→∞. Indeed, fix t > 0 and write for any s, the decompo-
sition s = nt+ r, where 0 6 r < t. The subadditivity of Mt implies

Ms

s
=
Mnt+r

nt+ r
6
Mnt

nt
+
Mr

nt
6
Mt

t
+
Mr

nt
.

It follows that lim sups→∞
Ms
s 6 Mt

t . On the other hand, inft>1
Mt
t 6 lim inft→∞

Mt
t .

Therefore, Mt
t converges to M as t→∞.

On the other hand, if mt := minµ,ν Tt(µ, ν), then the above applied to −mt yields that
limt→∞

mt
t = m.

We now show that m = M . The uniform modulus of continuity δ implies the existence of
a constant C > 0, such that Mt −mt 6 C for every t > 0. Then, we obtain the string of
inequalities

tM − C 6Mt − C 6 mt 6 Tt(µ, ν) 6Mt 6 mt + C 6 tm+ C.

The left-most and right-most inequalities imply M 6 m upon sending t → ∞, hence
m = M .

From Property 1) of Kantorovich operators and Proposition 8.3, we can deduce the
following.

Lemma 8.4. Under conditions (H0), (H1), and (H2), and with the notation of Proposition
8.3, the following properties hold.

1. For any f ∈ C(X), we have |Ttf(x) + ct− supX f | 6 C for all t > 1 and all x ∈ X.

2. The semi-group of operators {Tt}t>1 has the same modulus of continuity δ as {Tt}t>1.

3. If k < c, then Ttf + kt → −∞, while if k > c, Ttf + kt → +∞, as t → ∞, for any
f ∈ C(X).

Proof: 1) By Proposition 8.3 and since Ttf(x) + ct = supσ{
∫
f dσ − (Tt(δx, σ)− ct)}, we

have supX f − C 6 Ttf(x) + ct 6 supX f + C.
For 2) we note that

Ttf(x) = sup
σ
{
∫
f dσ − Tt(δx, σ)}

6 sup
σ
{
∫
f dσ − Tt(δy, σ)}+ sup

σ
{Tt(δy, σ)− Tt(δx, σ)}

= Ttf(y) + δ(d(x, y)).
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We now interchange x and y to obtain the reverse inequality.
3) follows from 1) since supX f − C + (k − c)t 6 Ttf(x) + kt 6 supX f + C + (k − c)t.

Theorem 8.5. Given a semi-group of backward linear transfers (Tt)t>0 satisfying conditions
(H0), (H1), and (H2), there exist a backward linear transfer T∞, an associated Kantorovich
operator T∞ : C(X)→ C(X) and a constant c ∈ R such that:

1. For every f ∈ C(X), T∞f is a backward weak KAM solution, and T∞ is idempotent.
In particular, backward weak KAM solutions are fixed points of T∞.

2. The backward linear transfer T∞ satisfies,

T∞ = (Tt − ct) ∗ T∞ for every t > 0, and T∞ = T∞ ∗ T∞. (197)

3. For every µ, ν ∈ P(X), we have

sup

{∫
T∞f d(ν − µ) ; f ∈ C(X)

}
6 T∞(µ, ν) 6 lim inf

t→∞
(Tt(µ, ν)− ct). (198)

4. The set A := {σ ∈ P(X); T∞(σ, σ) = 0} is non-empty, and for every µ, ν ∈ P(X), we
have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A}, (199)

and the infimum on A is attained.

5. We also have
c = inf{T1(µ, µ);µ ∈ P(X)}, (200)

and the infimum is attained by a measure µ̄ ∈ A such that

(µ̄, µ̄) ∈ D := {(µ, ν) ∈ P(X)× P(X) : T1(µ, ν) + T∞(ν, µ) = c}. (201)

Moreover, every measure which attains the infimum in (200) belongs to A.

The backward linear transfer T∞ is an analog of the Peierls barrier, and the set A is an
analog of the projected Aubry set.

Proof: 1) Given f ∈ C(X), define T̄ f(x) := lim supt→∞(Ttf(x) + ct). By (H2), T̄ f has
modulus of continuity δ, and ‖T̄ f‖∞ 6 supX f + C.

Noting that sups>t{Tsf(x) + cs} is a sequence of continuous functions that decrease
monotonically to T̄ f(x) as t→∞, we may apply Lemma 4.2 to deduce for any t′ > 0,

Tt′ T̄ f(x) = lim
t→∞

Tt′

[
sup
s>t
{Tsf(x) + cs}

]
> lim

t→∞
sup
s>t
{Tt′+sf(x) + cs}

= lim
t→∞

sup
s>t
{Tt′+sf(x) + c(t′ + s)} − ct′

= T̄ f(x)− ct′.
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Therefore, Tt′ T̄ f(x) + ct′ > T̄ f(x). By monotonicity of the operators Tt, this inequality
implies

TtT̄ f(x) + ct > TsT̄ f(x) + cs

whenever t > s > 0, i.e. {TtT̄ f + ct}t>1 is a monotone increasing sequence of continuous
functions. In addition, we have from Corollary 8.4 the uniform in time bound

‖TtT̄ f(x) + ct‖∞ 6 ‖T̄ f‖∞ + C 6 ‖f‖∞ + 2C.

We may therefore define T∞ : C(X)→ C(X) via the formula,

T∞f(x) := lim
t→∞

TtT̄ f(x) + ct,

and from Lemma 4.2 deduce

TtT∞f(x) + ct = lim
s→∞

Tt
[
TsT̄ f(x) + cs

]
+ ct

= lim
s→∞

{
Tt+sT̄ f(x) + c(t+ s)

}
= T∞f(x).

This further implies that T∞T∞f(x) = T∞f(x) so T∞ is idempotent. It is straightforward
to see that in the construction of T∞, properties 1)-4) of Proposition ?? are preserved, and
hence T∞ is a Kantorovich operator.

Finally we note that if u satisfies Ttu+ ct = u, then T∞u = u from the defintion of T∞.
2) T∞ is a Kantorovich operator, thus we may define

T∞(µ, ν) := sup

{∫
f dν −

∫
T∞f dµ ; f ∈ C(X)

}
and it is a backward linear transfer; from TtT∞f + ct = T∞f , it satisfies

T∞(µ, ν) = (Tt − ct) ? T∞(µ, ν), for all t > 0,

and from T∞T∞u(x) = T∞u(x), it satisfies

T∞(µ, ν) = T∞ ? T∞(µ, ν), for all µ, ν.

3) Note from 1 that T∞f(x) > lim supt→∞(Ttf(x) + ct), so∫
X
T∞f dµ >

∫
X

lim sup
t→∞

(Ttf(x) + ct) dµ

> lim sup
t→∞

∫
X

(Ttf(x) + ct) dµ.

Hence

T∞(µ, ν) 6 sup lim inf
t→∞

{∫
X
f dν −

∫
X
Ttf dµ− ct ; f ∈ C(X)

}
6 lim inf

t→∞
sup

{∫
X
f dν −

∫
X
Ttf dµ− ct ; f ∈ C(X)

}
= lim inf

t→∞
(Tt(µ, ν)− ct).
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On the other hand, from T∞ ◦ T∞f = T∞f ,

T∞(µ, ν) = sup

{∫
X
f dν −

∫
X
T∞f dµ ; f ∈ C(X)

}
> sup

{∫
X
T∞f d(ν − µ) ; f ∈ C(X)

}
.

4) The proof of this result relies solely on the property T∞ = T∞ ? T∞, and the argument
is a minor adaption of the one given in [6].

Fix µ, ν ∈ P(X). From T∞ = T∞ ? T∞, there exists σ1 ∈ P(X) such that

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, ν).

Similarly, there exists a σ2 such that

T∞(σ1, ν) = T∞(σ1, σ2) + T∞(σ2, ν).

Combining the above two equalities, we obtain

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, σ2) + T∞(σ2, ν).

Note also that
T∞(µ, σ1) + T∞(σ1, σ2) = T∞(µ, σ2). (202)

This follows from

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, σ2) + T∞(σ2, ν)

> T∞ ? T∞(µ, σ2) + T∞(σ2, ν)

= T∞(µ, σ2) + T∞(σ2, ν)

> T∞ ? T∞(µ, ν)

= T∞(µ, ν).

Hence all the inequalities are equalities; in particular (202).
After k times we have

T∞(µ, ν) =

k∑
i=0

T∞(σi, σi+1)

where σ0 := µ and σk+1 := ν. This inductively generates a sequence {σk} with the property

m∑
i=`

T∞(σi, σi+1) = T∞(σ`, σm+1)

whenever 0 6 ` < m 6 k. In particular, for any subsequence σkj , we have

T∞(µ, σk1) +
m∑
j=1

T∞(σkj , σkj+1
) + T∞(σkm+1 , ν) = T∞(µ, ν). (203)
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Extract a weak∗ convergent subsequence {σkj} to some σ̄ ∈ P(X). By weak-∗ l.s.c. of
T∞, we have

lim inf
j
T∞(σkj , σkj+1

) > T∞(σ̄, σ̄).

In particular, given ε > 0, for all but finitely many j,

T∞(σkj , σkj+1
) > T∞(σ̄, σ̄)− ε. (204)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a
subsequence {σkj} satisfying (204) for all j. By further refinement, we may also assume,

T∞(µ, σk1) > T∞(µ, σ̄)− ε. (205)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a
subsequence {σkj} with properties (203), (204), and (205).

Moreover, for all m large enough (depending on ε), we have

T∞(σkm+1 , ν) > T∞(σ̄, ν)− ε (206)

Applying the inequalities of (204), (205), and (206), to (203), we obtain

T∞(µ, ν) > T∞(µ, σ̄) +mT∞(σ̄, σ̄) + T∞(σ̄, ν)− (m+ 2)ε

for large enough m. From the fact that T∞ = T∞ ∗T∞, the above inequality is only possible
if

T∞(σ̄, σ̄) 6
m+ 2

m
ε 6 2ε.

As ε is arbitrary, we obtain T∞(σ̄, σ̄) 6 0, and consequently T∞(σ̄, σ̄) = 0 (the reverse
inequality following from T∞ = T∞ ? T∞).

Finally, we note that T∞(µ, ν) = T∞(µ, σkj ) + T∞(σkj , ν) for all j, so at the lim inf, we
find

T∞(µ, ν) > T∞(µ, σ̄) + T∞(σ̄, ν).

The reverse inequality is immediate from T∞ = T∞ ? T∞.

5) First, we observe that T1(µ, µ) > c for all µ. This follows from

c = lim
t→∞

min
µ,ν

Tt(µ, ν)

t
= lim

n→∞
min
µ,ν

Tn(µ, ν)

n
6 T1(µ, µ).

To achieve the reverse inequality, we construct inductively a sequence {µk} ⊂ A such that
(µk, µk+1) ∈ D. The set D is convex by convexity of both T1 and T∞. Therefore, the Cesaro
averages belong to D,

(
1

n

n∑
k=1

µk,
1

n

n∑
k=1

µk+1) ∈ D.

Denoting νn := 1
n

∑n
k=1 µk, we have

T1(νn, νn +
1

n
(µn+1 − µ1)) + T∞(νn, νn +

1

n
(µn+1 − µ1)) = c. (207)
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Extract a weak∗-convergent subsequence νnj with limit µ̄ ∈ A. Then by weak-∗ lower
semi-continuity of T1 (resp. T∞), (207) yields at the limit,

T1(µ̄, µ̄) = T1(µ̄, µ̄) + T∞(µ̄, µ̄) 6 c.

Hence, c = T1(µ̄, µ̄), and (µ̄, µ̄) ∈ D.
Conversely, if µ is a measure which realises c = T1(µ, µ), then by Property 3 and 4, we

have
0 6 T∞(µ, µ) 6 lim inf

t→∞
(Tt(µ, µ)− ct) 6 lim inf

n→∞
(Tn(µ, µ)− cn) 6 0,

so µ ∈ A.
Similar results hold with appropriate changes for forward linear transfers.

8.2 Optimal transports corresponding to a semi-group of cost functionals

We now identify the effective transfer and Kantorovich map associated to a semi-group of
linear transfers given by mass transports.

Proposition 8.6. Suppose ct(x, y) is a semi-group of equicontinuous cost functions on a
compact space X ×X, that is

ct+s(x, y) = ct ? cs(x, y) := inf{ct(x, z) + cs(z, y); z ∈ X}, (208)

and consider the associated optimal mass transports

Tt(µ, ν) = inf{
∫
X×X

ct(x, y) dπ(x, y) ; π ∈ K(µ, ν)}. (209)

1. The family (Tt)t then forms a semi-group of linear transfers for the convolution op-
eration i.e., Tt+s = Tt ? Ts for any s, t > 0 that is equicontinuous on P(X) × P(X),
hence one can associate its effective transfer T∞ and the corresponding Kantorovich
operator T∞.

2. The following holds for the constant c defined in the previous section Theorem 8.5:

c = inf{T1(µ, µ);µ ∈ P(X)} = min{
∫
X×X

c1(x, y) dπ;π ∈ P(X×X), π1 = π2} (210)

3. Letting c∞(x, y) := lim inft→∞(ct(x, y)− ct), then :

T∞(µ, ν) = Tc∞(µ, ν) := inf{
∫
X×X

c∞(x, y) dπ(x, y) ; π ∈ K(µ, ν)}, (211)

T−∞f(x) = sup{f(y)− c∞(x, y) ; y ∈ X} and T+
∞f(y) = inf{f(x) + c∞(x, y) ; x ∈ X}

4. The set A := {σ ∈ P(X); T∞(σ, σ) = 0} consists of those σ ∈ P(X) supported on the
set A = {x ∈ X; c∞(x, x) = 0}.

5. The minimizing measures in (210) are all supported on the set

D := {(x, y) ∈ X ×X ; c1(x, y) + c∞(y, x) = c}.
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Proof: The Kantorovich operator for Tt is given by Ttf(x) = sup{f(y)− ct(x, y) ; y ∈ X}
and as shown in Proposition 6.6, we have Ts+t = Tct?cs = Tct?Tcs = Tt?Ts, and Tt+s = Tt◦Ts
for every s, t. It remains to show that the effective Kantorovich map T∞ associated to (Tt)t
is equal to Tc∞f := sup{f(y)− c∞(x, y) ; y ∈ X}. For that, we first note that

lim sup
t

(Ttf(x) + ct) > sup
y
{f(y)− c∞(x, y)} = Tc∞f(x). (212)

On the other hand, let yn achieve the supremum for Tnf(x) = sup{f(y)− cn(x, y) ; y ∈ X},
and let (nj)j be a subsequence such that limj→∞(Tnjf(x) + cnj) = lim supn(Tnf(x) + cn).
By refining to a further subsequence, we may assume by compactness of X, that ynj → ȳ
as j →∞. Then by equi-continuity of the cn’s, we deduce that

lim sup
n

(Tnf(x) + cn) = lim
j→∞

(Tnjf(x) + cnj) = f(ȳ)− lim inf
j

(cnj (x, ȳ)− cnj). (213)

As lim infj(cnj (x, ȳ)− cnj) > lim infn(cn(x, ȳ)− cn) = c∞(x, ȳ), we obtain

lim sup
n

(Tnf(x) + nc) 6 f(ȳ)− c∞(x, ȳ) 6 sup
y
{f(y)− c∞(x, y)} = Tc∞f(x). (214)

The inequality (214) is true for every sequence (nk)k going to ∞, so we deduce that
lim supt(Ttf(x) + ct) 6 Tc∞f(x), and hence combining this with (212) gives equality:
lim supt(Ttf(x) + ct) = Tc∞f(x).

Finally, we note that Ts(lim supt(Tff + ct))(x) + cs = TsTc∞f(x) + cs = Tc∞f(x) thanks
to the fact that cs ? c∞ = c∞. This implies from the definition of T∞ as the limit as s→∞
(see Thereom 8.5) that T∞f(x) = Tc∞f(x).

Properties (1), (2) and (3) follow then immediately. Properties (4) and (5) now follow
from an adaptation of the results of Bernard-Buffoni [6].

8.3 Fathi-Mather weak KAM theory

Let L be a time-independent Tonelli Lagrangian on a compact Riemanian manifold M , and
consider Tt to be the cost minimizing transport

Tt(µ, ν) = inf{
∫
M×M

ct(x, y) dπ(x, y) ; π ∈ K(µ, ν)},

where

ct(x, y) := inf{
∫ t

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t];M); γ(0) = x, γ(t) = y}.

As mentioned in the introduction, the Lax-Oleinik semi-group S−t , t > 0 is defined by the
formula

S−t u(x) := inf{u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t];M), γ(t) = x},

and a function u ∈ C(M) is said to be a negative weak KAM solution if S−t u − ct = u for
all t > 0.
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Another semigroup S+
t is defined in terms of S−t via the formula S+

t u = −Ŝ−t (−u), where
Ŝ−t is the Lax-Oleinik semi-group of the Lagrangian L̂(x, v) := L(x,−v). It turns out that

S+
t u(x) = sup{u(γ(t))−

∫ t

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t];M), γ(0) = x}.

Analogous to the negative weak KAM solutions, positive weak KAM solutions are those u
satisfying S+

t u+ ct = u for all t > 0. The semi-groups S−t and S+
t are intimately connected

with Hamilton-Jacobi equations, and Aubry-Mather theory.

Theorem 8.7. Under the above conditions on L, there exists a unique constant c ∈ R such
that the following hold:

1. (Fathi [25]) There exists a function u− : M → R (resp. u+) such that S−t u−−ct = u−
(resp. S+

t u− + ct = u−) for each t > 0.

2. (Bernard-Buffoni [6]) Let c∞(x, y) := lim inft→∞ ct(x, y) denote the Peierls barrier
function. The following duality then holds:

inf{
∫
M×M

c∞(x, y) dπ(x, y) ; π ∈ K(µ, ν)} = sup
u+,u−

{
∫
M
u+ dν −

∫
M
u− dµ},

where the supremum ranges over all u+, u− ∈ C(M) such that u+ (resp. u−) is a
positive (resp. negative) weak KAM solution, and such that u+ = u− on the set
A := {x ∈M ; c∞(x, x) = 0}. Moreover, c∞(x, y) = minz∈A{c∞(x, z) + c∞(z, y)}.

3. (Bernard-Buffoni [7]) The constant c satisfies

c = min
π

∫
M×M

c1(x, y) dπ(x, y),

where the minimum is taken over all π ∈ P(M × M) with equal first and second
marginals. The minimizing measures are all supported on D := {(x, y) ∈ M ×
M ; c1(x, y) + c∞(y, x) = c}.

4. (Mather [49]) The constant c = infm
∫
TM L(x, v) dm(x, v) where the infimum is taken

over all measures m ∈ P(TM) which are invariant under the Euler-Lagrange flow
(generated by L).

5. (Fathi [25]) A continuous function u : M → R is a viscosity solution of H(x,∇u(x)) =
c[0] if and only if it is Lipschitz and u is a negative weak KAM solution (i.e. T−t u+
c[0]t = u). In particular, the statement is false if c[0] is replaced with any other
constant c.

In the language of transfers, the cost-minimizing transport is both a forward and back-
ward linear transfer, with forward (resp. backward) Kantorovich operators given by T+

t f(x) =
Vf (t, x) and T−t g(y) = W t

g(0, y), where

Vf (t′, x) = inf{f(γ(0)) +

∫ t′

0
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t′),M), γ(t′) = x}
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and W t
g(t
′, y) the value functional

W t
g(t
′, y) = sup{g(γ(t′))−

∫ t

t′
L(γ(s), γ̇(s)) ds ; γ ∈ C1([0, t′),M), γ(0) = x}.

Observe that Vf (t, x) = S−f(x), while W t
g(0, y) = S+g(y). Hence (with unfortunate signs),

T+
t f = S−t f(x), while T−t f(x) = S+

t f(x). Note also the translation of terminology in this
setting: Our backward weak KAM solutions are Fathi’s positive weak KAM solutions, while
the analogous forward weak KAM solutions are Fathi’s negative weak KAM solutions.

One can proceed with the construction outlined above to construct the negative (resp.
positive) weak KAM solutions as the image of the Kantorovich operators T+

∞ (resp. T−∞),
and they will be given by

T−∞f(x) = sup{f(y)− c∞(x, y) ; y ∈M} and T+
∞f(y) = inf{f(x) + c∞(x, y) ; x ∈M}

where c∞(x, y) := lim inft→∞ ct(x, y).
The backward (resp. forward) generalised Peierls barrier associated to T−∞ (resp. T+

∞)
are the same and is the cost-minimizing transport with cost c∞, which by duality we can
write as

inf{
∫
M×M

c∞(x, y) dπ(x, y) ; π ∈ K(µ, ν)} = sup{
∫
M
T+
∞f dν−

∫
M
T−∞◦T+

∞f dµ ; f ∈ C(M)}.

It can be checked this is exactly the statement 2 in the above theorem.

8.4 The Schrödinger semigroup

Recall the Schrödinger bridge of Example 4.5. Let M be a compact Riemannian manifold
and fix some reference non-negative measure R on path space Ω = C([0,∞],M). Let
(Xt)t be a random process on M whose law is R, and denote by R0t the joint law of the
initial position X0 and the position Xt at time t, that is R0t = (X0, Xt)#R. Assume
R is the reversible Kolmogorov continuous Markov process associated with the generator
1
2(∆−∇V · ∇) and the initial probability measure m = e−V (x)dx for some function V .

For probability measures µ and ν on M , define

Tt(µ, ν) := inf{
∫
M
H(rxt , πx)dµ(x) ; π ∈ K(µ, ν), dπ(x, y) = dµ(x)dπx(y)} (215)

where dR0t(x, y) = dm(x)drxt (y) is the disintegration of R0t with respect to its initial
measure m.

Proposition 8.8. The collection {Tt}t>0 is a semigroup of backward linear transfers with
Kantorovich operators Ttf(x) := logSte

f (x) where (St)t is the semi-group associated to R;
in particular,

Tt(µ, ν) = sup

{∫
M
fdν −

∫
M

logSte
fdµ ; f ∈ C(M)

}
. (216)

The corresponding idempotent backward linear transfer is T∞(µ, ν) = H(m, ν), and its ef-
fective Kantorovich map is T∞f(x) := logS∞e

f , where S∞g :=
∫
g dm.
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Proof: It is easy to see that for each t, Tt is monotone, 1-Lipschitz and convex, and
also satisfies Tt(f + c) = Ttf + c for any constant c. It follows that T ∗t,µ(f) =

∫
M Ttf dµ

for each t by Proposition ??. The semigroup property then follows from the semigroup
(St)t and the property that Tt ? Ts is a backward linear transfer with Kantorovich operator
Tt ◦ Tsf(x) = logStSse

f (x) = logSs+te
f (x) = Tt+sf(x) by Proposition 6.3.

Now we remark that it is a standard property of the semigroup (St)t on a compact
Riemannian manifold, that under suitable conditions on V , Ste

f → S∞e
f , uniformly on M ,

as t→∞, for any f ∈ C(M). This immediately implies by definition of Tt, that Ttf → T∞f
uniformly as t→∞ for any f ∈ C(M). We then deduce from the 1-Lipschitz property, that
Tt ◦T∞f(x) = T∞f(x). We conclude that T∞ is a Kantorovich operator from Theorem 8.5.
Finally we see that T∞(µ, ν) is

T∞(µ, ν) := sup{
∫
f dν −

∫
T∞f dµ ; f ∈ C(M)}

= sup{
∫
f dν − log

∫
ef dm ; f ∈ C(M)}

= H(m, ν),

(see Section 9, for the last equality).

9 Weak KAM solutions for non-continuous transfers

We now deal with cases where T is not necessarily weak∗-continuous on M(X).

9.1 The case of non-continuous transfers with bounded oscillation

We now consider situations where T is not equicontinuous, but there is some control on the
oscillation of the transfers T n.

Lemma 9.1. Let X be a compact space and let T be a backward linear transfer such that
D1(T ) contains the Dirac measures. Assume that

T (µ0, µ0) < +∞ for some µ0 ∈ P(X). (217)

Then, the following properties hold:

1. c(T ) := supn
inf{Tn(µ,ν) ;µ,ν∈P(X)}

n 6 inf{T (µ, µ) ; µ ∈ P(X)} < +∞.

2. For each f ∈ C(X) and x ∈ X, we have

lim sup
n

Tnf(x)

n
6 −c(T ). (218)

3. For each f ∈ C(X) and µ ∈ P(X), we have

lim inf
n

1

n

∫
X
Tnf dµ > −T (µ, µ). (219)
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4. For each n ∈ N , we have

sup
µ∈P(X)

∫
(Tnf(x) + nc) dµ > inf

y∈X
f(y). (220)

5. If for some K > 0, we have

lim inf
n
{ inf
µ∈P(X)

T n(µ, µ)− inf
µ,ν∈P(X)

T n(µ, ν)} 6 K, (221)

then,
sup
x∈X

lim inf
n

Tnf(x) + nc 6 sup
y∈X

f(y) +K. (222)

In the next section, we shall prove that actually,

c(T ) = inf{T (µ, µ) ; µ ∈ P(X)}.

Proof: 1) Let T be a backward linear transfer and consider for each n ∈ N, Tn = T ?T ?....?T
the backward linear transfer obtained by iterating its convolution n times. The sequence
mn := inf{Tn(µ, ν) ; µ, ν ∈ P(X)} is superadditive, that is mn+k > mn+mk for all positive
integers, n, k. Since

mn

n
6 sup

n

1

n
Tn(µ0, µ0) 6 T (µ0, µ0) < +∞,

it follows that there exists a number c(T ) ∈ R such that

lim
n

mn

n
:= lim

n

1

n
inf {Tn(µ, ν) ; µ, ν ∈ P(X)} = sup

n
inf
µ,ν

Tn(µ, ν)

n
= c(T ) < +∞. (223)

2) follows from 1) since

Tnf(x) = sup{
∫
X
f dσ − Tn(x, σ) ; σ ∈ P(X)}

6 sup f − inf{Tn(x, σ) ; σ ∈ P(X)}
6 sup f − inf{Tn(µ, σ) ; µ, σ ∈ P(X)}.

For 3) note that ∫
X
Tnf dµ = sup{

∫
X
f dσ − Tn(µ, σ) ; σ ∈ P(X)}

>
∫
X
f dµ− Tn(µ, µ)

>
∫
X
f dµ− nT (µ, µ).

4) Write

sup
µ∈P(X)

∫
(Tnf(x) + nc) dµ = sup

µ∈P(X)
sup

σ∈P(X)
{
∫
fdσ − Tn(µ, σ) + nc}

= inf
X
f − inf

σ,µ
Tn(µ, σ) + nc

> inf
X
f.
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The latter inequality follows from Lemma 11.1 since infµ,σ Tn(µ, σ) 6 nc.
For 5), write

sup
x∈X

lim inf
n

Tnf(x) + nc 6 lim inf
n

sup
x∈X

Tnf(x) + kc

= lim inf
n

sup
x∈X

sup
σ∈P(X)

{
∫
X
fdσ − T n(x, σ) + nc}

6 lim inf
n

sup
x∈X

sup
σ∈P(X)

{sup f − T k(x, σ) + kc}

= sup f − lim sup
n

inf
x∈X

inf
σ∈P(X)

{T n(x, σ)− nc}

6 sup f − lim sup
n

inf
µ,σ∈P(X)

{T n(µ, σ)− nc}

6 sup f − lim sup
n

inf
µ,σ∈P(X)

{T n(µ, σ)− nc}

6 sup f +K.

Now we can prove the following.

Theorem 9.2. Suppose T is a backward linear transfer on P(X)×P(X) such that D1(T )
contains all Dirac measures. Assume (217), (221) and

sup
x∈X

inf
σ∈P(X)

T (x, σ) < +∞. (224)

If T : C(X) → USC(X), where T is the backward Kantorovich operator associated to T ,
then there exists h ∈ USCσ(X) such that Th+ c = h on X.

Proof: Note that condition (224) means that T if is bounded below for any f ∈ C(X) and
any i ∈ N . We distinguish two cases:

Case 1: Assume the following:

There is f ∈ C(X) so that ∀x ∈ X, there exists n ∈ N with Tnf(x) + nc < f(x). (225)

Since Tnf is in USC(X), then for each x ∈ X, there exists n ∈ N such that Tnf + nc < f
on a neighborhood of x, and since X is compact, there is a finite number r of iterates of T
such that inf06i6r(T

if + ic) < f .
Set gr = inf16i6r(T

if + ic) and note that gr ∈ USC(X), inf gr > −∞ because of (224), and
gr < f . Note now that

Tgr + c 6 inf
26i6r+1

{T if + ic}.

On the other hand, Tgr + c 6 Tf + c, hence

Tgr + c 6 inf
16i6r

{T if + ic} = gr.

It follows that the sequence {Tngr + nc}n is decreasing to some function h ∈ USC(X).
Note that h 6 gr hence is bounded above.

Now we show that h is proper, that is not identically −∞. Indeed, if it was, then for
every x, the sequence gn(x) = Tngr(x) + nc will be decreasing to −∞. It follows that for
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each x ∈ X, there exists i, such that gi(x) < inf gr − 1, hence on a neighborhood of x
since gi is in USC(X). By compactness and since the (gn)n is decreasing, we get a function
gN such that gN < inf gr − 1 on X. On the other hand, the preceding lemma yields that
supµ∈P(X)

∫
gN dµ > inf gr. It follows that

inf gr 6 sup
µ∈P(X)

∫
gN dµ 6 inf gr − 1,

which is a contradiction, hence h is proper.
Finally, note that by Lemma 4.2, we have

Th+ c = T (lim
n
Tngr + nc) + c = lim

n
Tn+1gr + (n+ 1)c = h.

Case 2: We now assume that for any f ∈ C(X), there exists x ∈ X such that

Tnf(x) + nc > f(x) for all n ∈ N. (226)

We now consider for each f ∈ C(X), the function f̃ := lim infn T
nf+nc. It is clear that f̃ ∈

USCσ(X), and by our assumption, there exists x ∈ X such that f̃(x) > f(x) > −∞, and
hence it is proper. On the other, we have by Lemma 9.1, that supx∈X f̃ 6 supx∈X f(x)+K.
Moreover, by Lemma 4.2,

T f̃ + c = T (lim inf
n

Tnf + nc) + c > lim inf
n

Tn+1f + (n+ 1)c = f̃ .

It follows that the sequence {Tnf̃ + nc}n is increasing to a function h ∈ USCσ(X). Note
that h > f̃ , hence it is proper. On the other hand, by Lemma 9.1, we have h 6 sup f̃ 6
sup f +K < +∞ and we are done.

Corollary 9.3. Let X is a compact space and let T be a backward linear transfer such that
D1(T ) contains the Dirac measures. If T is bounded above on P(X)× P(X), then

Tn(µ, ν)

n
→ c uniformly on P(X)× P(X). (227)

Moreover, there exists an idempotent operator T∞ : C(X) → USCσ(X) such that for each
f ∈ C(X), T∞f is a backward weak KAM solution.

Proof: Note that conditions (217) and (224) are readily satisfied. To prove (221), one can
easily see that for any µ, ν ∈ P(X),

inf
P×P
Tn + 2 inf

P×P
T 6 Tn+2(µ, ν) 6 2 sup

P×P
T + inf

P×P
Tn,

from which follows that

sup
P×P
Tn+2 − inf

P×P
Tn+2 6 2 sup

P×P
T + inf

P×P
Tn − inf

P×P
Tn − 2 inf

P×P
T

= 2 sup
P×P
T − 2 inf

P×P
T

=: K <∞.
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Theorem 9.2 then applies to get a weak KAM solution h in USCσ(X).
Note now that since h is bounded above and is proper, i.e., h(x0) > −∞ for some x0 ∈ X,

we have

h(x0)− sup
P×P
Tn 6 Tnh(y) = sup

σ∈P
{
∫
X
h dσ − Tn(y, σ} 6 sup

X
h− inf

P×P
Tn,

hence

inf
P×P
Tn − sup

X
h 6 nc− h(x0) 6 sup

P×P
Tn − h(x0) 6 inf

P×P
Tn +K − h(x0),

and
−K 6 Tn(µ, ν)− nc 6 K + sup

X
h− h(x0), (228)

from which follows that

Tn(µ, ν)

n
→ c uniformly on P(X)× P(X). (229)

Note now that (228) yields that for every f ∈ C(X), there is C > 0 such that

‖Tnf + nc‖∞ 6 ‖f‖∞ + C, (230)

from which follows that T̂ f := lim infn T
nf + nc is bounded, belongs to USC(X) and sat-

isfies T (T̂ f) + c > T̂ f . The sequence (Tn(T̂ f) + nc)n is therefore increasing to a function
T∞f in USCσ(X) such that T ◦ T∞f + c = T∞f .

Here is another situation where we can obtain weak KAM solutions. It will be relevant
for the stochastic Mather theory.

Proposition 9.4. Suppose T is a backward linear transfer on P(X)×P(X) such that D1(T )
contains all Dirac measures and that (217), (224) hold. If there exists u, v ∈ USC(X) that
are bounded below such that

Tnu+ nv = u for all n ∈ N, (231)

then there exists h ∈ USC(X) such that Th + c = h on X, where T is the backward
Kantorovich operator associated to T .

Proof: Note that (231) and Lemma 9.1 yield that necessarily −v(x) 6 −c, from which
follows that

Tnu+ nc 6 u for all n ∈ N.

Applying Tm and using the linearity of Tm with respect to constants, we find Tm+nu+cn 6
Tmu, and hence

Tm+nu+ c(m+ n) 6 Tmu+ cm

So n 7→ Tnu+ cn is decreasing. The same reasoning as in Case (1) of the proof of Theorem
9.2 yields that (Tnu+cn)n decreases to a proper function h ∈ USC(X) such that Th+c = h
on X.
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9.2 Weak KAM solutions associated to non-continuous optimal mass
transports

The following extends a result established by Bernard-Buffoni [7] in the case where the cost
function c(x, y) is continuous.

Corollary 9.5. Let c be a bounded lower semi-continuous cost functional on a compact
space X and consider the associated optimal mass transport

T (µ, ν) = inf{
∫
X×X

c(x, y) dπ(x, y) ; π ∈ K(µ, ν)}. (232)

Let c∞(x, y) := lim infn→∞ cn(x, y), where for each n ∈ N,

cn(y, x) = inf {c(y, x1) + c(x1, x2)....+ c(xn−1, x); x1, x2, xn−1 ∈ X} .

Then, the following hold:

1. The corresponding effective transfer is given by

T∞(µ, ν) = Tc∞(µ, ν) := inf{
∫
X×X

c∞(x, y) dπ(x, y) ; π ∈ K(µ, ν)}, (233)

and the associated effective Kantorovich maps are given by

T−∞f(x) = sup{f(y)− c∞(x, y) ; y ∈ X} and T+
∞f(y) = inf{f(x) + c∞(x, y) ; x ∈ X}.

(234)

2. The following also holds

c(T ) = inf{T (µ, µ);µ ∈ P(X)} = min
µ∈P(X)

∫
X×X

c(x, y) dπ(x, y);π ∈ K(µ, ν)}.. (235)

3. The set A := {σ ∈ P(X); T∞(σ, σ) = 0} consists of those σ ∈ P(X) supported on the
set A = {x ∈ X; c∞(x, x) = 0}.

4. The minimizing measures in (235) are all supported on the set

D := {(x, y) ∈ X ×X ; c(x, y) + c∞(y, x) = c(T )}.

Example 7.1: Iterates of power costs: Let cp(x, y) = |x − y|p for p > 0, then, cp ?
cp(x, y) = inf{|x − z|p + |z − y|p ; z ∈ X} is minimised at some point z = (1 − λ)x + λy
on the line between x and y, so that cp ? cp(x, y) = (λp + (1− λ)p) |x− y|p. For p > 1, the
optimal λ is 1

2 . Hence, by considering Tp to be the optimal mass transport associated to
cp with its corresponding Kantorovich operator, Tpf(x) = sup{f(y)− cp(x, y) ; y ∈ X}, we
then have

(Tp)
nf(x) = sup{f(y)− 1

np−1
|x− y|p}.

Hence when n→∞, (Tp)
nf(x)→ supx f(x) = T∞f(x) and c(Tp) = 0.
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10 Linear transfers and ergodic optimization

This section was developed jointly with Dorian Martino [46]. We shall consider here linear
transfers where the associated Kantorovich maps are affine operators that is of the form
T−f(x) = Tf(x) − A(x), where T is a Markov operator and A is a given function (ob-
servable). We have already noted that if A ≡ 0, then the general Aubry theory reduces
to standard ergodic theory. In this section, we shall see that the presence of A allows the
theory of transfers to incorporate ergodic optimization for expanding dynamical systems.
For simplicity, we shall focus here on the case where the linear Markov operator is given by
a point transformation σ.

Proposition 10.1. Let σ : X → X a continuous onto map on a compact space X, and
assume there is a compact space Y such that for each y ∈ Y , there exists a compact subset
Xy of X and a continuous map τy : Xy → X such that σ ◦ τy(x) = x for all x ∈ Xy.
Let A ∈ C(Y × X) be a continuous function and consider the lower semi-continuous cost
function c : X ×X → R ∪ {+∞} defined by

c(z, x) :=

{
inf{A(y, x) ; y ∈ Yx, τy(x) = z} if σ(z) = x
+∞ otherwise,

where for each x ∈ X, Yx := {y ∈ Y ; x ∈ Xy}. Assume that x 7→ Ā(x) := c(x, σ(x)) is
continuous and supx∈X Ā(x) < +∞. Then,

1. The optimal mass transport T associated to the cost c has a backward (resp. forward)
Kantorovich operator given by

T−g(x) = g(σ(x))− Ā(x), (resp., T+f(x) = inf
y∈Yx
{f(τy(x)) +A(y, x)}).

2. The following duality formulae holds:

c(T ) := inf
µ∈P(X)

T (µ, µ) = inf{
∫
X̂
A(y, x) dµ̂(y, x) ; µ̂ ∈M0}

= inf{
∫
X
Ā(x) dµ(x);µ ∈ Pσ(X)}

= sup
f∈C(X)

inf
x∈X
{f(x)− f(σ(x)) + Ā(x)}

= sup
f∈C(X)

inf
x∈X

inf
y∈Yx
{f(τy(x))− f(x) +A(y, x)}.

3. Moreover, there exists h ∈ USCσ(X) such that

h(σ(x))− Ā(x) + c(T ) = h(x) for all x ∈ X, (236)

equivalently,

inf
y∈Yx
{h(τy(x)) +A(y, x)} − c(T ) = h(x) for all x ∈ X. (237)

Remark 10.2. The assumption that σ is surjective ensures that c is lower semi-continuous.
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Proof. (1) is straightforward, For (2) note first that the dualities

inf{
∫
X
Ā(x) dµ(x);µ ∈ Pσ(X)} = sup

f∈C(X)
inf
x∈X
{f(x)− f(σ(x)) + Ā(x)}

and

inf{
∫
X̂
A(y, x) dµ̂(y, x) ; µ̂ ∈M0} = sup

f∈C(X)
inf
x∈X

inf
y∈Yx
{f(τy(x))− f(x) +A(y, x)}

are established by a standard application of the Fenchel-Rockafeller duality formula. Indeed,
for the first, let h1, h2 : C(X)→ R be defined by h1(ϕ) = supx ϕ(x)− Ā(x) and

h2(ϕ) =

{
0 if ϕ is in the closure of {f ◦ σ − f ; f ∈ C(X)}
−∞ otherwise

then their respective Legendre transforms are given by

h∗1(µ) =

{ ∫
X Ā dµ if µ ∈ P(X)

+∞ otherwise

and

h∗2(µ) =

{
0 if µ ∈ Pσ(X)
−∞ otherwise

where h∗1(µ) := supϕ∈C(X{
∫
X ϕ(x) dµ(x)− h1(ϕ)} and h∗2(µ) := infϕ∈C(X){

∫
X ϕ(x) dµ(x)−

h2(ϕ)}. It now suffices to apply the formula

inf
µ∈M(X)

{h∗1(µ)− h∗2(µ)} = sup
ϕ∈C(X)

{h2(ϕ)− h1(ϕ)}.

Similarly, let h1, h2 : C(X) → R be defined by h1(ϕ) = sup(y,x)∈X̂ ϕ(y, x) − A(y, x), where

X̂ := {(y, x) ; x ∈ X, y ∈ Xy} and

h2(ϕ) =

{
0 if ϕ is in the closure of {f − f ◦ τy; f ∈ C(X)}
−∞ otherwise.

Their respective Legendre transforms are then given by

h∗1(µ̂) =

{ ∫
X̂ Adµ̂ if µ̂ ∈ P(X̂)

+∞ otherwise,

and

h∗2(µ̂) =

{
0 if µ̂ ∈M0

−∞ otherwise,

whereM0 :=
{
µ ∈ P(X̂) |

∫
X̂ f(τy(x))− f(x) dµ(y, x) = 0

}
. It now suffices to apply again

the formula inf
µ̂∈M(X̂)

{h∗1(µ̂)− h∗2(µ̂)} = sup
ϕ∈C(X̂)

{h2(ϕ)− h1(ϕ)}.

To equate the two duality statements, we observe by definition of Ā that

inf
x∈X
{f(x)− f(σ(x)) + Ā(x)} = inf

x∈X
inf

y∈Yσ(x),τy(σ(x))=x
{f(x)− f(σ(x)) +A(y, σ(x))}

= inf
z∈X

inf
y∈Yz
{f(τy(z))− f(z) +A(y, z)}
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where the last equality holds by making the change of variable z := σ(x), along with the
fact that σ is assumed to be surjective.
To establish further equality with infµ∈Pσ(X) T (µ, µ), we just note that the optimal plan for
T (µ, µ) must be supported on the graph of σ since c is finite only on these points. Hence
π = (id× σ)#µ, so that T (µ, µ) =

∫
X c(x, σ(x)) dµ(x) =

∫
X Ādµ.

(3) To establish the existence of a function satisfying (236), note that this is equivalent
to having a function h such that T−h(x)+ c(T ) = h(x) and T+h(x)− c(T ) = h(x), hence it
suffices to show that the assumptions of Theorem 9.2 are satisfied (see also Remark 10.3).
For that, first note that by a theorem of Bogolyubov and Krylov, σ has an invariant measure
µ̄, hence T (µ̄, µ̄) < +∞ and condition (217) is satisfied. On the other hand, we have for
each x ∈ X,

sup
x∈X

inf
ν∈P(Σ)

T (δx, ν) 6 sup
x∈X

Ā(x) < +∞,

hence Condition (221) is also satisfied. Finally, in order to show (224), we let for each
n ∈ N, µn ∈ P(X) be such that Tn(µn, (σ

n)]µn) = infµ,ν Tn(µ, ν). Up to extraction, we can

assume that
(

1
n

∑n−1
k=0(σk)]µn

)
n∈N

converges to some µ̄ ∈ P(X). Then µ̄ is σ-invariant.

Indeed,

σ]µ̄ = lim
n→∞

1

n

n∑
k=1

(σk)]µn = lim
n→∞

(
1

n

n−1∑
k=0

(σk)]µn +
1

n
((σn)]µn − µn)

)
= µ̄.

Up to extraction again, one can assume that there exists K > 0 such that

∀n > 1,

∣∣∣∣∣
∫
X
Ādµ̄− 1

n

n−1∑
k=0

∫
X
Ād((σk)]µn)

∣∣∣∣∣ 6 K

n
.

Finally, we obtain

lim inf
n→∞

(
inf

µ∈P(X)
Tn(µ, µ)− inf

µ,ν∈P(X)
Tn(µ, ν)

)
6 lim inf

n→∞
Tn(µ̄, µ̄)− Tn(µn, (σ

n)]µn)

6 lim inf
n→∞

n−1∑
k=0

T (µ̄, µ̄)− T ((σk)]µn, (σ
k+1)]µn)

6 lim inf
n→∞

n

(∫
X
Ādµ̄− 1

n

n−1∑
k=0

∫
X
Ād((σk)]µn)

)
6 K.

Theorem 9.2 now applies to get the existence of h ∈ USCσ(X) such that T−h+ c(T ) = h.

Remark 10.3. In fact, for any g ∈ C(X),

T−∞g(x) := lim sup
n→∞

{g(σn(x)) + n(c(T )− Ā(x))} =


lim supn→∞ g(σn(x)), if Ā(x) = c(T )

+∞, if Ā(x) > c(T )

−∞, if Ā(x) < c(T )

solves (236).

72



10.1 Ergodic optimization in the deterministic holonomic setting

Fix r ∈ N, and let M be an r × r transition matrix. Denote by

Σ = {x ∈ {1, ..., r}N | ∀i > 0, M(xi, xi+1) = 1}

the set of admissible words, its dual

Σ∗ = {y ∈ {1, ..., r}N | ∀i > 0, M(yi+1, yi) = 1},

and consider the space

Σ̂ = {(y, x) ∈ Σ∗ × Σ| M(y0, x0) = 1}.

For each x ∈ Σ, we let Σ∗x = {y ∈ Σ∗ | (y, x) ∈ Σ̂} and assume that ∀x, Σ∗x 6= ∅.
We will denote the words of Σ with their starting letters, i.e., (x0, x1, ...) while the words
in Σ∗ will be identified with their ending letters, i.e., (..., y1, y0). We consider Σ and Σ∗ as
metric spaces with the distance d(x, x̄) = 2−min{j∈N; xj 6=x̄j}. In particular, all these sets are
compact.
Consider now the two continuous maps σ : Σ→ Σ and τ : Σ̂→ Σ defined as

σ(x0, x1, ...) = (x1, x2, ...) and τ(y, x) = (y0, x0, x1, ...).

We will denote τ(y, x) by τy(x) and consider the set of holonomic probability measures

M0 :=

{
µ ∈ P(Σ̂) |

∫
Σ̂
f(τy(x))− f(x) dµ(y, x) = 0

}
.

An application of the previous proposition yields the following results of E. Garibaldi and
A. O. Lopes related to the Aubry-Mather theory for symbolic dynamics [?].

Proposition 10.4. Given A ∈ C(Σ̂), then the following hold:

c(A) := inf
µ∈M0

∫
Σ̂
Adµ = sup

f∈C(Σ)
inf

(y,x)∈Σ̂
f(τy(x))− f(x) +A(y, x). (238)

Moreover, there exists h ∈ USCσ(Σ) such that

inf
y∈Σ∗x

h(τy(x)) +A(y, x)− c(A) = h(x) ∀x ∈ Σ. (239)

Remark 10.5. If we iterate T+, we obtain ∀k, ∀f ∈ C(Σ), ∀x ∈ Σ,

(T+)kf(x) = inf

{
f(τyk−1(xk−1)) +

k−1∑
i=0

A(yi, xi) | x0 = x, ∀i, yi ∈ Σ∗xi , x
i+1 = τyi(x

i)

}
,

which correspond to the non-regularized Mané functional SεA Garibaldi and Lopes [?] where
we limit the number of steps to k and with ε = 0.
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10.2 Ergodic optimization in the stochastic holonomic setting

We now propose the following model: Given X0 ∈ Σ a random word, we consider a random
“noise” B0 ∈ Σ∗X0 and let X̄0 := τB0(X0). We then use a random “control” Y 0 ∈ Σ∗

X̄0 and
consider X1 := τY 0(X̄0). We assume that B0, Y 0, satisfy the following “martingale-type”
property:

E[f(Y 0, τB0(X0))|X0 = σ(x)] = E[f(Y 0, x)] for any f ∈ C(Σ̂). (240)

Iterating this process, an entire random past trajectory of X0 is represented via the
random family (Xn)n ∈ ΣN. The goal is to minimise the long time average cost,

lim
n→∞

1

n
E[

n−1∑
i=0

A(Y i, X̄i)]

among all possible such choices.

Remark 10.6. Note that (Bi)i also depends on such a choice, one should define a brownian
motion on each Σ∗x or fix a probability measure on each Σ∗x and choose B following this
law. Moreover, the choice of Y i ∈ Σ∗

x̄i
depends only on Bi

0, given the definition of Σ̂
(Y i ∈ Σ∗

X̄i ⇔ 1 = M(Y i
0 , X̄

i
0) = M(Y i

0 , B
i
0)).

Given now a “strategy” (Y n)n ∈ (Σ∗)N, we consider for each n ∈ N, the measure µn ∈
P(Σ̂) defined as

∀ϕ ∈ C(Σ̂),

∫
Σ̂
ϕdµn :=

1

n

n−1∑
i=0

E[ϕ(Y i, X̄i)].

From (µn)n, one can extract a subsequence converging to some measure µ(Y i)i . We denote

M0 = {µ(Y i)i | (Y i)i is a strategy} ⊂ M(Σ̂).

For f ∈ C(Σ) and (y, x) ∈ Σ̂, denote

1

2
Dyf(x) := f(τy(x))− f(x)− f(τy(x))− 2f(x) + f(σ(x))

2
=
f(τy(x))− f(σ(x))

2
.

Note that the assumption made on the random noise B0 yields an Itô-type formula: For all
f ∈ C(Σ), x ∈ Σ, with B0 ∈ Σ∗σ(x) Y

0 ∈ Σ∗τB0 (x),

E[f(τY 0(τB0(σ(x))))− f(σ(x))] = E[DY 0
f(x)].

Let

N0 = {µ ∈M(Σ̂) | ∀f ∈ C(Σ),

∫
Σ̂
Dyf(x) dµ(y, x) = 0},

which is closed in M(Σ̂) as a kernel of a continuous linear map.

Lemma 10.7. We have M0 ⊂ N0.
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Proof. Each measure µ(Y i)i ∈M0,∫
Σ̂
Dyf(x) dµn(y, x) =

1

n
E

[
n−1∑
i=0

f(Xi+1)− f(Xi)

]
=

1

n
E
[
f(Xn)− f(X0)

]
−−−→
n→∞

0.

Proposition 10.8. With the above notation, we have the following

c(A) := inf
µ̂∈M0∩P(Σ)

∫
Σ̂
Adµ̂ = inf

µ∈N0∩P(Σ)

∫
Σ̂
Adµ̂ = sup

f∈C(Σ)
inf

(y,x)∈Σ̂
Dyf(x) +A(y, x). (241)

Moreover, there exists an h ∈ USCσ(Σ) such that

c(A) = inf
y∈Σ∗x

Dyh(x) +A(y, x). (242)

Proof. The last equality in (241), i.e.,

inf
µ̂∈N0∩P(Σ̂)

∫
Σ̂
Adµ̂ = sup

f∈C(Σ)
inf

(y,x)∈Σ̂
Dyf(x) +A(y, x) (243)

is again an application of the Rockafellar-Fenchel duality. Indeed, consider the functions

h1 :

{
C(Σ̂) → R ∪ {+∞}

ϕ 7→ supz∈Σ̂{ϕ(z)−A(z)}

h2 :


C(Σ̂) → R ∪ {+∞}

ϕ 7→
{

0 if ϕ ∈ {Df | f ∈ C(Σ)}
−∞ otherwise,

and note that h1 is convex lower semicontinuous and h2 is concave upper semicontinuous.
Their Legendre transform h∗1(µ̂) = supϕ∈C(Σ̂) {

∫
ϕdµ̂−h1(ϕ)} and h∗2(µ̂) = infϕ {

∫
Σ̂ ϕdµ̂−

h2(ϕ)} are given by

h∗1(µ̂) =

{ ∫
Σ̂A dµ̂ if µ̂ ∈ P(Σ̂)

+∞ otherwise.

If µ̂ ∈ M(Σ̂) is nonpositive, there exists (ϕn)n ∈ C(Σ̂)N such that ∀n, ϕn 6 0 and∫
Σ̂ ϕn dµ̂ −−−→

n→∞
+∞. Thus, h1(ϕn) −−−→

n→∞
−∞ and h∗1(µ̂) = +∞.

If µ̂ is positive, then

h∗1(µ̂) = sup
ϕ∈C(Σ̂)

inf
z∈Σ̂

∫
Σ̂
ϕdµ̂− ϕ(z) +A(z)

=

∫
Σ̂
Adµ̂+ sup

ϕ∈C(Σ̂)

inf
z∈Σ̂

(∫
Σ̂

(ϕ−A) dµ̂− ϕ(z) +A(z)

)

=

∫
Σ̂
Adµ̂+ sup

ψ∈C(Σ̂)

(∫
Σ̂
ψ dµ̂− sup

z∈Σ̂

ψ(z)

)
with ψ = ϕ−A

>
∫

Σ̂
Adµ̂+ sup

α∈R
α(µ̂(Σ̂)− 1).
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Hence, h∗1(µ̂) = +∞ if µ̂ /∈ P(Σ̂). If µ̂ ∈ P(Σ̂),
∫

Σ̂ ψ dµ̂ 6 supz∈Σ̂ ψ(z) and h∗1(µ̂) =
∫

Σ̂Adµ̂.
Similarly,

∀µ̂ ∈M(Σ̂), h∗2(µ̂) =

{
0 if µ̂ ∈ N0

−∞ otherwise.

Indeed, if µ̂ /∈ N0, there exists f̄ ∈ C(Σ̂) such that
∫

Σ̂D
yf̄(x) dµ̂(y, x) 6= 0. Hence,

h∗2(µ̂) = inf
f∈C(Σ)

∫
Σ̂
Dyf(x) dµ̂(y, x) 6 inf

α∈R
α

∫
Σ̂
Dyf̄(x) dµ̂(y, x) = −∞.

If µ̂ ∈ N0, by definition, h∗2(µ̂) = 0.
The claimed equality is then a consequence of the Fenchel-Rockafellar duality inf µ̂ h

∗
1(µ̂)−

h∗2(µ̂) = supϕ h2(ϕ)− h1(ϕ).
We now provide the proof of (242): Consider the functional: ∀µ, ν ∈ P(Σ),

T (µ, ν) := inf

E[A(Y 0, X̄0)]

∣∣∣∣∣∣
X0 ∼ ν
X̄0 = τB0(X0) B0 ∈ Σ∗X0

X1 = τY 0(X̄0) ∼ µ Y 0 ∈ Σ∗
X̄0


Note first that if T (µ, ν) < +∞, then necessarily ν = σ2#µ. We then have X0 = σ2(X1)
and X̄0 = τB0(X0) = σ(X1). So

T (µ, ν) = inf{E[A(Y 0, σ(X1))] ; X1 ∼ µ, τY 0(σ(X1)) = X1, τB0(σ2(X1)) = σ(X1)}.

If we condition on X1 in the expectation above, then

T (µ, ν) =

∫
inf{A(y, σ(x)) ; τy(σ(x)) = x}dµ(x) =

∫
Ādµ,

where Ā is as defined in the deterministic section above. T is then a forward linear transfer
with forward Kantorovich operator

∀g ∈ C(Σ), ∀x ∈ Σ, T+g(x) := inf{E[g(τY 0(τB0(x)) +A(Y 0, τB0(x))] ; Y 0 ∈ Σ∗τB0 (x)}.

T is also a backward linear transfer with backward Kantorovich operator

T−f(x) := f(σ2(x))− inf
y∈Σ∗

σ(x)

A(y, σ(x)).

Indeed, let ν ∈ P(Σ), g ∈ C(Σ), then

(Tν)∗(g) = sup
µ∈P(Σ)

∫
Σ
g dµ− T (µ, ν)

= sup
µ

sup
X0∼ν,Y 0,B0,X1∼µ

E[g(τY 0(X̄0))−A(Y 0, X̄0)]

= sup
X0∼ν

sup
Y 0∈Σ∗

τ
B0 (X0)

,B0∈Σ∗X0

E[g(τY 0(τB0(X0)))−A(Y 0, τB0(X0))]

=

∫
sup

Y 0∈Σ∗
τ
B0 (x)

E[g(τY 0(τB0(x)))−A(Y 0, τB0(x))] dν(x)

:= −
∫
T+(−g)(x)dν(x).
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At the same time, for µ ∈ P(Σ), f ∈ C(Σ), then

(Tµ)∗(f) = sup
ν
{
∫
f dν − T (µ, ν)} =

∫
f dσ2#µ− T (µ, σ2#µ)

=

∫
f ◦ σ2 dµ− T (µ, σ2#µ)

=

∫
f ◦ σ2 dµ− inf

X0∼σ2#µ,X1∼µ
A(Y 0, σ(X1))

=

∫
f ◦ σ2 dµ−

∫
inf

y∈Σ∗
σ(x)

A(y, σ(x)) dµ(x)

=:

∫
T−f(x) dµ(x).

We now show that the hypotheses for application of Theorem 9.2 to the backward linear
transfer T̃ (µ, ν) := T (ν, µ), are satisfied.
First, it is easy to see that supx∈Σ infν∈P(Σ) T̃ (δx, ν) < +∞. Indeed, for a fixed x ∈ Σ,
take any random noise B0 ∈ Σ∗x and random strategy Y 0 ∈ Σ∗τB0 (x), and denote the law of

τY 0(τB0(x)) by ν̄x. Then

sup
x∈Σ

inf
ν∈P(Σ)

T̃ (δx, ν) 6 sup
x∈Σ
T (ν̄x, δx) 6 sup

x∈Σ
E[A(Y 0, τB0(x))] 6 sup

Σ̂

A < +∞.

For the hypothesis, ∃µ ∈ P(Σ), T̃ (µ, µ) < +∞. The verification that (224) holds follows
similarly as in the proof of Proposition 10.1. Therefore we obtain the existence of a h ∈
USCσ(Σ) such that

T̃−h(x) + c(T̃ ) = h(x), ∀x ∈ Σ.

With g := −h, this is equivalent to

T+g(x)− c(T̃ ) = g(x). (244)

The corresponding Mané constant is given by

c(T̃ ) = lim
n→∞

1

n
inf
µ,ν
Tn(µ, ν)

= lim
n→∞

inf
µ,ν

1

n

n−1∑
i=0

inf{E[A(Y i, X̄i)]}

= lim
n→∞

inf
µ,ν

inf
X0∼µ,X1∼ν

∫
Σ̂
Adµ(Y i)i

n

= inf
µ̂∈M0∩P(Σ)

∫
Σ̂
Adµ̂

= c(A).

Replacing x with σ(x) for x ∈ Σ in equation (244), we have

T+g(σ(x))− g(σ(x)) = c(A)
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Recalling the definition of T+ and the martingale assumption (240), we can write

c(A) = T+g(σ(x))− g(σ(x)) = inf
Y 0
{E[g(τY 0(τB0(σ(x))) +A(Y 0, τB0(σ(x)))]} − g(σ(x))

= inf
Y 0
{E[g(τY 0(x)) +A(Y 0, x)]} − g(σ(x))

= inf
y∈Σ∗x
{g(τy(x))− g(σ(x)) +A(y, x)}

= inf
y∈Σ∗x
{Dyg(x) +A(y, x)}

In view of the duality (243), this implies that (241) holds and concludes the proof.

11 Regularizations of linear transfers and applications

We continue to deal with cases where T is not necessarily weak∗-continuous onM(X) and
may even have infinite values. The strategy now is to reduce the situation to the bounded
and continuous case via a regularization procedure.

11.1 Regularization and weak KAM solutions for unbounded transfers

Lemma 11.1 (Regularisation of a backward linear transfer). Let (X, d) be a complete
metric space and let Wd(µ, ν) be the cost minimising optimal transport associated to the
cost d(x, y). For a given backward linear transfer T : P(X) × P(X) → R ∪ {+∞}, we
associate for each ε > 0 the functional

Tε(µ, ν) := inf{1

ε
W1(µ, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, ν) ; σ1, σ2 ∈ P(X)}.

Then, Tε has the following properties:

1. Tε is a weak∗ continuous backward linear transfer.

2. inf{Tε(µ, ν) ; µ, ν ∈ P(X)} = inf{T (µ, ν) ; µ, ν ∈ P(X)}.

3. Tε(µ, ν) 6 T (µ, ν) and Tε(µ, ν) ↑ T (µ, ν) as ε→ 0.

4. Tε Γ-converges to T as ε→ 0.

5. If Tε, T , denote the backward Kantorovich operators associated to Tε, T , respectively,
then for any f ∈ USC(X), Tεf(x)↘ Tf(x) as ε→ 0 .

Proof. First note that since d is continuous, the linear transfer Wd is weak-∗ continuous
on P(X) (See e.g., [55], Theorem 1.51, p.40).

1. We know that for each fixed ε > 0, Tε is a weak∗ lower semi-continuous linear backward
transfer. To prove that it is continuous, assume µn → µ and νn → ν. By the lower semi-
continuity, we have lim infn Tε(µn, νn) > Tε(µ, ν). On the other hand, from the fact that
lim supn infσ1,σ2 6 infσ1,σ2 lim supn, we have

lim sup
n
Tε(µn, νn) 6 inf{lim sup

n

1

ε
W1(µn, σ1) + T (σ1, σ2) + lim sup

n

1

ε
W1(σ2, νn) ; σ1, σ2 ∈ P(X)}

= inf

{
1

ε
W1(µ, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, ν) ; σ1, σ2 ∈ P(X)

}
= Tε(µ, ν),
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which shows that Tε(µn, νn)→ Tε(µ, ν) as n→∞.
2. Observe from the definition of Tε, that

inf
µ,ν
{Tε(µ, ν)} = inf

σ,σ′,µ,ν
{1

ε
W1(µ, σ) + T (σ, σ′) +

1

ε
W1(σ′, ν)} (245)

and it is clear that for fixed σ, σ′, the minimal µ is σ, and ν is σ′, and the transport cost
W1(µ, σ) = 0 = W1(σ′, ν).

3. The inequality Tε(µ, ν) 6 T (µ, ν) holds by selecting σ1 = µ and σ2 = ν and noting
thatWd(σ, σ) = 0 for every σ ∈ P(X). The monotone property of ε 7→ Tε(µ, ν) is immediate
by definition. Let now σε1, σε2 realise the infimum

Tε(µ, ν) =
1

ε
W1(µ, σ1

ε ) + T (σ1
ε , σ

2
ε ) +

1

ε
W1(σ2

ε , ν). (246)

By refining if necessary, we may assume that σ1
ε → σ1 and σ2

ε → σ2 as ε → 0. If
supε>0 Tε(µ, ν) < ∞), then W1(µ, σ1

ε ) → 0 and W1(σ2
ε , ν) → 0 as ε → 0, hence σ1 = µ

and σ2 = ν. Then (246) and weak-∗ lower semi-continuity of T implies

lim inf
ε→0

Tε(µ, ν) > lim inf
ε→0

T (σ1
ε , σ

2
ε ) > T (µ, ν).

4. First recall that for Γ-convergence, one needs to prove the Γ-lim inf inequality: For ev-
ery sequence (µε, νε)→ (µ, ν), it holds that lim infε→0 Tε(µε, νε) > T (µ, ν), and the Γ-lim sup
inequality: There exists a sequence (µε, νε) → (µ, ν) such that lim supε→0 Tε(µε, νε) 6
T (µ, ν).
The Γ-lim sup inequality is immediate: Take (µε, νε) = (µ, ν), and the inequality follows
from Tε 6 T .
For the Γ-lim inf inequality, we can assume without loss that lim infε→0 Tε(µε, νε) < +∞,
since otherwise there is nothing to prove. Now by monotonicity, we have Tε(µε, νε) >
Tε′(µε, νε) for ε 6 ε′. The weak-∗ lower semi-continuity of Tε′ therefore implies

lim inf
ε→0

Tε(µε, νε) > lim inf
ε→0

Tε′(µε, νε) > Tε′(µ, ν).

By 3) and letting ε′ → 0, we obtain lim infε→0 Tε(µε, νε) > T (µ, ν).
5. First note that the monotonicity of Tεf(x) is immediate from the expression

Tεf(x) = sup

{∫
f dσ − Tε(δx, σ)

}
,

and the monotonicity of Tε. We immediately have lim infε→0 Tεf(x) > Tf(x). On the other
hand, let εj be a sequence such that Tεjf(x)→ lim supε→0 Tεf(x). Then

Tεjf(x) = sup
σ

{∫
f dσ − Tε(δx, σ)

}
=

∫
f dσεj − Tεj (δx, σεj ).

By refining to a further subsequence if necessary, we may assume σεj → σ∗. Then we obtain
with j →∞,

lim sup
ε→0

Tεf(x) 6
∫
f dσ∗ − lim inf

j→∞
Tεj (δx, σεj )

6
∫
f dσ∗ − T (δx, σ

∗)

6 sup
σ

{∫
f dσ − T (δx, σ)

}
= Tf(x),
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where the second inequality was obtained from the Γ-convergence.

Lemma 11.2. Let X be a compact metric space and let T be a backward linear transfer
such that D1(T ) contains the Dirac measures. Assume hypothesis (217) and let Tε be the
regularisation of T according to Lemma 11.1. Then, the following properties hold:

1. c(Tε) is the unique constant such that |(Tε)n(µ, ν)− ncε| 6 Cε, for all n and all µ, ν.

2. c(Tε) ↑ c(T ) as ε→ 0.

3. c(T ) = inf{T (µ, µ) ; µ ∈ P(X)}.

Proof: Use Lemma 11.1 to regularise T to Tε , and let δε be the modulus of continuity for
Tε, which is also the modulus of continuity for (Tε)n, the n-fold inf-convolution of Tε. Use
now Corollary 8.1 for each ε to find cε = c(Tε) with the properties stated there. Note, in
particular that c(Tε) 6 c(T ). It follows that c(Tε) converges as ε→ 0. We let K(T ) be this
limit. Note that K(T ) 6 c(T ). We shall prove that

c(T ) = inf{T (µ, µ);µ ∈ P(X)} = K(T ). (247)

This follows from the Γ-convergence, since

c(Tε) = inf{Tε(µ, µ);µ ∈ P(X)} = Tε(µε, µε)

for some µε, then if µ̄ is a cluster point for (µε) as ε → 0, the Γ-convergence of Tε implies
that c(Tε) = Tε(µε, µε)→ T (µ̄, µ̄). If now ν is any other probability measure, then T (ν, ν) >
Tε(ν, ν) > Tε(µε, µε), hence T (ν, ν) > T (µ̄, µ̄) = K(T ) and

K(T ) = inf{T (µ, µ);µ ∈ P(X)}.

On the other hand, for every µ,

c(T ) = sup
n

inf
σ,ν

Tn(σ, ν)

n
6 sup

n

Tn(µ, µ)

n
6 T (µ, µ),

since Tn(µ, µ) is subadditive on the diagonal, hence c(T ) 6 K(T ) and (247) follows.

The above theorem has the following useful corollary, which implies the uniqueness of
the level c, where weak KAM solutions occur.

Corollary 11.3. Suppose T is a backward linear transfer on P(X)×P(X) such that D1(T )
contains all Dirac measures and that (217), (224) hold. Then,

1. If Tu+ d 6 u for some d ∈ R and some u ∈ USC(X), then d 6 c.

2. If Tv + d > v for some d ∈ R and some v ∈ USC(X), then d > c.

Proof: If Tu + d 6 u for some d ∈ R and u ∈ USC(X), then Tnu + nd 6 u for all
n ∈ N. Applying Tm and using the linearity of Tm with respect to constants, we find
Tm+nu+ dn 6 Tmu, and hence

Tm+nu+ d(m+ n) 6 Tmu+ dm
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So n 7→ Tnu+dn is decreasing to a function ũ. But if d > c, then Tnu+dn > Tnu+cn and
ũ is proper by the first part of the proof of Theorem 9.2 and T ũ + d = ũ on X. It follows
that for any µ ∈ P(X), ∫

X
Tnũ dµ = −nd+

∫
X
ũ dµ.

On the other hand, let µ̄ be such that T (µ̄, µ̄) = infµ∈P(X) T (µ, µ) = c. Then, from Lemma
9.1 we have

lim inf
n

1

n

∫
X
Tnf dµ̄ > −T (µ̄, µ̄) = −c.

It follows that −c 6 −d, which is a contradiction.

Here is a case where we can associate to T an effective Kantorovich operator without
the equicontinuity assumption.

Theorem 11.4. Let X is a compact metric space and let T be a backward linear transfer
such that D1(T ) contains the Dirac measures. Assume (217) and that for some ε > 0, we
have

c(Tε) = c(T ), (248)

where Tε be the regularisation of T according to Lemma 11.1. Then, there exists an
idempotent backward linear transfer T∞ on P(X) × P(X), with a Kantorovich operator
T∞ : C(X)→ USC(X) such that T ◦ T∞f + c = T∞f for all f ∈ C(X).

Proof: Consider the regularisation Tε of T . By Corollary 8.1, there exists a Kantorovich
operator T∞ε : C(X) → C(X), such that Tε ◦ T∞ε f + cε = T∞ε f for all f ∈ C(X), and an
idempotent transfer Tε,∞. We have the following properties: Under the assumption that
cε = c,

1. T∞ε f 6 T∞ε′ f for all f , whenever ε < ε′.

2. There exists a µ̄ ∈ P(X) such that T (µ̄, µ̄) = c, and
∫
X T

∞f dµ̄ >
∫
X f dµ̄.

To see that property 1 holds, observe that from monotonicity in ε for Tε (see Lemma 11.1),
we obtain monotonicity in ε for T̄εf(x) := lim supn(Tnε f(x) + ncε) under the assumption
that cε = c. Hence by definition of T∞ε f(x) = limn→∞(Tnε ◦ T̄εf(x) + ncε), we deduce
monotonicity for T∞ε .

For Property 2, let µ̄ε achieve cε = Tε(µ̄ε, µ̄ε). By Theorem 8.5, we have Tε,∞(µ̄ε, µ̄ε) = 0,
which implies

∫
X f dµ̄ε 6

∫
X T

∞
ε f dµ̄ε.

On the other hand, extract a subsequence εj of the µ̄ε so that µ̄εj → µ̄. Then for any
ε > 0, eventually, εj < ε. It then follows the monotonicity of Property 1 that

∫
X T

∞
εj f dµ̄εj 6∫

X T
∞
ε f dµ̄εj . Let j →∞ to obtain∫

X
f dµ̄ 6

∫
X
T∞ε f dµ̄.

The monotonicity of T∞ε f and the above lower bound ensures that for µ̄-a.e. x, the
limit limε→0 T

∞
ε f(x) exists as a real number and is not −∞. In particular, we deduce
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that T∞f(x) := limε→0 T
∞
ε f(x), satisfies

∫
X T

∞f dµ̄ >
∫
X f dµ̄; in particular, it is not

identically −∞, and belongs to USC(X).
By Lemma 4.2, we have

T ◦ T∞f(x) + c = lim
ε→0

T ◦ T∞ε f(x) + cε 6 lim
ε→0

Tε ◦ T∞ε f(x) + cε = lim
ε→0

T∞ε f(x) = T∞f.

On the other hand, the monotonicity in ε gives

T∞ε f = Tε ◦ T∞ε f + cε 6 Tε′ ◦ T∞ε f + c

for any ε′ > ε. By Lemma 4.2 applied to Tε′ and the sequence T∞ε f , we can pass the limit
in ε through T ′ε to obtain

T∞f(x) = lim
ε→0

T∞ε f(x) 6 lim
ε→0

Tε′ ◦ T∞ε f(x) + c = Tε′ ◦ T∞f(x) + c.

Now we let ε′ → 0 and use Property 4 of Lemma 11.1 to obtain T∞f(x) 6 T ◦ T∞f(x) + c,
and thus obtaining equality.

11.2 Weak KAM solutions for unbounded transfers

The following lemma shows that the above hypothesis c(Tε) = c(T ) is not vacuous as it
occurs in many examples.

Proposition 11.5. Let T be a backward linear transfer with Kantorovich operator T . In
any of the following cases,

1. inf{T (µ, ν);µ, ν ∈ P(X)} = inf{T (µ, µ) ; µ ∈ P(X)},

2. T is symmetric and for some ε0 > 0, T− maps every continuous function to a 1/ε0-
Lipschitz function,

we have c(Tε) = c(T ) for all small enough ε > 0.

Proof: To see 1) note that inf{T (µ, ν);µ, ν ∈ P(X)} = inf{Tε(µ, ν);µ, ν ∈ P(X)} for every
ε > 0. By property 2 of Lemma 11.1, and property 3 of Lemma 11.2, we get

c(Tε) 6 c(T ) = inf
µ∈P(X)

T (µ, µ) = inf{T (µ, ν);µ, ν ∈ P(X)} = inf{Tε(µ, ν);µ, ν ∈ P(X)} 6 c(Tε).

For 2) write

Tε(µ, µ) = inf
σ1,σ2
{1

ε
W (µ, σ1) + T (σ1, σ2) +

1

ε
W (σ2, µ)}

> inf
σ1,σ2
{1

ε
W (µ, σ1)− T (σ1, σ1) + T (σ1, σ2) +

1

ε
W (σ2, µ)}+ inf{T (σ1, σ1) ; σ1}

> inf
σ1,σ2,σ3

{1

ε
W (µ, σ1)− T (σ1, σ3) + T (σ3, σ2) +

1

ε
W (σ2, µ)}+ inf{T (σ1, σ1) ; σ1}

= (
1

ε
W ) ? (−T ) ? T ? (

1

ε
W )(µ, µ) + c.
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It suffices to show that (1
εW ) ? (−T ) ? T ? (1

εW )(µ, µ) > 0. Note that we can write

(−T ) ? T (µ, ν) = inf
σ
{−T (µ, σ) + T (σ, ν)}

= inf
f

inf
σ
{
∫
X
Tf dµ−

∫
X
f dσ + T (σ, ν)}

= inf
f
{
∫
X
T−f dµ+

∫
X
T+(−f) dν}.

Then with the notation that S−ε is the backward Kantorovich operator for 1
εW , we arrive

at

(
1

ε
W ) ? (−T ) ? T ? (

1

ε
W )(µ, µ) = inf

σ1,σ2
{1

ε
W (µ, σ1) + (−T ) ? T (σ1, σ2) +

1

ε
W (σ2, µ)}

= inf
f

inf
σ1,σ2
{1

ε
W (µ, σ1) +

∫
X
T−f dσ1 +

∫
X
T+(−f) dσ2 +

1

ε
W (σ2, µ)}

= inf
f
{−
∫
X
S−ε (−T−f) dµ−

∫
X
S−ε (−T+(−f)) dµ}

= inf
f
{−
∫
X
S−ε (−T−f) dµ−

∫
X
S−ε (T−f) dµ}

= inf
f
{−
∫
X

(−T−f) dµ−
∫
X
T−f dµ}

= 0,

where the second-last equality follows from the fact that whenever g is 1
ε0

-Lipschitz, then

S−ε g = g.

Proposition 11.6. Let S : C(X) → C(Y ) be a Markov operator (i.e., a bounded linear
positive operator such that T1 = 1) and let S∗ : M(X) → M(Y ) be its adjoint. Given a
backward linear transfer T : P(X)× P(Y ) and λ ∈ (0, 1), define

T̃ (µ, ν) := T (µ, λS∗µ+ (1− λ)ν). (249)

Then, T̃ is a backward linear transfer with Kantorovich operator

T̃−f(x) := T−
(

1

1− λ
f

)
(x)− λ

1− λ
Sf(x) (250)

Proof: Write

(T̃µ)∗(f) = sup
σ
{
∫
X
f dσ − T̃ (µ, σ)}

= sup
σ
{
∫
X
f dσ − T (µ, λS∗µ+ (1− λ)σ)}

with σ̃ := λS∗µ + (1 − λ)σ, we obtain σ = 1
1−λ σ̃ −

λ
1−λS

∗µ. Hence after substitution we
obtain

(T̃µ)∗(f) = sup
σ̃
{
∫
X

1

1− λ
f dσ̃ − T (µ, σ̃)} − λ

1− λ

∫
Y
Sf dµ

=

∫
X

[
T−
(

1

1− λ
f

)
− λ

1− λ
Sf

]
dµ.
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Theorem 11.7. Let T be a backward linear transfer on P(X) × P(X). Then, for every
λ ∈ (0, 1), there exists a convex function ϕλ such that the linear transfer given by

T̃λ(µ, ν) := T (µ, λ(∇ϕλ)#µ+ (1− λ)ν) (251)

is such that
inf

µ.ν∈P(X)
T̃λ(µ, ν) = inf

µ∈P(X)
T̃λ(µ, µ).

In particular, T̃λ admits weak KAM solutions, that is there exists g ∈ USC(X) and c ∈ R
such that

T−g + c = λ g(∇ϕ) + (1− λ) g. (252)

Proof: Let T (µ0, ν0) = infµ,ν T (µ, ν) < +∞ for some µ0 and ν0, and use Brenier’s theorem
to find a convex function ϕ such that ∇ϕ#µ0 = (1− 1

λ)µ0 + 1
λν0.

Consider now the backward linear transfer T̃ (µ, ν) := T (µ, λ∇ϕ#µ+ (1−λ)ν) and note
that T (µ0, µ0) = T (µ0, ν0) < +∞. Moreover,

inf
µ,ν
T̃ (µ, ν) > inf

µ,ν
T (µ, ν) = T (µ0, ν0) = T̃ (µ0, µ0) > inf

µ
T̃ (µ, µ),

hence infµ,ν T̃ (µ, ν) = infµ T̃ (µ, µ)., and in particular, T̃ satisfies the hypotheses of Theorem
11.4, and admits weak KAM solutions for its Kantorovich operator, which is given by
T̃−f = T−( 1

1−λf)− λ
1−λf ◦ ∇ϕ. In other words, by setting g := 1

1−λf , we have

T−g + c = λ g(∇ϕ) + (1− λ) g.

11.3 The heat semi-group and other examples

Assumption (248) is actually satisfied by a large number of our transfer examples.

1) Let T be the backward transfer associated to a convex lower semi-continuous func-
tional I on Wasserstein space, that is T (µ, ν) := I(ν). Assumption (248) then holds trivially
as c(T ) = inf I in this case, and the associated idempotent transfer is T∞(µ, ν) := I(ν)− c,
while the corresponding idempotent operator is T∞f = I∗(f) + c, where I∗ is the Legendre
transform of I.

2) Assumption (248) clearly holds for any transfer that is {0,+∞}-valued provided (217)
is satisfied. Note that if T is a Markov operator, then assumption (217) means that T has
an invariant measure. In this case, c(T ) = 0, and for every f , T∞f is an invariant function
under f .

3) If T is induced by a continuous point transformation, i.e., Tf(x) = f(σ(x) for a
continuous map σ : X → X, then by a Theorem of Bogolyubov and Krylov, T has an
invariant measure and the above applies. The operator T∞ is then given by

T∞f(x) = f(lim sup
m→∞

σm(x)) := f(σ∞(x)).

However, the regularity of the invariant functions T∞f can vary widely. For example,
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• If one takes X = [0, 1] and σ(x) = x2, then σ∞(x) = 0, if x ∈ [0, 1) and 1 if x = 1. In
this case, T∞f only belongs to USCσ(X).

• On the other hand, if σ(x) = 1− x, then σ∞(x) = max{x, 1− x} is continuous.

4) The heat semi-group: Recall the Skorokhod transfer of Example 3. 4. Instead of
considering a stopping time τ , we let τ = t > 0 to be deterministic, and define, for measures
µ, ν, on a compact Riemannian manifold M , the linear transfer,

Tt(µ, ν) =

{
0 if B0 ∼ µ and Bt ∼ ν
+∞ otherwise.

Then Ttf(x) = Ex[f(Bt)] = Ptf(x), where Pt is the heat semigroup. Note that since the
volume measure λM , i.e., the uniform probability measure on M , is invariant, we have
Tt(λM , λM ) = 0, hence Condition (217) is satisfied. We now have the following easy propo-
sition, which puts our asymptotic result in the following classical context.

Proposition 11.8. The collection {Tt}t>0 is a semigroup of backward linear transfers with
Kantorovich operators {Tt}t>0. The corresponding idempotent backward linear transfer
T∞(µ, ν) = sup{

∫
M fdν −

∫
M fdλM ; f ∈ C(M)} with Kantorovich operator T∞f(x) =∫

M f dλM .

Proof: It is immediate to verify that

(Tt,µ)∗(f) = sup{
∫
M
fdν ; ν such that Bt ∼ ν,B0 ∼ µ} =

∫
M
Ptf(x)dµ(x).

Moreover, it is a standard property of the heat semigroup, that Ptf → P∞f =
∫
M f dλM ,

uniformly on M , as t → ∞, for any f ∈ C(M). By the 1-Lipschitz property of Tt, we
conclude Tt ◦ T∞f = T∞f .

12 Stochastic weak KAM on the Torus

In this section, we are interested in making the connection between our general notion of
linear transfers, stochastic mass transports, and existing work on stochastic weak KAM
theory, in particular, by Gomes [36]. We shall therefore restrict our setting to M = Td :=
Rd/Zd, the d-dimensional flat torus. Note that, unlike the deterministic Mather theory, this
does not fall under the Monge-Kantorovich setting.

First, we introduce the stochastic mass transport of a probability measure µ to a prob-
ability measure ν on P(M) in time t > 0 (see e.g. [52] when the space is Rd and t = 1).
Define Tt(µ, ν) : P(M)× P(M)→ R ∪ {+∞} via the formula,

Tt(µ, ν) := inf

{
E
∫ t

0
L(X(s), βX(s,X)) ds ; X(0) ∼ µ,X(t) ∼ ν,X ∈ A[0,t]

}
, (253)

where L : TM → [0,∞) is a given Lagrangian function which we detail below, and X is a
continuous semi-martingale with an associated drift βX , belonging to a class of stochastic
processes A[0,t] defined below.
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Stochastic transport has a dual formulation (first proven in Mikami-Thieullin [52] for the
space Rd) that permits it to be realised as a backward linear transfer. In fact, by introducing
the operator Tt : C(M)→ USC(M) via the formula

Ttf(x) := sup
X∈A[0,t]

{
E [f(X(t))|X(0) = x]− E

[∫ t

0
L(X(s), βX(s,X)) ds|X(0) = x

]}
,

(254)
the duality relation between Tt and Tt can be readily detailed, see Proposition 12.1. The
operator Tt connects to the work of Gomes via a Hamilton-Jacobi-Bellman equation (255),

Concerning the assumptions on L, we make the following hypotheses.

(A0) L is continuous, non-negative, L(x, 0) = 0, and D2
vL(x, v) is positive definite for all

(x, v) ∈ TM (in particular v 7→ L(x, v) is convex).

(A1) There exists a function γ = γ(|v|) : Rn → [0,∞) such that lim|v|→∞
L(x,v)
γ(v) = +∞ and

lim|v|→∞
|v|
γ(v) = 0.

To complete the definition for Tt, we need to define the set of processes A[0,t]. As in [52], let
(Ω,F ,P) be a complete probability space with normal filtration {Ft}t>0, and define A[0,t]

to be the set of continuous semi-martingales X : Ω × [0, t] → M such that there exists a
Borel measurable drift βX : [0, t]× C([0, t])→ Rd for which

1. ω 7→ βX(s, ω) is B(C([0, s]))+-measurable for all s ∈ [0, t], where B(C([0, s])) is the
Borel σ-algbera of C[0, s].

2. WX(s) := X(s)−X(0)−
∫ s

0 βX(s′, X) ds′ is a σ(X(s) ; 0 6 s 6 t) M -valued Brownian
motion.

An adaptation of their proofs to the case of a compact torus yields the following.

Proposition 12.1. Under the above hypothesis on L, the following assertions hold:

1. For each t > 0, Tt is a backward linear transfer with Kantorovich operator Tt, and the
family {Tt}t>0 is a semi-group of transfers under convolutions.

2. For any µ, ν ∈ P(M) for which Tt(µ, ν) <∞, there exists a minimiser X̄ ∈ A[0,t] for
Tt(µ, ν). For every f ∈ C(M) and x ∈M , there exists a maximiser for Ttf(x).

3. Fix t1 > 0, and u ∈ C(M), the function U(t, x) := Tt1−tu(x) defined for 0 6 t 6 t1 is
the unique viscosity solution of

∂U

∂t
(t, x) +

1

2
∆xU(t, x) +H(x,∇xU(t, x)) = 0, (t, x) ∈ [0, t1)×M, (255)

with U(t1, x) = u(x).

4. If f ∈ C∞(M) and t > 0, U(t′, x) := Tt−t′f ∈ C1,2([0, t] ×M) and U is a classical
solution to the Hamilton-Jacobi-Bellman equation (255). The maximiser X̄ satisfies

βX̄(s, X̄) = DpH(X̄(s), DxU(s, X̄(s))).
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In order to define the Mané constant c(T ) and develop a corresponding Mather theory,
we need to establish that there exists a probability measure µ ∈ P(M) such that T1(µ, µ) <
+∞. Such a measure can be obtained as the first marginal of a probability measure m on
phase space TM that is flow invariant, that is one that satisfies∫

TM
Avϕ(x) dm(x, v) = 0 for all ϕ ∈ C2(M) where Avϕ := 1

2∆ϕ+ v · ∇ϕ. (256)

To this end, let Pγ(M) denote the set of probability measures on TM such that∫
TM

γ(v) dm(x, v) < +∞,

and denote by N0 the class of such probability measures m, that is,

N0 := {m ∈ Pγ(TM) ;

∫
TM

Avϕ(x) dm(x, v) = 0 for all ϕ ∈ C2(M)}.

Proposition 12.2. The set N0 of ‘flow-invariant’ probability measures m on TM is non-
empty and

c := inf{T1(µ, µ) ; µ ∈ P(M)} = inf{
∫
TM

L(x, v) dm(x, v); m ∈ N0}. (257)

Moreover, the infimum over N0 is attained by a measure m̄, that we call a stochastic Mather
measure. Its projection µm̄ on P(M) is a minimiser for T1.

Conversely, every minimizing measure µ̄ of T1(µ, µ) induces a stochastic Mather measure
mµ̄.

Proof: Given µ ∈ P(M), consider X ∈ A[0,1] that realises the infimum for T1(µ, µ), that is

T1(µ, µ) = E
∫ 1

0
L(X(s), βX(s,X)) ds.

Define a probability measure m = mµ ∈ Pγ(TM) via its action on the subset of continuous

functions ψ : TM → R with sup(x,v)∈TM

∣∣∣ψ(x,v)
γ(v)

∣∣∣ < +∞ and lim|(x,v)|→∞
ψ(x,v)
γ(v) → 0 via the

formula ∫
TM

ψ(x, v) dm(x, v) := E
∫ 1

0
ψ(X(s), βX(s,X)) ds. (258)

We claim that
∫
TM Avϕ(x) dm(x, v) = 0 for every ϕ ∈ C2(M). Indeed, by the definition of

m, ∫
TM

Avϕ(x) dm(x, v) = E
∫ 1

0
AβX(s,X)ϕ(X(s)) ds

= E
∫ 1

0

d

ds
[ϕ(X(s))] ds (Itô’s lemma)

= Eϕ(X(1))− Eϕ(X(0))

= 0, (X(0) ∼ µ ∼ X(1)).
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This implies that m ∈ N0, so that

T1(µ, µ) = E
∫ 1

0
L(X(s), βX(s,X)) ds =

∫
TM

L(x, v) dm(x, v) > inf
m∈N0

∫
TM

L(x, v) dm(x, v),

(259)

hence

inf
µ∈P(M)

T1(µ, µ) > inf
m∈N0

∫
TM

L(x, v) dm(x, v).

Conversely, suppose m ∈ N0, and let ϕ(x, t) be a smooth solution to the Hamilton-Jacobi-
Bellman equation. Since

∫
TM Avϕ(x, t) dm(x, v) = 0 for every t, it follows that µm :=

πM#m satisfies∫
M

[ϕ(x, 1)− ϕ(x, 0)] dµm(x) =

∫
[0,1]

d

dt

[∫
M
ϕ(x, t) dµm

]
dt

=

∫ 1

0

∫
TM

∂tϕ(x, t) dm(x, v) dt

=

∫ 1

0

∫
TM

[v · ∇ϕ(x, t)−H(x,∇xϕ(x, t))] dm(x, v) dt.

Since H(x, p) := supv {〈p, v〉 − L(x, v)},

v · ∇ϕ(x, t)−H(x,∇xϕ(x, t)) 6 L(x, v),

hence combining the above two displays implies∫
M

[ϕ(x, 1)− ϕ(x, 0)] dµm(x) 6
∫
TM

L(x, v) dm(x, v)

for every Hamilton-Jacobi-Bellman solution ϕ on [0, 1)×M with ϕ(·, 1) ∈ C∞(M). Taking
the supremum over all such solutions ϕ yields

sup

{∫
M

[ϕ(x, 1)− ϕ(x, 0)] dµm(x) ; ϕ(·, 1) ∈ C∞(M)

}
6
∫
TM

L(x, v) dm(x, v).

By duality, T1(µm, µm) = sup
{∫

M [ϕ(x, 1)− ϕ(x, 0)] dµm(x) ; ϕ(·, 1) ∈ C∞(M)
}

, so that

T1(µm, µm) 6
∫
TM

L(x, v) dm(x, v) (260)

and therefore infµ∈P(M) T1(µ, µ) 6
∫
TM L(x, v) dm(x, v), and we are done.

The following summarizes the main asymptotic properties of {Tt}t>0.

Proposition 12.3. Let {Tt}t>0 be the family of stochastic transfers defined via (253) with
associated backward Kantorovich operators {Tt}t>0 given by (254). Let c be the critical value
obtained in the last proposition. Then,

88



1. The equation
Ttu+ kt = u, t > 0, u ∈ C(M),

has solutions (the backward weak KAM solutions) if and only if k = c.

2. The backward weak KAM solutions are exactly the viscosity solutions of the stationary
Hamilton-Jacobi-Bellman equation

1

2
∆u+H(x,Dxu) = −c. (261)

Proof. The fact that there are solutions for (261) was established by Gomes [36]. We
give a proof based on Proposition 9.4 that clarifies the relationship between such solutions
and the notion of backward weak KAM solutions.

Let α > 0 and consider

uα(x) := inf

{
E
∫ +∞

0
e−sL(X(s), βX(s,X)) ds ; X ∈ A[0,t], X(0) = x

}
.

It is well known that one then has

uα(x) = inf

{
E
∫ t

0
e−sL(X(s), βX(s,X)) ds+ e−αtuα(X(t)) ; X ∈ A[0,t], X(0) = x

}
,

and

αuα −
1

2
∆uα +H(x,Dxuα) = 0.

It is straightforward to check that this implies that

Ttuα + tαuα = uα.

Proposition 9.4 applies to get the result with t = n. Note that for constructing a viscosity
solution for (261), it suffices to find a weak KAM solution for T1. Indeed, suppose there
exists a function f ∈ C(M) such that T1f(x) + c = f(x) for all x ∈ M , we need to show
that Ttf(x) + ct = f(x) for all t > 0. But note that from the semi-group property, the
claim is true for t = n ∈ N. For other t > 0, by writing uniquely t = n + α where n ∈ N
and 0 6 α < 1, it then suffices to prove that Tαf(x) + αc = f(x). Note that the function
U(t, x) := T1−tf(x) + c(1− t) satisfies the Hamilton-Jacobi-Bellman equation{

∂U
∂t (t, x) + 1

2∆U(t, x) +Hc(x,∇U(t, x)) = 0, t ∈ [0, 1), x ∈M
U(1, t) = f(x).

(262)

where Hc(x, p) := H(x, p) + c, with the additional property that U(0, x) = U(1, x). We
may then apply a comparison result for Hamilton-Jacobi-Bellman (see e.g. [26], Section V.8,
Theorem 8.1) to deduce that in fact the condition U(0, x) = U(1, x) implies U(t, x) = U(1, x)
for every t ∈ [0, 1]. In particular, at t = 1− α, we deduce that Tαf(x) + cα = f(x).

As to the relationship between 1) and 2) observe that if u is a backward weak KAM
solution, then U(t, x) := Tt1−tu(x) + c(t1 − t) = u(x) is a viscosity solution to (262) where
the final time is t1. Hence u is a viscosity solution of (261).

Conversely, suppose u is a viscosity solution to (261).Then, (x, t) 7→ u(x) is a viscosity
solution to (262). On the other hand, Tt1−tu+ c(t1− t) is also a viscosity solution of (262).
By the uniqueness of such solutions, it follows that Tt1−tu(x) + c(t1 − t) = u(x). As t1 > 0
is arbitrary, this shows that u is a backward weak KAM solution.
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We finish this section with the following characterization of the Mané value, motivated
by the work of Fathi [25] in the deterministic case. Let u ∈ C(M) and k ∈ R, and say that
u is dominated by L− k and write u ≺ L− k if for every t > 0, it holds for every X ∈ A[0,t]

and every x ∈M ,

E[u(X(t))|X(0) = x]− u(x) 6 E
[∫ t

0
L(X(s), βX(s,X) ds|X(0) = x

]
− kt. (263)

Proposition 12.4. The Mañé critical value satisfies

c = sup {k ∈ R : ∃u such that u ≺ L− k} .

Proof. By the above, there exists a u such that Ttu+ ct = u, so that by definition of Tt,

u(x)− ct > E[u(X(t))|X(0) = x]− E
[∫ t

0
L(X(s), βX(s,X) ds|X(0) = x

]
for every X ∈ A[0,t]. This shows that u ≺ L− c, so c is itself admissible in the supremum.

On the other hand, if k ∈ R is such that u ≺ L− k, then it is easy to see that Ttu(x) 6
u(x) − kt for all t. In particular, applying Ts and using the linearity of Ts with respect to
constants, we find Ts+tu+ kt 6 Tsu, and hence

Ts+tu+ k(t+ s) 6 Tsu+ ks

So t 7→ Ttu+ kt is decreasing and the result follows from Corollary 11.3.

13 Convex couplings and convex and Entropic Transfers

First, recall that the increasing Legendre transform (resp., decreasing Legendre transform)
of a function α : R+ → R (resp., β : R+ \ {0} → R) is defined as

α⊕(t) = sup{ts− α(s); s > 0} resp., β	(t) = sup{−ts− β(s); s > 0} (264)

By extending α to the whole real line by setting α(t) = +∞ if t < 0, and using the standard
Legendre transform, one can easily show that α is convex increasing on R+ if and only if
α⊕ is convex and increasing on R+. We then have the following reciprocal formula

α(t) = sup{ts− α⊕(s); s > 0}. (265)

Similarly, if β is convex decreasing on R+ \ {0}, we have

β(t) = sup{−ts− β	(s); s > 0}. (266)

13.1 Convex couplings

We now give a few examples of convex couplings, which are not necessarily convex transfers.
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Proposition 13.1. Let α : R+ → R (resp., β : R+ \ {0} → R) be a convex (resp.,
concave) increasing functions. If T is a linear backward (resp., forward) transfer with
Kantorovich operator T− (resp., Kantorovich operator T+), then α(T ) is a backward convex
(resp., forward convex) coupling associated to a family of (Kantorovich) operators (T−s )s>0

(resp.,(T+
s )s>0, where

T−s f = sT−(
f

s
)− α⊕(s) (resp., T+

s f = sT+(fs )− α⊕(s). (267)

In particular, for any p > 1, T p is a forward (resp., backward) convex coupling.

Proof: It suffices to write

α(T (µ, ν)) = sup
{
s

∫
Y
T+f dν − s

∫
X
f dµ− α⊕(s); s ∈ R+, f ∈ C(X)

}
= sup

{∫
Y
sT+(

h

s
) dν − α⊕(s)−

∫
X
h dµ; s ∈ R+, h ∈ C(X)

}
,

which means that α(T ) is a forward convex coupling corresponding to the family of (Kan-
torvich) operators T+

s f = sT+(hs )− α⊕(s).

Example 11.1): A mean-field planning problem (Orrieri-Porretta-Savaré [58])
Let L : Rd × Rd → R be a Tonelli Lagrangian and F : Rd × L∞([0, T ];P(Rd)) → R be

a functional that is convex in the second variable, and consider the following mean-field
planning problem between two probability measures µ and ν,

T (µ, ν) =: min

{∫ T

0

∫
Rd
L(x,v) ρ(t, dx) dt+

∫ T

0
F (x, ρ(t, dx)) dt; v ∈ L2(ρ(t, dx) dt)

}
,

(268)
subject to ρ and v satisfying

∂tρ+∇ · (ρv) = 0, ρ(0, ·) = µ , ρ(T, ·) = ν. (269)

Then, T is both a forward and backward convex coupling.
Indeed, following Orrieri-Porretta-Savaré [58], we consider for each ` ∈ C([0, T ],Rd) the

Kantorovich operator defined on C(Rd) via

T`(u) = u`(T, x)−
∫∫

Q
F ∗(x, `(t, x)) dx

where u`(t, x) is a solution of the Hamilton-Jacobi equation

−∂tu+H(x,Du) = ` in Q := (0, T )× Rd, (270)

u(0, x) = u(x). (271)

and F ∗(x, `) = sup
{
〈`, ρ〉 − F (x, ρ);m ∈ L∞([0, T ];P(Rd))

}
.

A standard min-max argument then yields that

T (µ, ν) = sup

{∫
Rd
T`u dν −

∫
Rd
u dµ;u ∈ C(Rd), ` ∈ C([0, T ],Rd)

}
= sup

{∫
Rd
u`(T, x)dν −

∫
Rd
u`(0, x) dµ(x)−

∫∫
Q
F ∗(x, `(t, x)) dx; u` solves (270)

}
.
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Remark 13.2. Another convex -but only backward- coupling can be defined as

T (µ, ν) =: min

∫ T

0

∫
Rd
L(x,v) ρ(t, dx) dt+

∫ T

0
F (x, ρ(t, dx)) dt; v ∈ L2(ρ(t, dx) dt), (272)

subject to ρ and v satisfying

∂tρ−∆ρ+∇ · (ρv) = 0, ρ(0, ·) = µ , ρ(T, ·) = ν. (273)

We do not know whether T is a convex transfer. This is equivalent to the question
whether `→ T` is concave, or equivalently whether the map `→ u`(T, x) is concave.

Example 11.2: A backward convex coupling which is not a convex transfer
Let Ω ⊂ Rd be a Borel measurable subset with 1 < |Ω| < ∞, λ := 1

|Ω| , and define for
any two given probability measures µ, ν on Ω, the correlation,

Tλ(µ, ν) =

{
0 if ν ∈ Cλ(µ)

+∞ otherwise,
(274)

where Cλ(µ) := {ν ∈ P(Ω) ; λ
∣∣∣ dν

dµ

∣∣∣ 6 1µ-a.e.}. Note that when µ = λ dx|Ω (the uniform

measure on Ω),

Tλ(λ dx|Ω, ν) =

{
0 if

∣∣ dν
dx

∣∣ 6 1 Lebesgue-a.e.

+∞ otherwise.
(275)

We claim that Tλ is a backward convex coupling but not a convex transfer. Indeed, for the
first claim, consider αm(t) := (λt)m log(λt) for m > 1 and t > 0, and define

Tm(µ, ν) :=

{∫
Ω αm

(∣∣∣ dν
dµ

∣∣∣) dµ, if ν << µ,

+∞ otherwise.
(276)

By Example 11.1, Tm is a backward convex transfer and

(Tm,µ)∗(f) = inf{
∫

Ω
[α⊕m(f(x) + t)− t] dµ(x) ; t ∈ R}. (277)

The function α⊕m can be explicitly computed as

α⊕m(t) =

{
e−1+ 1

m−1
W (βmt)

[
βmt+ 1

me
W (βmt)

]
if t > − λ

m−1e
−1,

0 if t < − λ
m−1e

−1.
(278)

where βm := m−1
λm e

m−1
m , and W is the Lambert-W function. It is easy to see that Tλ(µ, ν) =

supm Tm(µ, ν); hence it is a backward convex coupling (as a supremum of backward convex
transfers).

However, Tλ is not a backward convex transfer, since

(Tλ,µ)∗(f) = (sup
m
Tm,µ)∗(f) 6 inf

m
T ∗m,µ(f) =

∫
f

λ
dµ,
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with the inequality being in general strict.
Note that this also implies that the Wasserstein projection on the set Cµ, that is

W 2
2 (P1[ν], ν) = inf{W 2

2 (σ, ν);

∣∣∣∣ dσ

dx

∣∣∣∣ 6 1} = inf{Tλ(λdx|Ω, σ)+W 2
2 (σ, ν) ; σ ∈ P(Ω)} (279)

is in fact an inf-convolution of a backward convex coupling Tλ with the linear transfer W 2
2 ,

and no duality formula can then be extracted.

13.2 Convex and entropic transfers

Proposition 13.3. Let α : R+ → R (resp., β : R+ \ {0} → R) be a convex (resp., concave)
increasing functions.

1. If E is a β-entropic backward transfer with Kantorovich operator E−, then it is a
backward convex transfer with Kantorovich family (T−s )s>0 given by

T−s f = sT−f + (−β)	(s). (280)

2. Similarly, if E is an α-entropic forward transfer with Kantorovich operator E+, then
it is a forward convex transfer with Kantorovich family (T+

s )s>0 given by

T+
s f = sT+f − α⊕(s). (281)

Proof: Use the fact that (−β) is convex decreasing to write that for any g ∈ C(Y ),

β
( ∫

X
T−g dµ) = inf{s

∫
X
T−g dµ+ (−β)	(s); s > 0},

hence E is a backward convex transfer with Kantorovich family given by T−s f = sT−f +
(−β)	(s).

Example 11.4: General entropic functionals are convex transfers
Consider the following generalized entropy,

Eα(µ, ν) =

∫
X
α(|dν

dµ
|) dµ, if ν << µ and +∞ otherwise, (282)

where α is any strictly convex lower semi-continuous superlinear (i.e., lim
t→+∞

α(t)
t = +∞)

real-valued function on R+. It is then easy to show [39] that

(Eα)∗µ(f) = inf{
∫
X

[α⊕(f(x) + t)− t] dµ(x); t ∈ R}, (283)

In other words, Eα is a backward convex transfer with Kantorovich family

T−t f(x) = α	(f(x) + t)− t.

Example 11.5: The logarithmic entropy is a log-entropic backward transfer
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The relative logarithmic entropy H(µ, ν) is defined as

H(µ, ν) :=
∫
X log( dνdµ) dν if ν << µ and +∞ otherwise.

It can also be written as

H(µ, ν) :=
∫
X h( dνdµ) dµ if ν << µ and +∞ otherwise,

where h(t) = t log t − t + 1, which is strictly convex and positive. Since h∗(t) = et − 1, it
follows that

H∗µ(f) = inf{
∫
X

(etef(x) − 1− t) dµ(x); t ∈ R} = log

∫
X
ef dµ.

In other words, H(µ, ν) = sup{
∫
X f dν − log

∫
X e

f dµ; f ∈ C(X)}, and H is therefore a
β-entropic backward transfer with β(t) = log t, and E−f = ef is a Kantorovich operator.
H is a backward convex transfer since for any f ∈ C(X),

log

∫
X
ef dµ = inf{s

∫
X
ef dµ+ β	(s); s > 0}.

In other words, it is a backward convex transfer with Kantorovich family T−s f = sef +β	(s)
where s > 0.

Example 11.6: The Fisher-Donsker-Varadhan information is a backward convex
transfer [23]

Consider an X -valued time-continuous Markov process (Ω,F , (Xt)t≥0, (Px)x∈X ) with an
invariant probability measure µ. Assume the transition semigroup, denoted (Pt)t≥0, to be
completely continuous on L2(µ) := L2(X ,B, µ). Let L be its generator with domain D2(L)
on L2(µ) and assume the corresponding Dirichlet form E(g, g) := 〈−Lg, g〉µ for g ∈ D2(L)
is closable in L2(µ), with closure (E ,D(E)). The Fisher-Donsker-Varadhan information of
ν with respect to µ is defined by

I(µ|ν) :=

{
E(
√
f,
√
f), if ν = fµ,

√
f ∈ D(E)

+∞, otherwise.
(284)

Note that when (Pt) is µ-symmetric, ν 7→ I(µ|ν) is exactly the Donsker-Varadhan entropy
i.e. the rate function governing the large deviation principle of the empirical measure Lt :=
1
t

∫ t
0 δXsds for large time t. The corresponding Feynman-Kac semigroup on L2(µ)

P ut g(x) := Exg(Xt) exp

(∫ t

0
u(Xs) ds

)
. (285)

It has been proved in [65] that I∗µ(f) = log ‖P f1 ‖L2(µ), which yields that I is a backward
convex transfer.

I∗µ(f) = log ‖P f1 ‖L2(µ) =
1

2
log ‖P f1 ‖

2
L2(µ) =

1

2
log sup{

∫
|P f

1
g|2 dµ; ‖g‖L2(µ) 6 1}.
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In other words, with β(t) = log t, we have

I(µ, ν) = sup{
∫
Y
f dν − 1

2
log sup{

∫
X
|P f1 g|

2 dµ; ‖g‖L2(µ) 6 1}; f ∈ C(X)}

= sup{
∫
Y
f dν + sup

s>0
sup

‖g‖L2(µ)61

1

2
{
∫
X

(−s|P f1 g|
2 − β	(s)) dµ}; f ∈ C(X)}

= sup{
∫
Y
f dν − inf

s>0
inf

‖g‖L2(µ)61

1

2
{
∫
X

(s|P f1 g|
2 + β	(s)) dµ}; f ∈ C(X)}

= sup{
∫
Y
f dν −

∫
X
T−s,gf dµ ; s ∈ R+, ‖g‖L2(µ) 6 1, f ∈ C(X)}.

Hence, it is a backward convex transfer, with Kantorovich family (T−s,g)s,g defined by

T−s,gf = s
2 |P

f
1
g|2 + 1

2β
	(s).

13.3 Operations on convex and entropic transfers

The class of backward (resp., forward) convex couplings and transfers satisfy the following
permanence properties. The most important being that the inf-convolution with linear
transfers generate many new examples of convex and entropic transfers..

Proposition 13.4. Let F be a backward convex coupling (resp., transfer) with Kantorovich
family (F )−i , Then,

1. If a ∈ R+ \ {0}, then aF is a backward convex coupling (resp., transfer) with Kan-
torovich family given by F−a,i(f) = aF−i (fa ).

2. If T is a backward linear transport on Y ×Z with Kantorovich operator T−, and F is
a backward convex transfer, then F ?T is a backward convex transfer with Kantorovich
family given by F−i ◦ T−.

Proof: Immediate. For 2) we calculate the Legendre dual of (F ? T )µ at g ∈ C(Z) and
obtain,

(F ? T )∗µ(g) = sup
ν∈P(Z)

sup
σ∈P(Y )

{∫
Z
g dν −F(µ, σ)− T (σ, ν)

}
= sup

σ∈P(Y )
{T ∗σ (g)−F(µ, σ)}

= sup
σ∈P(Y )

{∫
Y
T−g dσ −F(µ, σ)

}
= (F)∗µ(T−(g))

= inf
i∈I

∫
X
F−i ◦ T

−g(x)) dµ(x).

The same properties hold for entropic transfers. That we will denote by E as opposed to T
to distinguish them from the linear transfers. We shall use E+ and E− for their Kantorovich
operators.

95



Proposition 13.5. Let β : R→ R be a concave increasing function and let E be a backward
β-entropic transfer with Kantorovich operator E−. Then,

1. If λ ∈ R+ \ {0}, then λE is a backward (λβ)-entropic transfer with Kantorovich
operator E−λ (f) = E−(fλ).

2. Ẽ is a forward ((−β)	)⊕-entropic transfer with Kantorovich operator Ẽ+h = −E−(−h).

3. If T is a backward linear transfer on Y ×Z with Kantorovich operator T−, then E ?T
is a a backward β-entropic transfer on X × Z with Kantorovich operator equal to
E− ◦ T−. In other words,

E ? T (µ, ν) = sup
{∫

Z
g(y) dν(y)− β(

∫
X
E− ◦ T−g(x)) dµ(x)); g ∈ C(Z)

}
. (286)

Proof: 1) is trivial. For 2) note that since β is concave and increasing, then

T̃ (ν, µ)) = T (µ, ν))

= sup{
∫
Y
g dν − β

( ∫
X
T−g dµ); g ∈ C(Y )}

= sup{
∫
Y
g dν + sup

s>0
{
∫
X
−sT−g dµ− (−β)	(s)}; g ∈ C(X)}

= sup{
∫
Y
g dν − s

∫
X
T−g dµ− (−β)	(s); s > 0, g ∈ C(X)}

= sup{s
∫
X
−T−(−h) dµ− (−β)	(s)−

∫
Y
h dν; s > 0, g ∈ C(X)

= sup{((−β)	)⊕(

∫
X
−T−(−h) dµ)−

∫
Y
h dν; s > 0, h ∈ C(X)}.

In other words, T̃ is a (β	)⊕-entropic forward transfer.
For 3) we calculate the Legendre dual of (E ? T )µ at g ∈ C(Z) and obtain,

(E ? T )∗µ(g) = sup
ν∈P(Z)

sup
σ∈P(Y )

{∫
Z
g dν − E(µ, σ)− T (σ, ν)

}
= sup

σ∈P(Y )
{T ∗σ (g)− E(µ, σ)}

= sup
σ∈P(Y )

{∫
Y
T−g dσ − E(µ, σ)

}
= (E)∗µ(T−(g))

= β
(∫

X
E− ◦ T−g(x)) dµ(x)).

A similar statement holds for forward α-entropic transfers where α is now a convex increas-
ing function on R+. But we then have to reverse the orders. For example, if T (resp., E)
is a forward linear transfer on Z ×X (resp., a forward α-entropic transfer on X × Y ) with
Kantorovich operator T+ (resp., E+), then T ? E is a forward α-entropic transfer on Z ×Y
with Kantorovich operator equal to E+ ◦ T+. In other words,

T ? E (µ, ν) = sup
{
α
( ∫

Y
E+ ◦ T+f(y)) dν(y)

)
−
∫
X
f(x) dµ(x); f ∈ C(X)

}
. (287)
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13.4 Subdifferentials of linear and convex transfers

If T is a linear transfer, then both Tµ and Tν are convex weak∗ lower semi-continuous and
one can therefore consider their (weak∗) subdifferential ∂Tµ (resp., ∂Tν) in the sense of
convex analysis. In other words,

g ∈ ∂Tµ(ν) if and only if T (µ, ν ′) > T (µ, ν) +
∫
Y g d(ν ′ − ν) for any ν ′ ∈ P(Y ).

In other words, g ∈ ∂Tµ(ν) if and only if Tµ(ν) + T ∗µ (g) = 〈g, ν〉. Since Tµ(ν) = T (µ, ν) and
T ∗µ (g) =

∫
T−g dµ, we then obtain the following characterization of the subdifferentials.

Proposition 13.6. Let T be a backward (resp., forward) linear transfer. Then the sub-
differential of Tµ : P(Y ) → R ∪ {+∞} at ν ∈ P(Y ) (resp., Tν : P(X) → R ∪ {+∞} at
µ ∈ P(X)) is given by

∂Tµ(ν) =

{
g ∈ C(Y ) :

∫
Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x) = T (µ, ν)

}
(288)

respectively,

∂Tν(µ) =

{
f ∈ C(X) :

∫
Y
T+f(y) dν(y)−

∫
X
f(x) dµ(x) = T (µ, ν)

}
(289)

In other words, the subdifferential of Tµ at ν (resp., Tν at µ) is exactly the set of maximisers
for the dual formulation of T (µ, ν).

It is easy to see that the same expressions hold - with the necessary modifications - for
backward convex (resp., forward) transfers, as well as backward β-entropic (resp., forward
α-entropic) transfers.

In the following, we observe some elementary consequences for elements in the subdif-
ferential.

Proposition 13.7. Suppose T is a linear backward transfer such that the Dirac masses are
contained in D1(T ). Fix µ ∈ P(X) and ν ∈ P(Y ). Then, there exists π̄ ∈ K(µ, ν) such that
for each f̄ ∈ ∂Tµ(ν), we have

T−f̄(x) =

∫
Y
f̄(y) dπ̄x(y)− T (x, π̄x), for µ-a.e. x ∈ X, (290)

where π̄x is a disintegration of π̄ with w.r.t. µ.
Conversely, if ν 7→ T (µ, ν) is strictly convex and f̄ ∈ ∂Tµ(ν) for some ν ∈ P(Y ). If

x→ σx is any selection such that

T−f̄(x) = sup
σ

{∫
f̄ dσ − T (δx, σ)

}
=

∫
Y
f̄ dσx − T (δx, σx),

then T (µ, ν) is attained by the measure π̄ =
∫
X σxdµ(x).

Proof: By a recent result [5], there exists π̄ ∈ K(µ, ν) such that

T (µ, ν) =

∫
X
T (x, π̄x) dµ(x).
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If f̄ ∈ ∂Tµ(ν), then by definition∫
Y
f̄(y) dν(y)−

∫
X
T−f̄(x) dµ(x) = T (µ, ν) =

∫
X
T (x, π̄x) dµ(x),

that is
∫
X

[
T−f̄(x)−

∫
Y f̄(y) dπ̄x(y) + T (x, π̄x)

]
dµ = 0. Since T−f̄(x) = supσ

{∫
f̄ dσ − T (x, σ)

}
,

the quantity in the brackets is non-negative and we get our claim.
Conversely, If f̄ ∈ ∂Tµ(ν) is non-empty for some ν ∈ P(Y ), then

∫
f̄ dν −

∫
T−f̄ dµ =

T (µ, ν). From the expression T−f̄(x) = supσ
{∫

Y f̄ dσ − T (δx, σ)
}

, we know the supremum
will be achieved by some σx. Defining π̃ by dπ̃(x, y) = dµ(x) dσx(y), and the right marginal
of π̃ by ν̃, we integrate against µ to achieve∫

T−f̄ dµ =

∫
f̄ dν̃ −

∫
T (δx, σx) dµ.

This shows that T (µ, ν̃) = infπ∈Γ(µ,ν̃)

∫
T (δx, πx) dµ =

∫
T (δx, σx) dµ, and consequently,

f̄ ∈ ∂Tµ(ν̃). But by strict convexity, this can only be true if ν̃ = ν.

While the attainment in the primal problem T (µ, ν) holds in full generality as shown
in [5], the attainment in the dual problem depends heavily on the problem at hand [31].
However, since this is equivalent to the sub-differentiability of the partial functional Tµ, we
can use general existence results such as the Brondsted-Rockafellar theorem [54], to state
that ∂Tµ(ν) exist for a weak∗-dense set of ν ∈ P(Y ), and therefore the dual problem is
generically attained.

Corollary 13.8. Suppose T is a linear backward transfer on P(X) × P(Y ) such that the
Dirac masses are contained in D1(T ). Assume Y is metrizable. Fix µ ∈ P(X), then for
every ν ∈ P(Y ) and every ε > 0, there exists νε ∈ P(Y ) such that W2(ν, νε) < ε and the
dual problem for T (µ, νε) is attained.

The following can be seen as Euler-Lagrange equations for variational problems on spaces
of measures, and follows closely [27].

Proposition 13.9. Let Tα(µ, ν) :=
∫
X α

(
dν
dµ

)
dµ be the generalised entropy transfer con-

sidered in Example 11.1, and let T be any linear backward transfer. For a fixed µ, consider
the functional Iµ(ν) := Tα(µ, ν) − T (µ, ν), and assume ν̄ realises infν∈P(X) Iµ(ν). Then,
there exists f̄ ∈ ∂Tµ(ν̄) such that the following Euler-Lagrange equation holds for ν̄−a.e.
x ∈ X,

α′
(

dν̄

dµ

)
= f̄ + C,

where C is a constant.
If Tα is replaced with the logarithmic entropic transfer H(µ, ν) =

∫
log( dν

dµ) dν, then

log

(
dν̄

dµ

)
= f̄ + C.

Proof: Recall that Tα(µ, ν) :=
∫
X α(| dν

dµ |) dµ if ν << µ (and +∞ otherwise) is a backward
convex transferwith

T ∗µ (f) = inf

{∫
X

[α⊕(f(x) + t)− t] dµ(x) ; t ∈ R
}
,
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where T−t f(x) := α	(f(x) + t) − t. are the corresponding Kantorovich transfers. Here
α ∈ C1, is strictly convex and superlinear. It follows that

α′(| dν
dµ
|) ∈ ∂Tµ(ν).

We can see this either directly from the subdifferential definition, or from observing

α⊕(α′(| dν
dµ
|)) =

dν

dµ
α′(| dν

dµ
|)− α(| dν

dµ
|).

In particular,

T ∗µ
(
α′(| dν

dµ
|)
)

=

∫
X
α⊕
(
α′(| dν

dµ
|)
)

dµ.

The rest is an easy adaptation of Theorem 2.2 in [27].

14 Inequalities between transfers

Let T be a linear or convex coupling, and let E1, E2 be entropic transfers on X×X. Standard
Transport-Entropy or Transport-Information inequalities are usually of the form

T (σ, µ) 6 λ1E1(µ, σ) for all σ ∈ P(X), (291)

T (µ, σ) 6 λ2E2(µ, σ) for all σ ∈ P(X), (292)

T (σ1, σ2) 6 λ1E1(σ1, µ) + λ2E2(σ2, µ) for all σ1, σ2 ∈ P(X), (293)

where µ is a fixed measure, and λ1, λ2 are two positive reals. In our terminology, Problem
291 (resp., 292), (resp., 293) amount to find µ, λ1, and λ2 such that

(λ1E1) ? (−T ) (µ, µ) > 0, (294)

(λ2E2) ? (−T̃ ) (µ, µ) > 0, (295)

(λ1Ẽ1) ? (−T ) ? (λ2E2) (µ, µ) > 0, (296)

where T̃ (µ, ν) = T (ν, µ). Note for example that

Ẽ1 ? (−T ) ? E2 (µ, ν) = inf{Ẽ1(µ, σ1)− T2(σ1, σ2) + E2(σ2, ν); σ1, σ2 ∈ P(Z)}.

We shall therefore write duality formulas for the transfers E1 ? (−T ), E2 ? (−T̃ ) and Ẽ1 ?
(−T ) ? E2 between any two measures µ and ν, where T is any convex transfer, while E1, E2

are entropic transfers.
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14.1 Backward convex coupling to backward convex transfer inequalities

We would like to prove inequalities such as

F2(σ, µ) 6 F1(µ, σ) for all σ ∈ P(X), (297)

where F1 is a backward convex transfer and F2 is a backward convex coupling. We then
apply it to Transport-Entropy inequalities of the form

F(σ, µ) 6 λE ? T (µ, σ) for all σ ∈ P(X), (298)

where F is a backward convex coupling, while E is a β-entropic transfer and T is a backward
linear transfer.

Proposition 14.1. Let F1 be a backward convex transfer with Kantorovich operator (F−1,i)i∈I
on X1 ×X2, and F2 is a backward convex coupling on X2 ×X3 with Kantorovich operator
(F−2,j)j∈J .

1. The following duality formula hold:

F1 ?−F2 (µ, ν) = inf
f∈C(X3)

inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i ◦ F
−
2,jf dµ−

∫
X3

f dν

}
. (299)

2. If F1 is a backward β-entropic transfer on X1 × X2 with Kantorovich operator E−1 ,
then

F1 ?−F2 (µ, ν) = inf
f∈C(X3)

inf
j∈J

{
−β(

∫
X1

E−1 ◦ F
−
2,jf dµ)−

∫
X3

f dν

}
. (300)

Proof: Write

F1 ?−F2 (µ, ν) = inf{F1(µ, σ)−F2(σ, ν); σ ∈ P(X2)}

= inf
σ∈P(X2)

{
F1(µ, σ)− sup

f∈C(X3)
sup
j∈J

{∫
X3

f dν −
∫
X2

F−2,jf dσ

}}

= inf
σ∈P(X2)

inf
f∈C(X3)

inf
j∈J

{
F1(µ, σ)−

∫
X3

f dν +

∫
X2

F−2,jf dσ

}
= inf

f∈C(X3)
inf
j∈J

{
− sup
σ∈P(X2)

{−
∫
X2

F−2,jf dσ −F1(µ, σ)} −
∫
X3

f dν

}

= inf
f∈C(X3)

inf
j∈J

{
−(F1)∗µ(−F−2,jf)−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
j∈J

{
− inf
i∈I

∫
X1

F−1,i ◦ −F
−
2,jf dµ−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i ◦ −F
−
2,jf dµ−

∫
X3

f dν

}
.

2) If F1 is a backward β-entropic transfer on X1×X2 with Kantorovich operator E−1 , then
use in the above calculation that (F1)∗µ(−F−2,jf) = β(

∫
X1
E−1 ◦ −F

−
2,jf dµ).
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Corollary 14.2. Let F be a backward convex coupling on Y2×X2 with Kantorovich family
(F−i )i∈I and let E be a backward β-entropic transfer on X1 × Y1 with Kantorovich operator
E−. Let T be a backward linear transfer on Y1 × Y2 with Kantorovich operator T− and
λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1) and ν ∈ P(X2), the
following are equivalent:

1. For all σ ∈ P(Y2), we have F(σ, ν) 6 λ E ? T (µ, σ).

2. For all g ∈ C(X2) and i ∈ I, we have β
( ∫

X1
E− ◦ T− ◦ −1

λ F
−
i (λg) dµ

)
+
∫
X2
g dν 6 0.

In particular, if we apply the above in the case where E is the logarithmic entropy, that
is

H(µ, ν) =
∫
X log( dνdµ) dν if ν << µ and +∞ otherwise, (301)

which is a backward β-entropic transfer with β(t) = log t and E−f = ef as a backward
Kantorovich operator.

Corollary 14.3. Let F be a backward convex coupling on X2×Y2 with Kantorovich family
(F−i )i∈I and let E be a backward β-entropic transfer on X1×Y1. with Kantorovich operator
E−. Let T be a backward linear transfer on Y1 × Y2 with Kantorovich operator T− and
λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1) and ν ∈ P(X2), the
following are equivalent:

1. For all σ ∈ P(Y ), we have F(σ, ν) 6 λH ? T (µ, σ).

2. For all g ∈ C(X2), we have sup
i∈I

∫
X1
eT
−◦−1

λ
F−i (λg) dµ 6 e−

∫
X2

g dν
.

In particular, if T is the identity transfer and F is a backward linear transfer, then the
following are equivalent:

1. F(σ, ν) 6 λH (σ, µ) for all σ ∈ P(Y )

2.
∫
X1
e−F

−(λg) dµ 6 e−
1
λ e
−

∫
X2

g dν
for all g ∈ C(X2).

14.2 Forward convex coupling to backward convex transfer inequalities

We are now interested in inequalities such as

F2(ν, σ) 6 F1(µ, σ) for all σ ∈ P(X), (302)

where both F1 and F2 are convex backward transfers, and in particular, Transport-Entropy
inequalities of the form

F(ν, σ) 6 λE ? T (µ, σ) for all σ ∈ P(X), (303)

where E is a β-entropic transfer and T is a backward linear transfer. But we can write
(304) as

F̃2(σ, ν) 6 F1(µ, σ) for all σ ∈ P(X), (304)

where now F̃2(σ, ν) = F2(ν, σ) is a convex forward transfer. So, we need to establish the
following type of duality.
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Proposition 14.4. Let F1 be a backward convex transfer with Kantorovich operator (F−1,i)i∈I
on X1×X2, and let F2 be a convex forward coupling on X2×X3 with Kantorovich operator
(F+

2,j)j∈J .

1. The following duality formula then holds:

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
. (305)

2. If F1 is a backward β-entropic transfer on X1 × X2 with Kantorovich operator E−1 ,
then

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

inf
j∈J

{
−β(

∫
X1

E−1 (−g) dµ)−
∫
X3

F+
j (g) dν

}
. (306)

3. If F1 is a backward β-entropic transfer with Kantorovich operator E−1 , and F2 is a
forward α-entropic transfer with Kantorovich operator E+

2 , then

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

{
−β(

∫
X1

E−1 (−g) dµ)− α(

∫
X3

E+
2 g dν)

}
. (307)

4. In particular, if E is a backward β-entropic transfer with Kantorovich operator E−,
and T is a forward linear transfer with Kantorovich operator T+, then

E ?−T (µ, ν) = inf
g∈C(X2)

{
−β(

∫
X1

E−(−g) dµ)−
∫
X3

T+g dν

}
. (308)

Proof: 1) Assume F1 is a backward convex transfer with Kantorovich operator F−1,i, and

F2 is a forward convex coupling with Kantorovich operator F+
2,j , then

F1 ?−F2 (µ, ν) = inf{F1(µ, σ)−F2(σ, ν); σ ∈ P(X2)}

= inf
σ∈P(X2)

{
F1(µ, σ)− sup

g∈C(X2)

{
sup
j∈J

(

∫
X3

F+
2,jg dν)−

∫
X2

g dσ

}}

= inf
σ∈P(X2)

inf
g∈C(X2)

inf
j∈J

{
F1(µ, σ)−

∫
X3

F+
2,jg dν +

∫
X2

g dσ

}
= inf

g∈C(X2)
inf
j∈J

{
− sup
σ∈P(X2)

{−
∫
X2

g dσ −F1(µ, σ)} −
∫
X3

F+
2,jg dν)

}

= inf
g∈C(X2)

inf
j∈J

{
−(F1)∗µ(−g)−

∫
X3

F+
2,j(g) dν

}
= inf

g∈C(X2)
inf
j∈J

{
−(inf

i∈I

∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
= inf

g∈C(X2)
inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
2) If F1 is a backward β-entropic transfer with Kantorovich operator E−, it suffices to note
in the above proof that (F1)∗µ(g) = β(

∫
X E

−
1 (−g) dµ).
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3) If now F2 is a forward α-entropic transfer with Kantorovich operator E+
2 , then it suffices

to note in the above proof that (F2)∗ν(g) = α(
∫
X E

+
2 g dν).

4) corresponds to when α(t) = t.

Corollary 14.5. Let F be a convex backward coupling on X2×Y2 with Kantorovich family
(F−i )i∈I and let E be a backward β-entropic transfer on X1 × Y1 with Kantorovich operator
E−. Let T be a backward linear transfer on Y1 × Y2 with Kantorovich operator T− and
λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1) and ν ∈ P(X2), the
following are equivalent:

1. For all σ ∈ P(Y2), we have F(ν, σ) 6 λ E ? T (µ, σ).

2. For all g ∈ C(X2), we have β
( ∫

X1
E− ◦ T−g) dµ

)
6 inf

i∈I
1
λ

∫
X2
F−i (λg)dν.

In particular, if E2 is a backward β2-entropic transfer on X2×Y2 with Kantorovich operator
E−2 , and E1 is a backward β1-entropic transfer on X1 × Y1 with Kantorovich operator E−1 ,
then the following are equivalent:

1. For all σ ∈ P(Y2), we have E2(ν, σ) 6 λ E1 ? T (µ, σ).

2. For all g ∈ C(X2) and i ∈ I, we have β1

( ∫
X1
E−1 ◦ T−g) dµ

)
6 1

λβ2(
∫
X2
E−2 (λg)dν).

Proof: Note that here, we need the formula for (E ? T ) ? (−F̃)(µ, ν). Since F̃ is now a
convex forward transfer with Kantorovich operators equal to F̃+

i (g) = −F−i (−g), we can
apply Part 2) of Proposition 14.4 to F2 = 1

λ F̃ and F1 = E ? T , which is a backward
β-entropic transfer with Kantorovich operator E− ◦ T−, to obtain

(E ? T ) ? (−F̃)(µ, ν) = inf
g∈C(X2)

inf
j∈J

{
−β(

∫
X1

E− ◦ T−g dµ) +
1

λ

∫
X3

F−j (λg) dν

}
.

A similar argument applies for 2).
We now apply the above to the case where E is the backward logarithmic transfer to obtain,

Corollary 14.6. Let F be a backward convex transfer on X2× Y2 with Kantorovich family
(F−i )i∈I , and let T be a backward linear transfer on Y1 × Y2 with Kantorovich operator T−

and λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1) and ν ∈ P(X2), the
following are equivalent:

1. For all σ ∈ P(Y2), we have F(ν, σ) 6 λH ? T (µ, σ)

2. For all g ∈ C(X2), we have log
( ∫

X1
eT
−g dµ

)
6 inf

i∈I
1
λ

∫
X2
F−i (λg)dν.

Remark 14.7. An immediate application of (4) in Proposition 14.4 is the following result
in [22]

inf{W2(µ, σ) +H(dx, σ);σ ∈ P(Rd)} = inf{− log

∫
e−f

∗
dx+

∫
f dµ; f ∈ C(Rd)}, (309)

where Conv(Rd) is the cone of convex functions on Rd, andW2(µ, σ) = −W2(σ, µ̄), the latter
being the Brenier transfer of Example 3.12 and µ̄ is defined as

∫
f(x)dµ̄(x) =

∫
f(−x)dµ(x).
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Note that in this case, T+f(x) = −f∗(−x), E−f = ef and β(t) = log t, and since g∗∗ 6 g,

inf{W2(µ, σ) +H(dx, σ);σ ∈ P(Rd)} = H ? (−W2)(dx, µ̄)

= inf{− log

∫
e−g dx+

∫
g∗(x) dµ; g ∈ C(Rd)}

= inf{− log

∫
e−f

∗
dx+

∫
f dµ; f ∈ Conv(Rd)}.

What is remarkable in the result of Cordero-Erausquin and Klartag [22] is the characteri-
zation of those measures µ (the moment measures) for which there is attainment in both
minimization problems.

14.3 Maurey-type inequalities

We are now interested in inequalities of the following type: For all σ1 ∈ P(X1), σ2 ∈ P(X2),
we have

F(σ1, σ2) 6 λ1T1 ?H1(σ1, µ) + λ2T2 ?H2(σ2, ν). (310)

This will requires a duality formula for the expression Ẽ1 ? (−F)?E2, where F is a backward
convex transfer and E1, E2 are forward entropic transfers.

Theorem 14.8. Assume F is a backward convex coupling on Y1 × Y2 with Kantorovich
family (F−i )i∈I , E1 (resp., E2) is a forward α1-entropic transfer on Y1×X1 (resp., a forward
α2-entropic transfer on Y2 ×X2) with Kantorovich operator E+

1 (resp., E+
2 ), then for any

(µ, ν) ∈ P(X1)× P(X2), we have

Ẽ1 ? (−F) ? E2 (µ, ν) = inf
i∈I

inf
f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ) + α2(

∫
X2

E+
2 (f) dν)

}
. (311)

Proof: If E1 a forward α1-entropic transfer on Y1 × X1, then Ẽ1 is a backward −(α⊕1 )	-

entropic transfer on X1 × Y1 with Kantorovich operator Ẽ−1 g = −E+
1 (−g). Apply Proposi-

tion 14.1 with F1 = Ẽ1, and F2 = F to get

Ẽ1 ? (−F) (µ, ν) = inf
f∈C(X3)

inf
i∈I

{
(α⊕1 )	

( ∫
X1

−E+
1 ◦ F

−
i f dµ)−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
i∈I

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)−

∫
X3

f dν

}
.

Write now,

Ẽ1 ? (−F) ? E2 (µ, ν) = inf
{
Ẽ1 ? (−F)(µ, σ) + E2(σ, ν); σ ∈ P(Y2)

}
= inf

σ∈P(Y2)
inf

f∈C(X3)
inf
i∈I

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)−

∫
X3

f dσ + E2(σ, ν)

}
= inf

i∈I
inf

f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)− sup

σ∈P(Y2)
{
∫
Y2

f dσ − E2(σ, ν)}

}

= inf
i∈I

inf
f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ) + α2(

∫
X2

E+
2 (−f) dν)

}
.
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Corollary 14.9. Assume E1 (resp., E2) is a forward α1-entropic transfer on Z1×X1 (resp.,
α2-entropic transfer on Z2×X2) with Kantorovich operator E+

1 (resp., E+
2 ). Let T1 (resp.,

T2) be forward linear transfers on Y1 × Z1 (resp., Y2 × Z2) with Kantorovich operator T+
1

(resp., T+
2 ), and let F be a backward convex coupling on Y1 × Y2 with Kantorovich family

(F−i )i. Then, for any given λ1, λ2 ∈ R+ and (µ, ν) ∈ P(X1) × P(X2), the following are
equivalent:

1. For all σ1 ∈ P(Y1), σ2 ∈ P(Y2), we have

F(σ1, σ2) 6 λ1T1 ? E1(σ1, µ) + λ2T2 ? E2(σ2, ν). (312)

2. For all g ∈ C(Y2) and all i ∈ I, we have

λ1α1

( ∫
X1

E+
1 ◦ T

+
1 ◦ (

1

λ1
F−i g) dµ

)
+ λ2α2(

∫
X2

E+
2 ◦ T

+
2 (
−1

λ2
g) dν) > 0. (313)

Proof: It suffices to apply the above with the forward λiαi-transfers Fi := λiTi ? Ei, whose
Kantorovich operators are Fi(g) = E+

i ◦ T
+
i ( gλi ) for i = 1, 2.

By applying the above to Ei(µ, ν) =: H the forward logarithmic entropy where αi(t) =
− log(−t) and Kantorovich operator E+f = e−f , we get the following extension of a cele-
brated result of Maurey [50].

Corollary 14.10. Assume F is a convex backward coupling on Y1 × Y2 with Kantorovich
family (F−i )i∈I , and let T1 (resp., T2) be forward linear transfer on Y1×X1 (resp., Y2×X2)
with Kantorovich operator T+

1 (resp., T+
2 ), then for any given λ1, λ2 ∈ R+ and (µ, ν) ∈

P(X1)× P(X2), the following are equivalent:

1. For all σ1 ∈ P(X1), σ2 ∈ P(X2), we have

F(σ1, σ2) 6 λ1T1 ?H(σ1, µ) + λ2T2 ?H(σ2, ν). (314)

2. For all g ∈ C(Y2) and all i ∈ I, we have

(

∫
X1

e
−T+

1 ◦
1
λ1
F−i g dµ

)λ1(

∫
X2

e
−T+

2 ( 1
−λ2

g)
dν)λ2 6 1. (315)

If T1 = T2 are the identity transfer, then the above is equivalent to saying that for all
g ∈ C(Y2) and all i ∈ I, we have

(

∫
X1

e
−1
λ1
F−i g dµ

)λ1(

∫
X2

e
1
λ2
g
dν)λ2 6 1. (316)

References

[1] Aubry, S.: The twist map, the extended Frenkel-Kontorova model and the devil?s stair-
case, Phys. D 7, 240?258 (1983)

105
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[58] C. Orrieri, A. Porretta, G. Savaré, A variational approach to the mean field planning
problem, https://arxiv.org/abs/1807.09874 (July 2018) 52 pp.

[59] Skorokhod, A. V., Studies in the theory of random processes, Translated from the Rus-
sian by Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, Mass.,
viii+199 (1965).

[60] V. Strassen, The existence of probability measures with given marginals, Ann. Math.
Statist. 36 (1965), 423–439.

[61] M. Talagrand, Concentration of measure and isoperimetric inequalities in product
spaces, Inst. Hautes Études Sci. Publ. Math. (1995), no. 81, 73–205.

[62] M. Talagrand, New concentration inequalities in product spaces, Invent. Math. 126
(1996), no. 3, 505–563.

[63] M. Talagrand, Transportation cost for gaussian and other product measures, Geometric
and Functional Analysis, 6:587–600, 1996.

[64] C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics 58.
American Mathematical Society, Providence RI, 2003.

[65] L. Wu, Uniformly integrable operators and large deviations for Markov processes, J.
Funct. Anal, 172:301–376, 2000.

109


