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Abstract

Unlike many deterministic PDEs, stochastic equations are not amenable to the classi-
cal variational theory of Euler-Lagrange. In this paper, we show how self-dual variational
calculus leads to solutions of various stochastic partial differential equations driven by
monotone vector fields. We construct weak solutions as minima of suitable non-negative
and self-dual energy functionals on Itô spaces of stochastic processes. We deal with both
additive and non-additive noise. The equations considered in this paper have already
been resolved by other methods, starting with the celebrated thesis of Pardoux, and
many other subsequent works. This paper is about presenting a new variational ap-
proach to this type of problems, hoping it will lead to progress on other still unresolved
situations.
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1 Introduction

Self-dual variational calculus was developed in the last fifteen years in an effort to construct
variational solutions to various partial differential equations and evolutions, which do not
fall in the Euler-Lagrange framework of the standard calculus of variations. We refer to the
monograph [19] for a comprehensive account of that theory. In this paper, we show how
such a calculus can be applied to solve stochastic partial differential equations, which also do
not fit in Euler-Lagrange theory, since their solutions are not known to be critical points of
energy functionals. We show here that at least for some of these equations, solutions can be
obtained as minima of suitable self-dual functionals on Itô spaces of random paths.

The self-dual approach applies to solve stochastic partial differential equations driven by
monotone vector fields. These are operators A : D(A) ⊂ V → V ∗ –possibly set-valued– from
a possibly infinite dimensional Banach space V into its dual, satisfying

〈p− q, u− v〉 ≥ 0 for all (u, p) and (v, q) on the graph of A. (1.1)

As a warm-up, we shall tackle basic SPDEs involving additive noise, such as{
du(t) = −A(t, u(t))dt+B(t)dW (t)

u(0) = u0,
(1.2)

where u0 ∈ L2(Ω,F0,P;H) for the Hilbert space H, W (t) is a real-valued Wiener process on a
complete probability space (Ω,F ,P) with normal filtration (Ft)t, and where B : [0, T ]×Ω→
H is a given Hilbert-space valued progressively measurable process. Here A : Ω×[0, T ]×V →
2V

∗
can be a time-dependent adapted random –possibly set-valued– maximal monotone map,

where V is a Banach space such that V ⊂ H ⊂ V ∗ constitute a Gelfand triple.
We will also deal with SPDEs driven by monotone vector fields and involving a non-additive
noise. These can take the form{

du(t) = −A(t, u(t))dt+B(t, u(t))dW (t)

u(0) = u0,
(1.3)

where u→ B(t, u) is now a progressively measurable linear or non-linear operator.
They can also come in divergence form such as{

du = div(β(∇u(t, x)))dt+B(t, u(t))dW (t) in [0, T ]×D
u(0, x) = u0 on ∂D,

(1.4)

where here, β is a progressively measurable monotone vector field on Rn, D is a bounded
domain in Rn, and B : [0, T ]× Ω×H1

0 (D)→ L2(D) is progressively measurable.
By solutions, we shall mean progressively measurable processes u, valued in suitable

Sobolev spaces, that verify the integral equation

u(t) = u0 −
∫ t

0

A(s, u(s))ds+

∫ t

0

B(s, u(s))dW (s),

where the last stochastic integral is in the sense of Itô.
The genesis of self-dual variational calculus can be traced to a 1970 paper of Brezis-

Ekeland [7, 8] (see also Nayroles [24, 25]), where they proposed a variational principle for the
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heat equation and other gradient flows for convex energies. The conjecture was eventually
verified by Ghoussoub-Tzou [22], who identified and exploited the self-dual nature of the
Lagrangians involved. Since then, the theory was developed in many directions [15, 16, 20],
so as to provide existence results for several stationary and parabolic -but so far deterministic-
PDEs, which may or may not be Euler-Lagrange equations.

While in most examples where the approach was used, the self-dual Lagrangians were ex-
plicit, an important development in the theory was the realization [18] that in a prior work,
Fitzpatrick [13] had associated a (somewhat) self-dual Lagrangian to any given monotone
vector field. That meant that the variational theory could apply to any equation involving
such operators. We refer to the monograph [19] for a survey and for applications to existence
results for solutions of several PDEs and evolution equations. We also note that since the
appearance of this monograph, the theory has been successfully applied to the homogeniza-
tion of periodic non-self adjoint problems (Ghoussoub-Moameni-Zarate [21]). More recently,
the self-dual approach was used in [2, 3] to tackle the more general problem of stochastic
homogenization of such equations and to provide valuable quantitative estimates.

The application of the method to solving SPDEs is long overdue, though V. Barbu [5] did
use a Brezis-Ekeland approach to address SPDEs driven by gradients of a convex function
and additive noise. We shall deal here with more general situations that cannot be reduced to
the deterministic case. We note that the equations below have already been solved by other
methods, starting with the celebrated thesis of Pardoux [26], and many other subsequent
works [10, 27, 28, 29]. This paper is about presenting a new variational approach, hoping it
will lead to progress on other unresolved equations.

To introduce the method, we consider the simplest example, where the monotone operator
A is given by the gradient ∂ϕ of a (possibly random and progressively measurable) function
ϕ : [0, T ] × H → R ∪ {+∞} such that for every t ∈ [0, T ], the function ϕ(t, ·) is convex
and lower semi-continuous on a Hilbert space H, and the stochastics is driven by a given
progressively measurable additive noise coefficient B : Ω× [0, T ]→ H. The equation becomes{

du(t) = −∂ϕ(t, u(t))dt+B(t)dW (t)

u(0) = u0.
(1.5)

We consider the following Itô space over H,

A2
H =

{
u : ΩT → H; u(t) = u(0) +

∫ t

0

ũ(s)ds+

∫ t

0

Fu(s)dW (s)

}
,

where u(0) ∈ L2(Ω,F0,P;H), ũ ∈ L2(ΩT ;H) and Fu ∈ L2(ΩT ;H), where ΩT = Ω × [0, T ].
Here, both the drift ũ and the diffusive term Fu are progressively measurable. The key idea
is that a solution for (1.5) can be obtained by minimizing the following functional on A2

H ,

I(u) = E
{∫ T

0

Lϕ(t, u(t),−ũ(t)) dt+
1

2

∫ T

0

MB(Fu(t),−Fu(t)) dt+ `u0(u(0), u(T ))
}
,

where

1. Lϕ is the (possibly random) time-dependent Lagrangian on H ×H given by

Lϕ(t, u, p) = ϕ(w, t, u) + ϕ∗(w, t, p),

where ϕ∗ is the Legendre transform of ϕ;

2. `u0
is the time-boundary random Lagrangian on H ×H given by

`u0
(a, b) := `u0(w)(a, b) =

1

2
‖a‖

2

H +
1

2
‖b‖

2

H − 2〈u0(w), a〉H + ‖u0(w)‖
2

H ;
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3. MB is the random time-dependent diffusive Lagrangian on H ×H, given by

MB(G1, G2) := ΨB(w,t)(G1) + Ψ∗B(w,t)(G2),

where ΨB(w,t) : H → R∪{+∞} is the convex function ΨB(w,t)(G) = 1
2‖G−2B(w, t)‖2H .

However, it is not sufficient that I attains its infimum on A2
H at some v, but one needs to

also show that the infimum is actually equal to zero, so as to obtain

0 = I(v) = E
∫ T

0

(
ϕ(t, v) + ϕ∗(t,−ṽ(t))

)
dt

+ E
(1

2
‖v(0)‖2H +

1

2
‖v(T )‖2H − 2〈u0, v(0)〉+ ‖u0‖2H

)
+ E

∫ T

0

(1

2
‖Fv(t)− 2B(t)‖2H +

1

2
‖Fv(t)‖2H − 2〈Fv(t), B(t)〉

)
dt,

where we have used the fact that Ψ∗B(G) = 1
2 ‖G‖

2
H + 2〈G,B〉H .

By using Itô’s formula, and by adding and subtracting the term E
∫ T

0
〈v(t), ṽ(t)〉dt, we can

rewrite I(v) as the sum of 3 non-negative terms

0 = I(v) = E
∫ T

0

(
ϕ(t, v) + ϕ∗(t,−ṽ(t)) + 〈v(t), ṽ(t)〉

)
dt

+ 2E
∫ T

0

‖Fv −B‖2H dt+ E ‖v(0)− u0‖2H ,

which yields that for almost all t ∈ [0, T ], P-a.s.

ϕ(t, v) + ϕ∗(t,−ṽ(t)) + 〈v(t), ṽ(t)〉 = 0, hence −ṽ(t) ∈ ∂ϕ(v(t)).

The two other identities readily give that B = Fv and v(0) = u0. In other words, v ∈ A2
H ,

and satisfies (1.5).
The self-dual variational calculus allows to apply the above approach in much more generality.
The special Lagrangians Lϕ, `u0 and M can be replaced by much more general self-dual
Lagrangians. Moreover, the “tensorization” procedure between the three components can be
extended to any number of self-dual Lagrangians.
In section 2, we shall collect –for the convenience of the reader– the elements of self-dual
theory that will be needed in the proofs. In section 3, we show how one can lift self-dual
Lagrangians from state space to Lp-spaces and then to Itô spaces of stochastic processes. In
Section 4, we give a variational resolution for Equation 1.2 by using the basic minimization
principle for self-dual Lagrangians. Section 5 contains applications to classical SPDEs such
as the following stochastic evolution driven by a diffusion and a transport operator,{

du = (∆u+ a(x) · ∇u)dt+B(t)dW on [0, T ]×D
u(0) = u0 on D,

(1.6)

where a : D → Rn is a smooth vector field with compact support in D, such that div(a) ≥ 0.
Other examples include the stochastic porous media equation, but also quasi-linear equations
involving the p-Laplacian (2 ≤ p < +∞), that is{

du = (∆pu− u|u|p−2)dt+B(t)dW on D × [0, T ]

u(0) = u0 on ∂D.
(1.7)

In section 6, we deal with quite general SPDEs driven by a self-dual Lagrangian on Lα(ΩT ;V )×
Lβ(ΩT ;V ∗) and a non-additive noise. We then apply this result in Section 7 to resolve equa-
tions of the form (1.3) and (1.4), such as{

du(t) = ∆u dt+ |u|q−1u dW (t)

u(0, x) = u0(x),
(1.8)
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where 1
2 ≤ q <

n
n−2 , and more generally,{
du = div(β(∇u(t, x)))dt+B(u(t))dW (t) in [0, T ]×D
u(0, x) = u0(x) on ∂D,

(1.9)

where D is a bounded domain in Rn and the initial position u0 belongs to L2(Ω,F0,P;L2(D)).
In Equation (1.9), the vector field β is a progressively measurable maximal monotone operator
on Rn. In a forthcoming paper, we shall deal with more elaborate non-linear SPDEs such as
the stochastic Navier-Stokes equations in 2 and 3 dimensions.

2 Elements of self-dual variational calculus

If V is a reflexive Banach space and V ∗ is its dual, then a (jointly) convex lower semi-
continuous Lagrangian L : V × V ∗ → R ∪ {+∞} is said to be self-dual on V × V ∗ if

L∗(p, u) = L(u, p), (u, p) ∈ V × V ∗, (2.1)

where L∗ is the Fenchel-Legendre dual of L in both variables, i.e.,

L∗(q, v) = sup{〈q, u〉+ 〈v, p〉 − L(u, p); u ∈ V, p ∈ V ∗}.

Such Lagrangians satisfy the following basic property

L(u, p)− 〈u, p〉 ≥ 0, ∀ (u, p) ∈ V × V ∗.

We are interested in the case when the above is an equality, hence we consider the corre-
sponding –possibly multivalued– self-dual vector field ∂̄L : V → 2V

∗
defined for each u ∈ V

as the –possibly empty– subset ∂̄L(u) of V ∗ given by

∂̄L(u) = {p ∈ V ∗; L(u, p)− 〈u, p〉 = 0} = {p ∈ V ∗; (p, u) ∈ ∂L(u, p)},

where ∂L is the subdifferential of the convex function L.

2.1 Self-dual Lagrangians as potentials for monotone vector fields

Self-dual vector fields are natural extensions of subdifferentials of convex lower semi-continuous
functions. Indeed, the most basic self-dual Lagrangians are of the form L(u, p) = ϕ(u)+ϕ∗(p)
where ϕ is a convex function on V , and ϕ∗ is its Fenchel dual on V ∗ (i.e., ϕ∗(p) = sup{〈u, p〉−
ϕ(u), u ∈ V }) for which

∂̄L(u) = ∂ϕ(u).

Other examples of self-dual Lagrangians are of the form L(u, p) = ϕ(u) +ϕ∗(−Γu+p) where
Γ : V → V ∗ is a skew-adjoint operator. The corresponding self-dual vector field is then

∂̄L(u) = ∂ϕ(u) + Γu.

Actually, both ∂ϕ and ∂ϕ + Γ are particular examples of the so-called maximal monotone
operators, which are set-valued maps A : V → 2V

∗
whose graphs in V ×V ∗ are maximal (for

set inclusion) among all monotone subsets G of V × V ∗. In fact, it turned out that maximal
monotone operators and self-dual vector fields are essentially the same. The following was
first noted by Fitzpatrick [13] (with a weaker notion of (sub) self-duality), and re-discovered
and strengthened later by various authors. See [19] for details.

Theorem 2.1. If A : D(A) ⊂ V → 2V
∗

is a maximal monotone operator with a non-empty
domain, then there exists a self-dual Lagrangian L on V ×V ∗ such that A = ∂̄L. Conversely,
if L is a proper self-dual Lagrangian on a reflexive Banach space V × V ∗, then the vector
field u 7→ ∂̄L(u) is maximal monotone.
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Another needed property of the class of self-dual Lagrangians is its stability under convolu-
tion.

Lemma 2.2. ([19] Proposition 3.4) If L and N are two self-dual Lagrangians on a reflexive
Banach space X ×X∗ such that Dom1(L)−Dom1(N) contains a neighborhood of the origin,
then the Lagrangian defined by

(L⊕N)(u, p) = inf
r∈X∗

{L(u, r) +N(u, p− r)}

is also self-dual on X ×X∗.
As in deterministic evolution equations, one often aim for more regular solutions that are

valued in suitable Sobolev spaces, as opposed to just L2. Moreover, the required coercivity
condition (on the underlying Hilbert space) is quite restrictive and is not satisfied by most
Lagrangians of interest. A natural setting is the so-called evolution triple of Gelfand, which
consists of having a Hilbert space sandwiched between a reflexive Banach space V and its
dual V ∗, i.e.,

V ⊂ H ∼= H∗ ⊂ V ∗,
where the injections are continuous and with dense range, in such a way that if v ∈ V and
h ∈ H, then 〈v, h〉H = 〈v, h〉

V,V ∗ . A typical evolution triple is V := H1
0 (D) ⊂ H := L2(D) ⊂

V ∗ := H−1(D), where D is a bounded domain in Rn. The following lemma explains the
connection between the self-duality on H and V .

Lemma 2.3. ([19] Lemma 3.4) Let V ⊂ H ⊂ V ∗ be an evolution triple, and suppose L :
V ×V ∗ → R∪{+∞} is a self-dual Lagrangian on the Banach space V , that satisfies for some
C1, C2 > 0 and r1 ≥ r2 > 1,

C2(‖u‖r2V − 1) ≤ L(u, 0) ≤ C1(1 + ‖u‖r1V ) for all u ∈ V.

Then, the Lagrangian defined on H ×H by

L̄(u, p) :=

{
L(u, p) u ∈ V
+∞ u ∈ H\V

is self-dual on the Hilbert space H ×H.

2.2 Two self-dual variational principles

The basic premise of self-dual variational calculus is that several differential systems can be
written in the form 0 ∈ ∂̄L(u), where L is a self-dual Lagrangian on phase space V × V ∗.
These are the completely self-dual systems. A solution to these systems can be obtained as
a minimizer of a completely self-dual functional I(u) = L(u, 0) for which the minimum value
is 0. The following is the basic minimization principle for self-dual energy functionals.

Theorem 2.4. ([14]) Suppose X is a reflexive Banach space, and let L be a self-dual
Lagrangian on X × X∗ such that the mapping u → L(u, 0) is coercive in the sense that

lim
‖u‖→∞

L(u,0)
‖u‖ = +∞. Then, there exists ū ∈ X such that I(ū) = inf

u∈X
L(u, 0) = 0.

As noted in [14], it actually suffices that L be partially self-dual, that is if

L∗(0, u) = L(u, 0) for every u ∈ X.

We shall also need the Hamiltonian associated to a self-dual Lagrangian, that is the functional
on X ×X defined as HL : X ×X → R ∪ {−∞} ∪ {+∞}

HL(u, v) = sup
p∈V ∗

{〈v, p〉 − L(u, p)},

which is the Legendre transform in the second variable. It is easy to see that if L is a self-dual
Lagrangian on X ×X∗, then its Hamiltonian on X ×X satisfies the following properties:
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• HL is concave in u and convex lower semi-continuous in v.

• HL(v, u) ≤ −HL(u, v) for all u, v ∈ X.

As established in [17], the Hamiltonian formulation allows for the minimization of direct
sums of self-dual functionals. The following variational principle is useful in the case when
non-linear and unbounded operators are involved.

Theorem 2.5. ([19]) Consider three reflexive Banach spaces Z,X1, X2 and operators A1 :
D(A1) ⊂ Z → X1 , Γ1 : D(Γ1) ⊂ Z → X∗1 , A2 : D(A2) ⊂ Z → X2, and Γ2 : D(Γ2) ⊂ Z →
X∗2 , such that A1 and A2 are linear, while Γ1 and Γ2 –not necessarily linear– are weak-to-
weak continuous. Suppose G is a closed linear subspace of Z such that G ⊂ D(A1)∩D(A2)∩
D(Γ1) ∩D(Γ2), while the following properties are satisfied:

1. The image of G0 := Ker(A2) ∩G by A1 is dense in X1.

2. The image of G by A2 is dense in X2.

3. u 7→ 〈A1u,Γ1u〉+ 〈A2u,Γ2u〉 is weakly upper semi-continuous on G.

Let Li, i = 1, 2 be self-dual Lagrangians on Xi × X∗i such that the Hamiltonians HLi are
continuous in the first variable on Xi. Under the following coercivity condition,

lim
‖u‖→∞
u∈G

HL1(0, A1u)− 〈A1u,Γ1u〉+HL2(0, A2u)− 〈A2u,Γ2u〉 = +∞, (2.2)

the functional

I(u) = L1(A1u,Γ1u)− 〈A1u,Γ1u〉+ L2(A2u,Γ2u)− 〈A2u,Γ2u〉

attains its minimum at a point v ∈ G such that I(v) = 0, and

Γ1(v) ∈ ∂̄L1(A1v),

Γ2(v) ∈ ∂̄L2(A2v). (2.3)

3 Lifting random self-dual Lagrangians to Itô path spaces

Let V be a reflexive Banach space, and T ∈ [0,∞) be fixed. Consider a complete probability
space (Ω,F ,P) with a normal filtration Ft, t ∈ [0, T ], and let Lα(Ω× [0, T ];V ) be the space
of Bochner integrable functions from ΩT := Ω × [0, T ] into V with the norm ‖u‖αLαV :=

E
∫ T

0
‖u(t)‖αV dt. We may use the shorter notation LαV (ΩT ) := Lα(Ω× [0, T ];V ) in the sequel.

Definition 3.1. A self-dual ΩT -dependent convex Lagrangian on V × V ∗ is a function L :
ΩT × V × V ∗ → R ∪ {+∞} such that:

1. L is progressively measurable with respect to the σ-field generated by the products of Ft
and Borel sets in [0, t] and V × V ∗, i.e. for every t ∈ [0, T ], L(t, ·, ·) is Ft ⊗B([0, t])⊗
B(V )⊗ B(V ∗)-measurable.

2. For each t ∈ [0, T ], P-a.s. the function L(t, ·, ·) is convex and lower semi-continuous on
V × V ∗.

3. For any t ∈ [0, T ], we have P-a.s. L∗(t, p, u) = L(t, u, p) for all (u, p) ∈ V × V ∗, where
L∗ is the Legendre transform of L in the last two variables.
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To each ΩT -dependent Lagrangian L on ΩT × V × V ∗, one can associate the corresponding
Lagrangian L on the path space LαV (ΩT )× LβV ∗(ΩT ), where 1

α + 1
β = 1, to be

L(u, p) := E
∫ T

0

L(t, u(t), p(t)) dt,

with the duality between LαV (ΩT ) and LβV ∗(ΩT ) given by 〈u, p〉 = E
∫ T

0
〈u(t), p(t)〉

V,V ∗dt. The
associated Hamiltonian on LαV (ΩT )× LαV (ΩT ) will then be

HL(u, v) = sup
{
E
∫ T

0

{〈v(t), p(t)〉 − L(t, u(t), p(t))}dt ; p ∈ LβV ∗(ΩT )
}
.

The Legendre dual of a ”lifted” Lagrangian in both variables naturally lifts to the space of
paths LαV (ΩT )× LβV ∗(ΩT ) via

L∗(q, v) = sup
u∈LαV (ΩT )

p∈Lβ
V ∗ (ΩT )

{
E
∫ T

0

{〈q(t), u(t)〉+ 〈v(t), p(t)〉 − L(t, u(t), p(t))} dt
}
.

The following proposition is standard. See for example [11].

Proposition 3.2. Suppose that L is an ΩT -dependent Lagrangian on V × V ∗, and L is the
corresponding Lagrangian on the path space LαV (ΩT )× LβV ∗(ΩT ). Then,

1. L∗(p, u) = E
∫ T

0
L∗(t, p(t), u(t))dt.

2. HL(u, v) = E
∫ T

0
HL(t, u(t), v(t))dt.

3.1 Self-dual Lagrangians associated to progressively measurable
monotone fields

Consider now a progressively measurable –possibly set-valued– maximal monotone map that
is a map A : ΩT ×V → 2V

∗
that is measurable for each t, with respect to the product σ-field

Ft⊗B([0, t])⊗B(V ), and such that for each t ∈ [0, T ], P-a.s., the vector field Aω,t := A(t, ω, ·, ·)
is maximal monotone on V . By Theorem 2.1, one can associate to the maximal monotone
maps Aω,t, self-dual Lagrangians LAω,t on V × V ∗, in such a way that

Aω,t = ∂̄LAω,t for every t ∈ [0, T ], and P-a.s.

This correspondence can be done measurably in such a way that if A is progressively measur-
able, then the same holds for the corresponding ΩT -dependent Lagrangian L. We can then
lift the random Lagrangian to the space LαV (ΩT )× LβV ∗(ΩT ) via

LA(u, p) = E
∫ T

0

LAω,t(u(ω, t), p(ω, t))dt.

Boundedness and coercivity conditions on A translate into corresponding conditions on the
representing Lagrangians as follows. For simplicity, we shall assume throughout that the
monotone operators are single-valued, though the results apply for general vector fields.

Lemma 3.3. ([21]) Let Aω,t be the maximal monotone operator as above with the corre-
sponding potential Lagrangian LAω,t . Assume that for all u ∈ V, dt⊗ P a.s., Aω,t satisfies

〈Aω,tu, u〉 ≥ max
{
c1(ω, t)‖u‖αV −m1(ω, t), c2(ω, t)‖Aω,tu‖βV ∗ −m2(ω, t)

}
, (3.1)
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where c1, c2 ∈ L∞(ΩT , dt ⊗ P) and m1,m2 ∈ L1(ΩT , dt ⊗ P). Then the corresponding
Lagrangians satisfy the following:

C1(ω, t)(‖u‖αV + ‖p‖βV ∗ − n1(ω, t) ≤ LAw,t(u, p) ≤ C2(ω, t)(‖u‖αV + ‖p‖βV ∗ + n2(ω, t)),

for some C1, C2 ∈ L∞(ΩT ) and n1, n2 ∈ L1(ΩT ).
The lifted Lagrangian on the Lα-spaces then satisfy for some C1, C2 > 0,

C1(‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

− 1) ≤ LA(u, p) ≤ C2(1 + ‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

).

3.2 Itô path spaces over a Hilbert space

Suppose now that U is a Hilbert space. For t ∈ [0, T ], a cylindrical Wiener process W (t) in
U can be represented by

W (t) =
∑
k∈N

βk(t) ek, t ≥ 0,

where {βk} is a sequence of mutually independent Brownian motions on the filtered proba-
bility space and {ek} is an orthonormal basis in U . For simplicity, we shall assume in the
sequel that W is a real-valued Wiener process i.e. U = R. We now recall Itô’s formula.

Proposition 3.4. ([28], [29]) Let H be a Hilbert space with 〈 , 〉H as its scalar product. Fix
x0 ∈ L2(Ω,F0,P;H), and let y ∈ L2(ΩT ;H), Z ∈ L2(ΩT ;H) be two progressively measurable
processes. Define the H-valued process u as

u(t) := x0 +

∫ t

0

y(s)ds+

∫ t

0

Z(s)dW (s). (3.2)

Then, the following holds:

1. u is a continuous H-valued adapted process such that E
(

supt∈[0,T ] ‖u(t)‖2H
)
<∞.

2. (Itô’s formula) For all t ∈ [0, T ],

‖u(t)‖2H = ‖x0‖2H + 2

∫ t

0

〈y(s), u(s)〉Hds+

∫ t

0

‖Z(s)‖2Hds+ 2

∫ t

0

〈u(s), Z(s)〉HdW (s),

and consequently

E(‖u(t)‖2H) = E(‖x0‖2H) + E
∫ t

0

(
2〈y(s), u(s)〉H + ‖Z(s)‖2H

)
ds.

More generally, the following integration by parts formula holds. For two processes u and v
of the form:

u(t) = u(0) +

∫ t

0

ũ(s)ds+

∫ t

0

Fu(s)dW (s), v(t) = v(0) +

∫ t

0

ṽ(s)ds+

∫ t

0

Gv(s)dW (s),

we have

E
∫ T

0

〈u(t), ṽ(t)〉dt =− E
∫ T

0

〈v(t), ũ(t)〉dt− E
∫ T

0

〈Fu(t), Gv(t)〉dt

+ E〈u(T ), v(T )〉H − E〈u(0), v(0)〉H . (3.3)

Now we define the Itô space A2
H consisting of all H-valued processes of the following form:

A2
H =

{
u :ΩT → H; u(t) = u0 +

∫ t

0

ũ(s)ds+

∫ t

0

Fu(s)dW (s),

for u0 ∈ L2(Ω,F0,P;H), ũ ∈ L2(ΩT ;H), Fu ∈ L2(ΩT ;H)
}
,

(3.4)
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where ũ and Fu are both progressively measurable. We equip A2
H with the norm

‖u‖2A2
H

= E

(
‖u(0)‖2H +

∫ T

0

‖ũ(t)‖2H dt+

∫ T

0

‖Fu(t)‖2H dt

)
,

so that it becomes a Hilbert space. Indeed, the following correspondence

(x0, y, Z) ∈ L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H)

7→ x0 +

∫ t

0

y(s)ds+

∫ t

0

Z(s)dW (s) ∈ A2
H ,

(3.5)

u ∈ A2
H 7→ (u(0), ũ, Fu) ∈ L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H),

induces an isometry, since Itô’s formula applied to two processes u, v ∈ A2
H yields

‖u(t)− v(t)‖2H = ‖u(0)− v(0)‖2H + 2

∫ t

0

〈ũ(s)− ṽ(s), u(s)− v(s)〉Hds

+

∫ t

0

‖Fu(s)− Fv(s)‖2Hds+ 2

∫ t

0

〈u(s)− v(s), Fu(s)− Fv(s)〉HdWs,

which means that u = v if and only if u(0) = v(0), Fu = Fv and ũ = ṽ. We therefore can and
shall identify the Itô space A2

H with the product space L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H).
The dual space (A2

H)∗ can also be identified with L2(Ω;H) × L2(ΩT ;H) × L2(ΩT ;H). In
other words, each p ∈ (A2

H)∗ can be represented by the triplet

p = (p0, p1(t), P (t)) ∈ L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H),

in such a way that the duality can be written as:

〈u, p〉A2
H×(A2

H)∗ = E
{
〈p0, u(0)〉H +

∫ T

0

〈p1(t), ũ(t)〉H dt+
1

2

∫ T

0

〈P (t), Fu(t)〉H dt
}
. (3.6)

3.3 Self-dual Lagrangians on Itô spaces of random processes

We now prove the following.

Theorem 3.5. Let (Ω,F ,Ft,P) be a complete probability space with normal filtration, and let
L and M be two ΩT -dependent self-dual Lagrangians on H×H, Assume ` is an Ω-dependent
function on H ×H, such that P-a.s.

`(ω, a, b) = `∗(ω,−a, b), (a, b) ∈ H ×H. (3.7)

The Lagrangian on A2
H × (A2

H)∗ defined by

L(u, p) = E
{∫ T

0

L(t, u(t)− p1(t),−ũ(t)) dt+ `(u(0)− p0, u(T ))

+
1

2

∫ T

0

M(Fu(t)− P (t),−Fu(t)) dt
}
,

(3.8)

is then partially self-dual. Actually, it is self-dual on the subset A2
H × D of A2

H × (A2
H)∗,

where D := ({0} × L2
H × L2

H).
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Proof. Take (q, v) ∈ (A2
H)∗ × A2

H with q an element in the dual space identified with the
triple (0, q1(t), Q(t)), then

L∗(q, v) = sup
u∈A2

H

p∈(A2
H)∗

{〈q, u〉+ 〈v, p〉 − L(u, p)}

= sup
u∈A2

H

sup
p0∈L2

H(Ω)

p1∈L2
H(ΩT )

sup
P∈L2

H(ΩT )

E
{
〈p0, v(0)〉+

∫ T

0

(
〈q1(t), ũ(t)〉+ 〈p1(t), ṽ(t)〉

)
dt

+
1

2

∫ T

0

(
〈Q(t), Fu(t)〉+ 〈P (t), Gv(t)〉

)
dt

−
∫ T

0

L(t, u(t)− p1(t),−ũ(t)) dt− `(u(0)− p0, u(T ))

− 1

2

∫ T

0

M(Fu(t)− P (t),−Fu(t)) dt

}
.

Make the following substitutions:

u(t)− p1(t) = y(t) ∈ L2
H(ΩT )

u(0)− p0 = a ∈ L2
H(Ω)

Fu(t)− P (t) = J(t) ∈ L2
H(ΩT ),

to obtain

L∗(q, v) = sup
u∈A2

H

sup
a∈L2

H(Ω)

sup
y∈L2

H(ΩT )

sup
J∈L2

H(ΩT )

E
{
〈u(0)− a, v(0)〉 − `(a, u(T ))

+

∫ T

0

(
〈q1(t), ũ(t)〉+ 〈u(t)− y(t), ṽ(t)〉 − L(t, y(t),−ũ(t))

)
dt

+
1

2

∫ T

0

〈Q(t), Fu(t)〉+ 〈Fu(t)− J(t), Gv(t)〉 −M(J(t),−Fu(t)) dt
}
.

Use Itô’s formula (3.3) for the processes u and v in A2
H , to get

L∗(q, v) = sup
u∈A2

H

sup
a∈L2

H(Ω)

sup
y∈L2

H(ΩT )

sup
J∈L2

H(ΩT )

E
{
〈a,−v(0)〉+ 〈u(T ), v(T )〉 − `(a, u(T ))

+

∫ T

0

〈v(t)− q1(t),−ũ(t)〉+ 〈y(t),−ṽ(t)〉 − L(t, y(t),−ũ(t)) dt

+
1

2

∫ T

0

〈Gv(t)−Q(t),−Fu(t)〉+ 〈J(t),−Gv(t)〉 −M(J(t),−Fu(t)) dt
}
.

In view of the correspondence

(b, r, Z) ∈ L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H)

7→ b+

∫ t

0

r(s)ds+

∫ t

0

Z(s)dW (s) ∈ A2
H .

u ∈ A2
H 7→ (u(T ),−ũ,−Fu) ∈ L2(Ω;H)× L2(ΩT ;H)× L2(ΩT ;H),
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it follows that

L∗(q, v) = sup
(a,b)∈L2

H(Ω)×L2
H(Ω)

E
{
〈a,−v(0)〉+ 〈b, v(T )〉 − `(a, b)

}
+ sup

(y,r)∈L2
H(ΩT )×L2

H(ΩT )

E
{ ∫ T

0

〈v(t)− q1(t), r(t)〉+ 〈y(t),−ṽ(t)〉 − L(t, y(t), r(t)) dt
}

+
1

2
sup

J∈L2
H(ΩT )

Z∈L2
H(ΩT )

E
{∫ T

0

〈Gv(t)−Q(t), Z(t)〉+ 〈J(t),−Gv(t)〉 −M(J(t), Z(t)) dt
}
,

and therefore taking into account Proposition 3.2 gives

L∗(q, v) = E `∗(−v(0), v(T )) + E
∫ T

0

L∗(t,−ṽ(t), v(t)− q1(t)) dt

+
1

2
E
∫ T

0

M∗(−Gv(t), Gv(t)−Q(t)) dt.

Now with the self-duality assumptions on L andM , and the condition on `, we have L∗(0, v) =
L(v, 0), for every v ∈ A2

H , which means that L is partially self-dual on A2
H × (A2

H)∗.

4 Variational resolution of stochastic equations driven
by additive noise

For simplicity, we shall work in an L2-setting in w and in time.

4.1 A variational principle on Itô space

The following is now a direct consequence of Theorem 3.5 and Theorem 2.4.

Proposition 4.1. Let (Ω,F ,Ft,P) be a complete probability space with normal filtration
and let H be a Hilbert space. Suppose L and M are ΩT -dependent self-dual Lagrangians on
H×H, and ` is an Ω-dependent time-boundary Lagrangian on H×H. Assume that for some
positive C1, C2 and C3, we have

E
∫ T

0

L(t, v(t), 0) dt ≤ C1(1 + ‖v‖2L2
H(ΩT )) for v ∈ L2

H(ΩT ),

E `(a, 0) ≤ C2(1 + ‖a‖2L2
H(Ω)) for a ∈ L2

H(Ω),

E
∫ T

0

M(σ(t), 0) dt ≤ C3(1 + ‖σ‖2L2
H(ΩT )) for σ ∈ L2

H(ΩT ).

(4.1)

Consider on A2
H the functional

I(u) = E
{∫ T

0

L(t, u(t),−ũ(t)) dt+ `(u(0), u(T )) +
1

2

∫ T

0

M(Fu(t),−Fu(t)) dt
}
.

Then, there exists v ∈ A2
H such that I(v) = inf

u∈A2
H

I(u) = 0, and consequently, P-a.s. and for

almost all t ∈ [0, T ], we have
−ṽ(t) ∈ ∂̄L(t, v(t)) (4.2)

(−v(0), v(T )) ∈ ∂`(v(0), v(T ))

−Fv(t) ∈ ∂̄M(Fv(t)).

Moreover, if L is strictly convex, then v is unique.
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Proof. The functional I can be written as I(u) = L(u, 0), where L is the partially self-dual
Lagrangian defined by (3.8).
In order to apply Theorem 2.4, we need to verify the coercivity condition. To this end, we
use Conditions (4.1) to show that the map p → L(0, p) is bounded on the bounded sets of
(A2

H)∗. Indeed,

L(0, p) = E
{∫ T

0

L(t, p1(t), 0) dt+ `(−p0, 0) +
1

2

∫ T

0

M(−P (t), 0) dt
}

≤ C
(

3 + ‖p1‖2L2
H(Ω) + ‖p0‖2L2

H(ΩT ) + ‖P‖2L2
H(ΩT )

)
,

and by duality, lim
‖u‖→∞

L(u, 0)

‖u‖
= +∞. By Theorem 2.4, there exists v ∈ A2

H such that

I(v) = 0. We now rewrite I as follows:

0 = I(v) = E
{∫ T

0

L(t, v(t),−ṽ(t)) + 〈v(t), ṽ(t)〉 dt−
∫ T

0

〈v(t), ṽ(t)〉 dt

+ `(v(0), v(T )) +
1

2

∫ T

0

M(Fv(t),−Fv(t)) dt
}
.

By Itô’s formula

E
∫ T

0

〈v(t), ṽ(t)〉 =
1

2
E‖v(T )‖2H −

1

2
E‖v(0)‖2H −

1

2
E
∫ T

0

‖Fv(t)‖2H dt,

which yields

0 = I(v) = E
{ ∫ T

0

(
L(t, v(t),−ṽ(t)) + 〈v(t), ṽ(t)〉

)
dt
}

+ E
{
`(v(0), v(T ))− 1

2
‖v(T )‖2H +

1

2
‖v(0)‖2H

}
+

1

2
E
{∫ T

0

(
‖Fv‖2H +M(Fv(t),−Fv(t))

)
dt
}
.

The self-duality of the Lagrangians L and M and the hypothesis on the boundary Lagrangian,
yield that for a.e. t ∈ [0, T ] and P-a.s. each of the integrands inside the curly-brackets are
non-negative, thus

L(t, v(t),−ṽ(t)) + 〈v(t), ṽ(t)〉 = 0,

`(v(0), v(T ))− 1

2
‖v(T )‖2H +

1

2
‖v(0)‖2H = 0,

M(Fv(t),−Fv(t)) + 〈Fv, Fv〉 = 0,

which translate into the three assertions in (4.2).
Finally, if L is strictly convex, then the functional I is strictly convex and the minimum is
attained uniquely.

4.2 Regularization via inf-involution

The boundedness Condition (4.1) is quite restrictive and not satisfied by most Lagrangians
of interest. One way to deal with such a difficulty is to assume similar bounds on L but in
stronger Banach norms. Moreover, we need to find more regular solutions that are valued
in more suitable Banach spaces than H. To this end, we consider an evolution triple V ⊂
H ⊂ V ∗, where V is a reflexive Banach space and V ∗ is its dual. We recall the following easy
lemma from [19].
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Lemma 4.2. Let L be a self-dual Lagrangian on V × V ∗.

1. If for some r > 1 and C > 0, we have L(u, 0) ≤ C(1 + ‖u‖rV ) for all u ∈ V, then there
exists D > 0 such that L(u, p) ≥ D(‖p‖sV ∗−1) for all (u, p) ∈ V ×V ∗, where 1

r + 1
s = 1.

2. If for C1, C2 > 0 and r1 ≥ r2 > 1, we have

C2(‖u‖r2V − 1) ≤ L(u, 0) ≤ C1(1 + ‖u‖r1V ) for all u ∈ V,

then, there exists D1, D2 > 0 such that

D2(‖p‖s1V ∗ + ‖u‖r2V − 1) ≤ L(u, p) ≤ D1(1 + ‖u‖r1V + ‖p‖s2V ∗). (4.3)

where 1
ri

+ 1
si

= 1 for i = 1, 2, and therefore L is continuous in both variables.

Proposition 4.3. Consider a Gelfand triple V ⊂ H ⊂ V ∗ and let L be an ΩT -dependent
self-dual Lagrangian on V ×V ∗. Let M be an ΩT -dependent self-dual Lagrangian on H ×H,
and ` an Ω-dependent boundary Lagrangian on H ×H satisfying `∗(a, b) = `(−a, b). Assume
the following conditions hold:

(A1) For some m,n > 1, C1, C2 > 0,

C2(‖v‖mL2
V (ΩT )−1) ≤ E

∫ T

0

L(t, v(t), 0) dt ≤ C1(1+‖v‖nL2
V (ΩT )) for all v ∈ L2(ΩT ;V ).

(A2) For some C3 > 0,

E `(a, b) ≤ C3(1 + ‖a‖2L2
H(Ω) + ‖b‖2L2

H(Ω)) for all a, b ∈ L2(Ω;H).

(A3) For some C4 > 0,

E
∫ T

0

M(G1(t), G2(t))dt ≤ C4(1+‖G1‖2L2
H(ΩT )+‖G2‖2L2

H(ΩT )) for all G1, G2 ∈ L2
H(ΩT ).

Then, there exists v ∈ A2
H with trajectories in L2(ΩT ;V ) such that ṽ ∈ L2(ΩT ;V ∗), at which

the minimum of the following functional is attained and is equal to 0.

I(u) = E
{∫ T

0

L(t, u(t),−ũ(t) dt+ `(u(0), u(T )) +
1

2

∫ T

0

M(Fu(t),−Fu(t)) dt
}
.

Consequently, P-a.s. and for almost all t ∈ [0, T ], we have

−ṽ(t) ∈ ∂̄L(t, v(t)) (4.4)

(−v(0), v(T )) ∈ ∂`(v(0), v(T ))

−Fv(t) ∈ ∂̄M(Fv(t)).

Proof. First, apply Lemma 2.3 to lift L to an ΩT -dependent self-dual Lagrangian on H ×H,
then consider for t ∈ [0, T ] and P-a.s., the λ-regularization of L, that is

Lλ(t, u, p) = inf
z∈H

{
L(t, z, p) +

‖u− z‖2H
2λ

+
λ

2
‖p‖2H

}
.

By Lemma 2.2, Lλ is also an ΩT -dependent self-dual Lagrangian on H × H in such a way
that the conditions (4.1) of Proposition 4.1 hold. Hence, there exists vλ ∈ A2

H such that

0 = E
{∫ T

0

Lλ(t, vλ(t),−ṽλ(t)) dt+ `(vλ(0), vλ(T )) +
1

2

∫ T

0

M(Fvλ(t),−Fvλ(t)) dt
}
.
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Since L is convex and lower semi-continuous, then dt⊗P a.s, there exists Jλ(vλ) ∈ H so that

Lλ(t, vλ(t),−ṽλ(t)) = L(t, Jλ(vλ)(t),−ṽλ(t)) +
‖vλ(t)− Jλ(vλ)(t)‖2H

2λ
+
λ

2
‖ṽλ(t)‖2H ,

and hence

0 = E
{∫ T

0

(
L(t, Jλ(vλ)(t),−ṽλ(t)) +

‖vλ(t)− Jλ(vλ)(t)‖2H
2λ

+
λ

2
‖ṽλ(t)‖2H

)
dt

+ `(vλ(0), vλ(T )) +
1

2

∫ T

0

M(Fvλ(t),−Fvλ(t)) dt
}
. (4.5)

From (4.5), condition (A1) and the assertion of part (2) of Lemma 4.2, we can deduce that
Jλ(vλ) is bounded in L2(ΩT ;V ) and ṽλ is bounded in L2(ΩT ;V ∗). Also from condition (A2)
and (A3), we can deduce the following estimates:

E
∫ T

0

M(G,H) dt ≥ C(‖G‖2L2
H(ΩT ) − 1) and E `(a, b) ≥ C(‖b‖2L2

H(Ω) − 1).

These coercivity properties, together with (4.5), imply that vλ(0) and vλ(T ) are bounded in
L2(Ω;H), and that Fvλ is bounded in L2(ΩT ;H). Moreover, since all other terms in (4.5)
are bounded below, it follows that

E
∫ T

0

‖vλ(t)− Jλ(vλ)(t)‖2dt ≤ 2λC for some C > 0.

Hence vλ is bounded in A2
H and there exists a subsequence vλj that converges weakly to a

path v ∈ L2(ΩT ;V ) such that ṽ ∈ L2(ΩT ;V ∗), and

Jλj (vλj ) ⇀ v in L2(ΩT ;V )

ṽλj ⇀ ṽ in L2(ΩT ;V ∗)

vλj ⇀ v in L2(ΩT ;H)

vλj (0) ⇀ v(0), vλ(T ) ⇀ v(T ) in L2(Ω;H)

Fvλj ⇀ Fv in L2(ΩT ;H).

Since L, ` and M are lower semi-continuous, we have

I(v) ≤ lim inf
j

E
{∫ T

0

(
L(t, Jλj (vλj )(t),−ṽλj (t)) +

‖vλj (t)− Jλj (vλj )(t)‖2

2λj
+
λj
2
‖ṽλj (t)‖2

)
dt

+ `(vλj (0), vλj (T )) +
1

2

∫ T

0

M(Fvλj (t),−Fvλj (t)) dt
}

= 0.

For the reverse inequality, we use the self-duality of L and M and the fact that `(−a, b) =
`∗(a, b) to deduce that

I(v) = E
{ ∫ T

0

(
L(t, v(t),−ṽ(t)) + 〈v(t), ṽ(t)〉

)
dt
}

+ E
{
`(v(0), v(T ))− 1

2
‖v(T )‖2H +

1

2
‖v(0)‖2H

}
+

1

2
E
{∫ T

0

(
‖Fv‖2H +M(Fv(t),−Fv(t))

)
dt
}
≥ 0.

Therefore, I(v) = 0 and the rest of the proof is similar to the last part of the proof in
Proposition 4.1.
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We now deduce the following.

Theorem 4.4. Consider a Gelfand triple V ⊂ H ⊂ V ∗, and let A : D(A) ⊂ V → V ∗ be an
ΩT -dependent progressively measurable maximal monotone operator satisfying

〈Aw,tu, u〉 ≥ max{c1(ω, t)‖u‖αV −m1(ω, t), c2(ω, t)‖Au‖βV ∗ −m2(ω, t)},

where c1, c2 ∈ L∞(ΩT , dt⊗P) and m1,m2 ∈ L1(ΩT , dt⊗P). Let B be a given H-valued pro-
gressively measurable process in L2(ΩT ;H), and u0 a given random variable in L2(Ω,F0,P;H).
Then, the equation {

du(t) = −A(t, u(t))dt+B(t)dW (t)

u(0) = u0,
(4.6)

has a solution u ∈ A2
H that is valued in V . It can be obtained by minimizing the functional

I(u) = E
∫ T

0

L(t, u(t),−ũ(t)) dt

+ E
(1

2
‖u(0)‖2H +

1

2
‖u(T )‖2H − 2〈u0, u(0)〉H + ‖u0‖2H

)
+ E

∫ T

0

(1

2
‖Fu(t)− 2B(t)‖2H +

1

2
‖Fu(t)‖2H − 2〈Fu(t), B(t)〉H

)
dt,

where L is a self-dual Lagrangian such that ∂̄L(t, ·) = A(t, ·), P-almost surely.

Proof. It suffices to apply Proposition 4.3 with the self-dual Lagrangian L associated with
A, the time boundary Ω-dependent Lagrangian `u0

on H ×H given by

`u0
(a, b) =

1

2
‖a‖

2

H +
1

2
‖b‖

2

H − 2〈u0(w), a〉H + ‖u0(w)‖
2

H ,

and the ΩT -dependent self-dual Lagrangian M on L2
H(ΩT ), given by

MB(G1, G2) = ΨB(w,t)(G1) + Ψ∗B(w,t)(G2),

where ΨB(w,t) : H → R∪ {+∞} is the convex function ΨB(w,t)(G) = 1
2‖G− 2B(w, t)‖2H .

5 Applications to various SPDEs with additive noise

In the following examples, we shall assume D is a smooth bounded domain in Rn, W is a real
Brownian motion, and B : Ω× [0, T ]→ L2(D) is a fixed progressively measurable stochastic
process.

5.1 Stochastic evolution driven by diffusion and transport

Consider the following stochastic transport equation:{
du = (∆u+ a(x) · ∇u)dt+B(t)dW on [0, T ]×D
u(0) = u0 on D,

(5.1)

where a : D → Rn is a smooth vector field with compact support in D, such that div(a) ≥ 0.
Assume u0 ∈ L2(Ω,F0,P;H1

0 (D)) such that ∆u0 ∈ L2(D), P-a.s.
Consider the operator Γu = a · ∇u + 1

2 (div a)u, which, by Green’s formula, is skew-adjoint
on H1

0 (D). Also consider the convex function

ϕ(u) =

{
1
2

∫
D
|∇u|2dx+ 1

4

∫
D

(div a)|u|2dx u ∈ H1
0 (D)

+∞ otherwise,
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which is clearly coercive on H1
0 (D). Consider the Gelfand triple H1

0 (D) ⊂ L2(D) ⊂ H−1(D),
and the self-dual Lagrangian on H1

0 (D)×H−1(D), defined by

L(u, p) = ϕ(u) + ϕ∗(Γu+ p).

The corresponding functional on Itô space is then,

I(u) = E

{∫ T

0

((1

2

∫
D

(|∇u|2dx+
1

4

∫
D

(div a)|u|2)dx
)

+ ϕ∗
(
− ũ(t, ·) + Γ(u(t, ·))

))
dt

}

+ E

{
1

2

∫ T

0

(∫
D

(
|Fu(t, x)|2 + 2|B(t, x)|2 − 4Fu(t, x)B(t, x)

)
dx

)
dt

}

+ E
{∫

D

(1

2
|u(0, x)|2 +

1

2
|u(T, x)|2 − 2u0(x)u(0, x) +

1

2
|u0(x)|2

)
dx

}
.

Apply Theorem 4.4 to find a path v ∈ A2
L2(D), valued in H1

0 (Ω), that minimizes I in such a

way that I(v) = 0, to obtain

−ṽ + a · ∇v +
1

2
(div a)v ∈ ∂ϕ(v) = −∆v +

1

2
(div a)v,

v(0) = u0, Fv = B.

The process v(t) = v0 +
∫ t

0
∆v(s)ds +

∫ t
0

a · ∇v(s)ds +
∫ t

0
B(s)dW (s) is therefore a solution

to (5.1).

5.2 Stochastic porous media

Consider the following SPDE,{
du(t) = ∆up(t)dt+B(t)dW (t) on D × [0, T ]

u(0) = u0 on D,
(5.2)

where p ≥ n−2
n+2 , and u0 ∈ L2(Ω,F0,P;H−1(D)).

Equip the Hilbert space H = H−1(D) with the inner product

〈u, v〉H−1 = 〈u, (−∆)−1v〉 =

∫
D

u(x)(−∆)−1v(x) dx.

Since p ≥ n−2
n+2 , Lp+1(D) ⊂ H−1(D) ⊂ L

p+1
p (D) is an evolution triple.

We consider the convex functional

ϕ(u) =

{
1
p+1

∫
D
|u(x)|p+1dx on Lp+1(D)

+∞ elsewhere,

whose Legendre conjugate is given by

ϕ∗(u∗) =
p

p+ 1

∫
D

|(−∆)−1u∗|
p+1
p dx.

Now, minimize the following self-dual functional on A2
H ,

I(u) =E

{
1

p+ 1

∫ T

0

∫
D

(
|u(x)|p+1

+ p
∣∣(−∆)−1(−ũ(t))

∣∣ p+1
p

)
dx dt

}

+ E
{

1

2
‖u(0)‖2

H−1
+

1

2
‖u(T )‖2

H−1
+ ‖u0‖2

H−1
− 2〈u0, u(0, ·)〉

H−1

}
+ E

{∫ T

0

(1

2

(
‖Fu(t)‖2

H−1
+ 2‖B(t)‖2

H−1
− 4〈Fu(t), B(t)〉

H−1

)
dt

}
.
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Apply Theorem 4.4 to find a process v ∈ A2
H with values in Lp+1(D) such that

(−∆)−1(−ṽ(t)) ∈ ∂ϕ(v(t)) = vp, Fv = B, and v(0) = v0.

It follows that v(t) = v0 +
∫ t

0
∆vp(s)ds+

∫ t
0
B(s)dW (s), provides a solution for (5.2).

5.3 Stochastic PDE involving the p-Laplacian

Consider the equation{
du = (∆pu− u|u|p−2)dt+B(t)dW on D × [0, T ]

u(0) = u0 on ∂D,

where p ∈ [2,+∞), ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, and u0 is given such

that u0 ∈W 1,p
0 (D) ∩ {u; ∆pu ∈ Lp(D)}. It is clear that W 1,p

0 (D) ⊂ Lp(D) continuously and
densely, which ensures that the functional

ϕ(u) =
1

p

∫
D

|∇u(x)|pdx+
1

p

∫
D

|u(x)|pdx,

is convex, lower semi-coninuous and coercive on W 1,p
0 (D) with respect to the evolution triple

W 1,p
0 (D) ⊂ Lp(D) ⊂ L2(D) ⊂W 1,p

0 (D)∗ ⊂ Lq(D),

where 1
p + 1

q = 1. Theorem 4.4 applies to the self-dual functional

I(u) = E
∫ T

0

(
ϕ(t, u) + ϕ∗(t,−ũ)

)
dt

+ E
(1

2
‖u(0)‖2

L2(D)
+

1

2
‖u(T )‖2

L2(D)
− 2〈u0, u(0)〉+ ‖u0‖2

L2(D)

)
+ E

∫ T

0

(1

2
‖Fu(t)‖2

L2(D)
+ ‖B(t)‖2

L2(D)
− 2〈Fu(t), B(t)〉

)
dt.

to yield a W 1,p
0 (D)-valued process v ∈ A2

L2(D), where the null infimum is attained. It follows
that

−ṽ ∈ ∂ϕ(v) = −∆pv + v|v|p−2,

v(0) = u0, Fv = B,

and hence v(t)− u0 −
∫ t

0
B(s)dW (s) =

∫ t
0
ṽ(s)ds =

∫ t
0

∆pv(s)ds−
∫ t

0
v(s)|v(s)|p−2ds.

6 Non-additive noise driven by self-dual Lagrangians

In this section, we give a variational resolution for stochastic equations of the form{
du = −∂̄L(u)(t) dt+B(t, u(t))dW

u(0) = u0,
(6.1)

where L is a self-dual Lagrangian on Lα(ΩT ;V ) × Lβ(ΩT ;V ∗), 1 < α < +∞ and β is its
conjugate, and where V ⊂ H ⊂ V ∗ is a given Gelfand triple.
We shall assume that L satisfies the following conditions:

C2(‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

− 1) ≤ L(u, p) ≤ C1(1 + ‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

). (6.2)
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and
‖∂̄L(u)‖Lβ

V ∗ (ΩT ) ≤ C3(1 + ‖u‖LαV (ΩT )). (6.3)

Note that in the last section, we worked in a Hilbertian setting, then used inf-convolution
to find a solution that is valued in the Sobolev space V . This approach does not work in
the non-additive case, since we need to work with stronger topologies on the space of Itô
processes that will give the operator B a chance to be completely continuous. We shall
therefore strengthen the norm on the Itô space over a Gelfand triple, at the cost of losing
coercivity, that we shall recover through perturbation methods.
More precisely, we are searching for a solution u of the form

u(t) = u(0) +

∫ t

0

ũ(s)ds+

∫ t

0

Fu(s)dW (s), (6.4)

where u ∈ Lα(ΩT ;V ), ũ ∈ Lβ(ΩT ;V ∗) and Fu ∈ L2(ΩT ;H) are progressively measurable.
The space of such processes, will be denoted YαV , and will be equipped with the norm,

‖u‖YαV = ‖u(t)‖LαV (ΩT ) + ‖ũ(t)‖Lβ
V ∗ (ΩT ) + ‖Fu(t)‖L2

H(ΩT ).

As shown in [29], any such a process u ∈ YαV has a dt ⊗ P-equivalent version û that is a
V -valued progressively measurable process that satisfies the following Itô formula:
P-a.s. and for all t ∈ [0, T ],

‖u(t)‖2H = ‖u(0)‖2H + 2

∫ t

0

〈ũ(s), û(s)〉
V ∗,V ds+

∫ t

0

‖Fu(s)‖2Hds+ 2

∫ t

0

〈u(s), Fu(s)〉HdW (s),

(6.5)
In particular, we have for all t ∈ [0, T ],

E(‖u(t)‖2H) = E(‖u(0)‖2H) + E
∫ t

0

(
2〈ũ(s), û(s)〉

V ∗,V + ‖Fu(s)‖2H
)
ds.

Furthermore, we have u ∈ C([0, T ];H). In fact, one can deduce that for any u ∈ YαV ,
u ∈ C([0, T ];V ∗) and u ∈ L∞(0, T ;H) P-a.s ([28] and [29]). From now on, a process u in YαV
will always be identified with its dt⊗ P-equivalent V -valued version û.

Theorem 6.1. Consider a self-dual Lagrangian L on Lα(ΩT ;V ) × Lβ(ΩT ;V ∗) satisfying
(6.2) and (6.3), and let B : YαV → L2(ΩT ;H) be a –not-necessarily linear– weak-to-norm
continuous map such that for some C > 0 and 0 < δ < α+1

2 ,

‖Bu‖L2
H(ΩT ) ≤ C‖u‖δLα(ΩT ) for any u ∈ YαV . (6.6)

Let u0 be a given random variable in L2(Ω,F0,P;H). Equation (6.1) has then a solution u
in YαV , that is a stochastic process satisfying

u(t) = u0 −
∫ t

0

∂̄L(u)(s)ds+

∫ t

0

Bu(s)dW (s). (6.7)

We would like to apply Theorem 2.5 to L on Lα(ΩT ;V )×Lβ(ΩT ;V ∗) and to the following
operators acting on G = {u ∈ YαV ;u(0) = u0},

A1 : G ⊂ YαV → Lα(ΩT ;V ), Γ1 : G ⊂ YαV → Lβ(ΩT ;V ∗)

A1(u) = u, Γ1(u) = −ũ

A2 : G ⊂ YαV → L2(ΩT ;H), Γ2 : G ⊂ YαV → L2(ΩT ;H)

A2(u) =
1

2
Fu, Γ2(u) = −Fu +

3

2
Bu.
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Unfortunately, the coercivity condition (2.2) required to conclude is not satisfied. We have
to therefore perturb the Lagrangian L (i.e., essentially perform a stochastic elliptic regu-
larization) as well as the operator Γ1 in order to ensure coercivity. We will then let the
perturbations go to zero to conclude.

6.1 Stochastic elliptic regularization

To do that, we consider the convex lower semi-continuous function on Lα(ΩT , V )

ψ(u) =

{
1
βE
∫ T

0
‖ũ(t)‖βV ∗dt if u ∈ YαV

+∞ if u ∈ LαV (ΩT )\YαV ,
(6.8)

and for any µ > 0, its associated self-dual Lagrangian on LαV (ΩT )× LβV ∗(ΩT ) given by

Ψµ(u, p) = µψ(u) + µψ∗(
p

µ
). (6.9)

We also consider a perturbation operator

Ku := (‖u‖α−1
LαV (ΩT ))Du,

where D is the duality map between V and V ∗. Note that by definition, K is a weak-to-weak
continuous operator from YαV to LβV ∗(ΩT ).

Lemma 6.2. Under the above hypothesis on L and B, there exists a process uµ ∈ YαV such
that u(0) = u0, ũ(T ) = ũ(0) = 0, and satisying

ũµ +Kuµ + µ∂ψ(uµ) ∈ −∂̄L(uµ)

Fuµ = Buµ.

Proof. Apply Theorem 2.5 as follow: Let Z = YαV , X1 = Lα(ΩT ;V ), X2 = L2(ΩT ;H) with
G = {u ∈ YαV ;u(0) = u0} which is a closed linear subspace of YαV , and consider the operators

A1 : G ⊂ YαV → Lα(ΩT ;V ), Γ1 : G ⊂ YαV → Lβ(ΩT ;V ∗)

A1(u) = u, Γ1(u) = −ũ−Ku

A2 : G ⊂ YαV → L2(ΩT ;H), Γ2 : G ⊂ YαV → L2(ΩT ;H)

A2(u) =
1

2
Fu, Γ2(u) = −Fu +

3

2
Bu (6.10)

where their domain is G, A1, A2 are linear, and Γ1,Γ2 are weak-weak continuous.
As to the Lagrangians, we take on LαV (ΩT )× LβV ∗(ΩT ), the Lagrangian

L1(u, p) = L ⊕Ψµ(u, p),

while on L2
H(ΩT )× L2

H(ΩT ), we take

L2(P,Q) = E
∫ T

0

M(P (t, w), Q(t, w)) dt,

where M(P,Q) = 1
2‖P‖

2
H + 1

2‖Q‖
2
H .

In other words, we are considering the functional

Iµ(u) = L ⊕Ψµ(A1u,Γ1u)− E
∫ T

0

〈A1u,Γ1u〉dt+ E
∫ T

0

M(Γ2u,A2u)− 〈A2u,Γ2u〉 dt

= L ⊕Ψµ(u,−ũ−Ku)− E
∫ T

0

〈u,−ũ−Ku〉 dt

+ E
∫ T

0

M(Fu/2,−Fu + 3Bu/2)− 〈Fu/2,−Fu + 3Bu/2〉 dt.
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We now verify the conditions of Theorem 2.5.

G0 = Ker(A2) ∩G =
{
u ∈ YαV ; u(t) = u0 +

∫ t

0

ũ(s)ds, for some ũ ∈ LβV ∗(ΩT )
}
.

It is clear that A1(G0) is dense in Lα(ΩT ;V ). Moreover, A2(G) is dense in L2(ΩT ;H). To
check the upper semi-continuity of

u→ E
∫ T

0

〈A1u,Γ1u〉+ 〈A2u,Γ2u〉 dt

on YαV equipped with the weak topology, we apply Itô’s formula to obtain that

E
∫ T

0

〈A1u,Γ1u〉+ 〈A2u,Γ2u〉 dt = E
∫ T

0

〈u,−ũ−Ku〉+ 〈Fu/2,−Fu + 3Bu/2〉 dt

=
1

2
E ‖u0‖2H −

1

2
E ‖u(T )‖2H − ‖u‖α+1

LαV (ΩT )

+
3

4
E
∫ T

0

〈Fu(t), Bu(t)〉dt.

Upper semi-continuity then follows from the compactness of the maps YαV → L2(Ω;H) given
by u 7→ (u(0), u(T )), as well as the weak to norm continuity of B, which makes the functional

u 7→ E
∫ T

0
〈Fu, Bu〉dt weakly continuous.

To verify the coercivity, we note first that condition (6.2) implies that for some (different)
C1 > 0,

HL(0, u) ≥ C1

(
‖u‖αLαV (ΩT ) − 1

)
.

By also taking into account condition (6.6) on B, with the fact that δ < α+1
2 , we get that

HL(0, u) + µψ(u) + E
∫ T

0

〈u, ũ+Ku〉 dt+ E
∫ T

0

HM (0, Fu/2)− 〈Fu/2,−Fu + 3Bu/2〉 dt

= HL(0, u) +
µ

β
‖ũ‖β

Lβ
V ∗ (ΩT )

− 1

2
‖u0‖2L2(Ω;H) +

1

2
‖u(T )‖2L2(Ω;H) + ‖u‖α+1

LαV (ΩT )

+
1

8
‖Fu(t)‖2L2(ΩT ;H) −

3

4
E
∫ T

0

〈Fu(t), Bu(t)〉 dt

≥ C1

(
‖u‖αLαV (ΩT ) − 1

)
+
µ

β
‖ũ‖β

Lβ
V ∗ (ΩT )

+ ‖u‖α+1
LαV (ΩT )

+ C2

(
‖Fu(t)‖2L2

H(ΩT ) − ‖Fu‖L2
H(ΩT )‖Bu‖L2

H(ΩT )

)
+ C

≥ C1

(
‖u‖αLαV (ΩT ) − 1

)
+
µ

β
‖ũ‖β

Lβ
V ∗ (ΩT )

+ ‖u‖α+1
LαV (ΩT )

+ C2

(
‖Fu(t)‖2L2

H(ΩT ) − ‖Fu‖L2
H(ΩT )‖u‖δL2

H(ΩT )

)
+ C

≥ µ

β
‖ũ‖β

Lβ
V ∗ (ΩT )

+ ‖u‖α+1
LαV (ΩT )

(
1 + o(‖u‖LαV (ΩT ))

)
+ C2‖Fu(t)‖2L2

H(ΩT ).

Therefore, by Theorem 2.5, there exists uµ ∈ G ⊂ YαV such that Iµ(uµ) = 0, i.e.

0 = L ⊕Ψµ(uµ,−ũµ −Kuµ)− E
∫ T

0

〈uµ,−ũµ −Kuµ〉 dt

+ E
∫ T

0

M(
1

2
Fuµ ,−Fuµ +

3

2
Buµ)− 〈1

2
Fuµ ,−Fuµ +

3

2
Buµ〉 dt.
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Since L ⊕ Ψµ is convex and coercive in the second variable, there exists r̄ ∈ LβV ∗(ΩT ) such
that

L ⊕Ψµ(uµ,−ũµ −Kuµ) = L(uµ, r̄) + Ψµ(uµ,−ũµ −Kuµ − r̄),
hence

0 = L(uµ, r̄)− 〈uµ, r̄〉+ Ψµ(uµ,−ũµ −Kuµ − r̄) + E
∫ T

0

〈uµ, ũµ +Kuµ + r̄〉 dt

+ E
∫ T

0

M(
1

2
Fuµ ,−Fuµ +

3

2
Buµ)− 〈1

2
Fuµ ,−Fuµ +

3

2
Buµ〉 dt.

Due to the self-duality of L, Ψµ and M , this becomes the sum of three non-negative terms,
and therefore

L(uµ, r̄)− E
∫ T

0

〈uµ(t), r̄(t)〉dt = 0,

Ψµ(uµ,−ũµ −Kuµ − r̄) + E
∫ T

0

〈uµ(t), ũµ(t) +Kuµ(t) + r̄(t)〉 dt = 0,

E
∫ T

0

M(
1

2
Fuµ(t),−Fuµ(t)+

3

2
Buµ(t))− 〈1

2
Fuµ(t),−Fuµ(t) +

3

2
Buµ(t)〉 dt = 0.

By the limiting case of Legendre duality, this yields

ũµ +Kuµ + µ∂ψ(uµ) ∈ −∂̄L(uµ) (6.11)

−Fuµ(t) +
3

2
Buµ(t) ∈ ∂̄M(t,

1

2
Fuµ(t)) =

1

2
Fuµ(t).

The second line implies that for a.e. t ∈ [0, T ] we have P-a.s. Fuµ = Buµ. Moreover, from

(6.11) we have that ∂ψ(uµ) ∈ LβV ∗(ΩT ).

Now for an arbitrary process v ∈ YαV of the form v(t) = v(0) +
∫ t

0
ṽ(s)ds +

∫ t
0
Fv(s)dW (s),

we have 〈∂ψ(uµ(t)), v〉 = 〈‖ũµ‖β−2
V ∗ D−1ũ, ṽ〉. Applying Ito’s formula with the progressively

measurable process X(t) := ‖ũµ‖β−2
V ∗ D−1ũ, we obtain

E
∫ T

0

〈‖ũµ‖β−2
V ∗ D−1ũµ(t), ṽ(t)〉 = −E

∫ T

0

〈 d
dt

(‖ũµ‖β−2
V ∗ D−1ũµ), v(t)〉

+ E 〈‖ũµ(T )‖β−2
V ∗ D−1ũµ(T ), v(T )〉

− E 〈‖ũµ(0)‖β−2
V ∗ D−1ũµ(0), v(0)〉, (6.12)

which, in view of (6.11), implies that

0 = E
∫ T

0

[
〈ũµ(t) +Kuµ(t) + ∂̄L(uµ), v〉+ µ〈‖ũµ‖β−2

V ∗ D−1ũµ, ṽ〉
]
dt

= E
∫ T

0

〈
ũµ(t) +Kuµ(t) + ∂̄L(uµ)− µ d

dt
(‖ũµ‖β−2

V ∗ D−1ũµ), v
〉
dt

+ µE 〈‖ũµ(T )‖β−2
V ∗ D−1ũµ(T ), v(T )〉 − µE 〈‖ũµ(0)‖β−2

V ∗ D−1ũµ(0), v(0)〉,

hence ũµ(T ) = ũµ(0) = 0 and ũµ +Kuµ − µ d
dt (‖ũµ‖

β−2
V ∗ D−1ũµ) ∈ −∂̄L(uµ).

In the following lemma, we shall remove the regularizing term µ∂ψ.

Lemma 6.3. Under the above assumptions on L and B, there exists u ∈ YαV with u(0) = u0,
such that

L(u,−ũ−Ku) + E
∫ T

0

〈u(t), ũ(t) +Ku(t)〉 dt = 0,

Fu = Bu.
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Proof. Lemma 6.2 yields that for every µ > 0 there exist uµ ∈ YαV such that uµ(0) = u0,
ũµ(T ) = ũµ(0) = 0, and satisfying

ũµ +Kuµ + µ∂ψ(uµ) ∈ −∂̄L(uµ) (6.13)

Fuµ(t) = Buµ(t).

Now we show that uµ is bounded in YαV with bounds independent of µ. Indeed, multiplying
(6.13) by uµ and integrating over Ω× [0, T ], we obtain

E
∫ T

0

〈
ũµ(t) +Kuµ(t) + µ∂ψ(uµ(t)), uµ

〉
= −E

∫ T

0

〈∂̄L(uµ), uµ〉dt.

Apply Itô’s formula and use the fact that E
∫ T

0
〈µ∂ψ(uµ(t)), uµ〉 dt ≥ 0 to get

−1

2
‖uµ,0‖2L2(Ω;H) +

1

2
‖uµ(T )‖2L2(Ω;H) −

1

2
‖Fuµ‖2L2

H(ΩT ) + ‖uµ‖α+1
LαV (ΩT )

= −E
∫ T

0

〈µ∂ψ(uµ) + ∂̄L(uµ), uµ〉 dt

≤ −E
∫ T

0

〈∂̄L(uµ), uµ〉 dt.

Since for uµ ∈ YαV we have uµ ∈ L∞(0, T ;H), then in view of (6.3), we get

C1 + ‖uµ‖α+1
LαV (ΩT ) ≤ ‖∂̄L(uµ)‖Lβ

V ∗ (ΩT )‖uµ‖LαV (ΩT )

≤ C ‖uµ‖2LαV (ΩT ).

The above inequality implies that ‖uµ‖LαV (ΩT ) is bounded.

Next, we multiply (6.13) by D−1ũµ and integrate over ΩT to get that

0 = E
∫ T

0

〈
ũµ(t) +Kuµ(t) + µ∂ψ(uµ(t)) + ∂̄L(t, uµ), D−1ũµ

〉
dt

From (6.12), and choosing v = ‖ũµ‖β−2
V ∗ D−1ũµ with ṽ = d

dt (‖ũµ‖
β−2
V ∗ D−1ũµ) and Fv = 0, we

get that E
∫ T

0
〈∂ψ(uµ(t)), D−1ũµ〉 dt = 0, which together with condition(6.3) imply that

‖ũµ‖2Lβ
V ∗ (ΩT )

≤ ‖Kuµ‖Lβ
V ∗ (ΩT )‖ũµ‖Lβ

V ∗ (ΩT ) + C ‖uµ‖LαV (ΩT )‖ũµ‖Lβ
V ∗ (ΩT ),

hence

‖ũµ‖Lβ
V ∗ (ΩT ) ≤ ‖Kuµ‖Lβ

V ∗ (ΩT ) + C ‖uµ‖LαV (ΩT )

which means that ‖ũµ‖Lβ
V ∗ (ΩT ) is bounded. From (6.6) and since Fuµ = Buµ we deduce that

‖Fuµ‖L2
H(ΩT ) is also bounded. Now since (uµ)µ is bounded in YαV , there exists u ∈ YαV such

that uµ ⇀ u weakly in YαV , which means that uµ ⇀ u weakly in LαV (ΩT ), ũµ ⇀ ũ weakly

in LβV ∗(ΩT ), and Fuµ ⇀ Fu weakly in L2
H(ΩT ). From (6.13) and since B is weak-norm

continuous we have Fu = Bu. Then, by (6.11) we obtain

0 = L(uµ,−ũµ −Kuµ − µ∂ψ(uµ))

+ E
∫ T

0

〈
uµ(t), ũµ(t) +Kuµ(t) + µ∂ψ(uµ(t)

〉
dt

≥ L(uµ,−ũµ −Kuµ − µ∂ψ(uµ)) + E
∫ T

0

〈uµ(t), ũµ(t) +Kuµ(t)〉 dt.
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Since K is weak-to-weak continuous, 〈∂ψ(uµ)), uµ〉 = ‖ũµ‖β
Lβ
V ∗

is uniformly bounded, and L

is weakly lower semi-continuous on LαV × L
β
V ∗ , we get

0 ≥ lim inf
µ→0

L(uµ,−ũµ −Kuµ − µ∂ψ(uµ)) + E
∫ T

0

〈uµ(t), ũµ(t) +Kuµ(t)〉 dt

≥ L(u,−ũ−Ku) + E
∫ T

0

〈u(t), ũ(t) +Ku(t)〉 dt.

Since L is a self-dual Lagrangian on LαV × L
β
V ∗ , the reverse inequality is always true, and

therefore

L(u,−ũ−Ku) + E
∫ T

0

〈u(t), ũ(t) +Ku(t)〉 dt = 0.

6.2 A general existence result

We shall work toward eliminating the perturbation K. By Lemma 6.3, for each ε > 0, there
exists a uε ∈ G such that Fuε = Buε and

L(uε,−ũε − εKuε) + E
∫ T

0

〈uε(t), ũε(t) + εKuε(t)〉 dt = 0, (6.14)

or equivalently
ũε + εKuε ∈ −∂̄L(uε). (6.15)

Similar to the argument in Lemma 6.3 we show that uε is bounded in YαV with bounds
independent of ε. First, we multiply (6.15) by uε and integrate over ΩT to obtain

E
∫ T

0

〈ũε(t) + εKuε(t), uε(t)〉 dt = −E
∫ T

0

〈∂̄L(uε), uε〉 dt

≤ ‖∂̄L(uε)‖Lβ
V ∗ (ΩT )‖uε‖LαV (ΩT )

≤ C ‖uε‖2LαV (ΩT ),

where we used (6.3). In view of (6.14) and (6.2), this implies that

C(‖uε‖αLαV (ΩT ) − 1) ≤ L(uε,−ũε − εKuε) ≤ C ‖uε‖2LαV (ΩT ),

from which we deduce that uε is bounded in LαV (ΩT ). Next, we multiply (6.15) by D−1ũε to
obtain

E
∫ T

0

〈ũε(t) + εKuε(t), D
−1ũε(t)〉 = −E

∫ T

0

〈∂̄L(uε), D
−1ũε(t)〉 dt,

and therefore similar to the reasoning as in Lemma 6.3 we deduce that

‖ũε‖Lβ
V ∗ (ΩT ) ≤ ‖Kuµ‖Lβ

V ∗ (ΩT ) + C ‖uµ‖LαV (ΩT ).

Hence ũε is bounded in LβV ∗(ΩT ), and there exists u ∈ YαV such that uε ⇀ u weakly in

LαV (ΩT ), and ũε ⇀ ũ weakly in LβV ∗(ΩT ), and Fuε ⇀ Fu weakly in L2
H(ΩT ). Moreover,

0 = L(uε,−ũε − εKuε)) + E
∫ T

0

〈uε(t), ũε(t) +Kuε(t)〉 dt

≥ L(uε,−ũε − εKuε) + E
∫ T

0

〈uε(t), ũε(t)〉 dt.
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Again, L is weakly lower semi-continuous on LαV × L
β
V ∗ , therefore by letting ε→ 0 we get

0 ≥ L(u,−ũ) + E
∫ T

0

〈u(t), ũ(t)〉 dt.

Since the reverse inequality is always true we have

L(u,−ũ) + E
∫ T

0

〈u(t), ũ(t)〉 dt = 0,

and also Fu(t) = Bu(t). By the limiting case of Legendre duality, we now have for a.e.

t ∈ [0, T ], P-a.s. ũ ∈ −∂̄L(u), integrating over [0, t] with the fact that
∫ t

0
ũ(s)ds = u(t) −

u0 −
∫ t

0
Fu(s)dW (s), and Fu(t) = Bu(t) we obtain

u(t) = u0 −
∫ t

0

∂̄L(u)(s)ds+

∫ t

0

B(u(s))dW (s).

7 Non-additive noise driven by monotone vector fields

7.1 Non-additive noise driven by gradients of convex energies

The first immediate application is the following case when the equation is driven by the
gradient of a convex function.

Theorem 7.1. Let V ⊂ H ⊂ V ∗ be a Gelfand triple, and let φ : V → R ∪ {+∞} be an
ΩT -dependent convex lower semi-continuous function on V such that for α > 1 and some
constants C1, C2 > 0, for every t ∈ [0, T ], P-a.s. we have

C2(‖u‖αLαV (ΩT ) − 1) ≤ E
∫ T

0

φ(t, u(t)) dt ≤ C1(1 + ‖u‖αLαV (ΩT )).

Consider the equation {
du(t) = −∂φ(t, u(t)dt+B(u(t)) dW (t)

u(0) = u0,
(7.1)

where B : YαV → L2(ΩT ;H) is a weak-to-norm continuous map satisfying for some C > 0
and 0 < δ < α+1

2 ,

‖Bu‖L2
H(ΩT ) ≤ C‖u‖δLα(ΩT ) for any u ∈ YαV .

Let u0 be a random variable in L2(Ω,F0,P;H), then Equation (7.1) has a solution u in YαV .

Proof. It suffices to apply Theorem 6.1 to the self-dual Lagrangian

L(u, p) = E
∫ T

0

φ(t, u(t, w)) + φ∗(t, p(t, w)) dt.

Example 7.2. Let D ⊂ Rn be an open bounded domain, then the SPDE{
du(t) = ∆u dt+ |u|q−1u dW

u(0) = u0.
(7.2)

has a solution provided 1
2 ≤ q <

n
n−2 .
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Proof. Applying Theorem 6.1 with α = 2, V = H1
0 (D), H = L2(D), ϕ(u) = 1

2

∫
D
|∇u|2 dx

and Bu = |u|q−1u, we see that B is weak-to-norm continuous from Y2
V to L2(ΩT ;L2(D)), as

long as 2q < 2∗, that is q < n
n−2 . As to the second condition on B, one notes that

‖Bu‖L2
H(ΩT ) =

(
E
∫ T

0

‖uq‖2L2(D) dt

) 1
2

≤ C‖u‖
1
2

L2
V
‖u‖q−

1
2

L4q−2
V

,

which means that if 1
2 ≤ q ≤ 1, then 0 ≤ 4q − 2 ≤ 2 and

‖Bu‖L2
H(ΩT ) ≤ C‖u‖

1
2

L2
V
‖u‖q−

1
2

L4q−2
V

≤ C‖u‖
1
2

L2
V
‖u‖q−

1
2

L2
V
≤ C‖u‖q

L2
V
,

which is the condition required by the above theorem. Note that here, δ = q < 3
2 = α+1

2 .
On the other hand, if 1 < q, then we apply the theorem with α = 4q − 2, then the above
computation gives that

‖Bu‖L2
H(ΩT ) ≤ C‖u‖

q

L4q−2
V

,

since 2 < 4q−2. Note also that q < 2q− 1
2 = α+1

2 . However, the Lagrangian (here the convex

function ϕ) is not coercive on the space AαV = A4q−2
V . To remedy this, we add a perturbation

that makes the Lagrangian coercive on this space by considering the convex function

ϕε(u) =
1

2

∫
D

|∇u|2 dx+
ε

4q − 2

∫
D

|∇u|4q−2 dx.

By applying Theorem 6.1 with α = 4q−2, V = H1
0 (D), H = L2(D), and ϕε, we get a solution

uε for the equation {
du(t) = (∆u+ ε∆4q−2u) dt+ |u|q−1u dW

u(0) = u0.
(7.3)

An argument like what we have already done (twice) above, then allows us to let ε go to zero
and get a solution for (7.2).

7.2 Non-additive noise driven by general monotone vector fields

More generally, consider the following type of equations{
du(t) = −A(t, u(t))dt+B(t, u(t))dW (t)

u(0) = u0,
(7.4)

where V ⊂ H ⊂ V ∗ is a Gelfand triple, and A : Ω× [0, T ]×V → V ∗, and B : Ω× [0, T ]×V →
H, are progressively measurable.

Theorem 7.3. Assume A : D(A) ⊂ V → V ∗ is a progressively measurable ΩT -dependent
maximal monotone operator satisfying condition (3.1) with α > 1 and its conjugate β, as
well as

‖Aw,tu‖V ∗ ≤ k(ω, t)(1 + ‖u‖V ) for all u ∈ V , dt⊗ P a.s. (7.5)

for some k ∈ L∞(ΩT ).
Let B : YαV → L2(ΩT ;H) be a weak-to-norm continuous map such that for some C > 0 and
0 < δ < α+1

2 ,

‖Bu‖L2
H(ΩT ) ≤ C‖u‖δLα(ΩT ) for any u ∈ YαV .

Let u0 be a given random variable in L2
H(Ω,F0,P;H), then equation (7.4) has a variational

solution in YαV .
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Proof. Associate again to Aω,t an ΩT -dependent self-dual Lagrangian LAω,t(u, p) on V × V ∗
in such a way that for almost every t ∈ [0, T ], P-a.s. we have Aω,t = ∂̄LAω,t . Then by Lemma
3.3, the Lagrangian

LA(u, p) = E
∫ T

0

LAω,t(u(ω, t), p(ω, t))dt

is self-dual on Lα(ΩT ;V )× Lβ(ΩT ;V ∗), and satisfies

C1(‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

− 1) ≤ L(u, p) ≤ C2(1 + ‖u‖αLαV (ΩT ) + ‖p‖β
Lβ
V ∗ (ΩT )

).

(7.5) also implies that for some C3 > 0,

‖∂̄LA(u)‖Lβ
V ∗ (ΩT ) ≤ C3(1 + ‖u‖LαV (ΩT )).

The rest follows from Theorem 6.1.

7.3 Non-additive noise driven by monotone vector fields in diver-
gence form

We now show the existence of a variational solution to the following equation:{
du = div(β(∇u(t, x)))dt+B(u(t))dW (t) in [0, T ]×D
u(0, x) = u0 on ∂D,

(7.6)

whereD is a bounded domain in Rn, and where the initial position u0 belongs to L2(Ω,F0,P;L2(D)).
We assume that

1. The ΩT -dependent vector field β : Rn → Rn is progressively measurable and maximal
monotone such that for functions c1, c2, c3 ∈ L∞(ΩT ), and m1,m2 ∈ L1(ΩT ), it satisfies
dt⊗ P-a.s.

〈β(x), x〉 ≥ max{c1‖x‖2Rn −m1, c2‖β(x)‖2Rn −m2} for all x ∈ Rn, (7.7)

and
‖β(x)‖Rn ≤ c3(1 + ‖x‖Rn) for all x ∈ Rn, (7.8)

2. The operator B : Y2
H1

0 (D)
→ L2(ΩT ;L2(D)) is a weak-to-norm continuous map such

that for some C > 0 and 0 < δ < α+1
2 ,

‖Bu‖L2
L2 (ΩT ) ≤ C‖u‖δLα

H1
0

(ΩT ) for any u ∈ Y2
H1

0 (D)
.

Theorem 7.4. Under the above conditions on β and B, Equation (7.6) has a variational
solution.

We shall need the following lemma, which associates to an ΩT -dependent self-dual Lagrangian
on Rn × Rn, a self-dual Lagrangian on L2(ΩT ;H1

0 (D))× L2(ΩT ;H−1(D)).

Lemma 7.5. Let L be a ΩT -dependent self-dual Lagrangian on Rn×Rn, then the Lagrangian
defined by

L (u, p) = inf

{
E
∫ T

0

∫
D

L(t,∇u(t, x), f(t, x)) dx dt; f ∈ L2(ΩT ;L2
Rn(D)),−div(f) = p

}

is self-dual on L2(ΩT ;H1
0 (D))× L2(ΩT ;H−1(D)).
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We shall need the following general lemma.

Lemma 7.6. Let L be a self-dual Lagrangian on a Hilbert space H×H, and let Π : V → H
be a bounded linear operator from a reflexive Banach space V into H such that the operator
Π∗Π is an isomorphism from V into V∗. Then, the Lagrangian

L(u, p) = inf {L(Πu, f); f ∈ H,Π∗(f) = p} ,

is self-dual on V × V∗.

Proof. For a fixed (q, v) ∈ V∗ × V, write

L∗(q, v) = sup
{
〈q, u〉+ 〈v, p〉 − L(u, p); u ∈ V, p ∈ V∗

}
= sup

{
〈q, u〉+ 〈v, p〉 − L(Πu, f); u ∈ V, p ∈ V∗, f ∈ H,Π∗(f) = p

}
= sup

{
〈q, u〉+ 〈v,−Π∗f〉 − L(Πu, f); u ∈ V, f ∈ H

}
= sup

{
〈q, u〉+ 〈Πv, f〉 − L(Πu, f); u ∈ V, f ∈ H

}
.

Since Π∗Π is an isomorphism, for q ∈ V∗ there exists a fixed f0 ∈ H such that Π∗f0 = q.
Moreover, the space

E = {g ∈ H; g = Πu, for some u ∈ V},

is closed in H in such a way that its indicator function χE on H

χE(g) =

{
0 g ∈ E
+∞ elsewhere,

is convex and lower semi-continuous. Its Legendre transform is then given for each f ∈ H by

χ∗E(f) =

{
0 Π∗f = 0

+∞ elsewhere.

It follows that

L∗(q, v) = sup
{
〈f0,Πu〉+ 〈Πv, f〉 − L(Πu, f); u ∈ V, f ∈ H

}
= sup

{
〈f0, g〉+ 〈Πv, f〉 − L(g, f)− χE(g); g ∈ H, f ∈ H

}
= (L+ χE)

∗(f0,Πv)

= inf
{
L∗(f0 − r,Πv) + χ∗E(r); r ∈ H

}
where we have used that the Legendre dual of the sum is inf-convolution. Finally taking into
account the expression for χ∗E we obtain

L∗(q, v) = inf
{
L∗(f0 − r,Πv); r ∈ H,Π∗r = 0

}
= inf

{
L(Πv, f0 − r); r ∈ H,Π∗r = 0

}
= inf

{
L(Πv, f); f ∈ H,Π∗f = q

}
= L(v, q).
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Proof of Lemma 7.5: This is now a direct application of Lemma 7.6. First, lift the random
Lagrangian to define a self-dual Lagrangian on L2(ΩT ;L2(D;Rn))× L2(ΩT ;L2(D;Rn)), via

L(u, p) = E
∫ T

0

∫
D

L(t, u(t, x), p(t, x)) dx dt,

then use Lemma 7.6 with this Lagrangian and the operators

L2(ΩT ;H1
0 (D))

Π=∇−−−→ L2(ΩT ;L2(D;Rn))
Π∗=∇∗

−−−−−→ L2(ΩT ;H−1(D)),

to get that L is a self-dual Lagrangian on L2(ΩT ;H1
0 (D)) × L2(ΩT ;H−1(D)). Note that

Π∗Π = ∇∗∇ = −∆ induces an isomorphism from L2(ΩT ;H1
0 (D)) to L2(ΩT ;H−1(D)).

Proof of Theorem 7.4: Again, by Theorem 2.1 and the discussion in Section 3.1, one
can associate to the maximal monotone map βω,t, an ΩT -dependent self-dual Lagrangian
Lβω,t(u, p) on Rn × Rn in such a way that

βω,t = ∂̄Lβω,t .

If β satisfies (7.7), then the ΩT -dependent self-dual Lagrangian Lβω,t on Rn ×Rn satisfy for
almost every t ∈ [0, T ], P-a.s.

C1(‖x‖2Rn + ‖p‖2Rn − n1) ≤ Lβw,t(x, p) ≤ C2(‖x‖2Rn + ‖p‖2Rn + n2), (7.9)

where C1, C2 ∈ L∞(ΩT ) and n1, n2 ∈ L1(ΩT ).
We can then lift it to the space L2(ΩT ;L2

Rn(D))× L2(ΩT ;L2
Rn(D)) via

Lβ(u, p) = E
∫ T

0

∫
D

Lβω,t(u(t, w, x), p(t, w, x)) dxdt,

in such a way that for positive constants C1, C2 and C3 (different from above)

C2(‖u‖2L2
H(ΩT ) + ‖p‖2L2

H(ΩT ) − 1) ≤ Lβ(u, p) ≤ C1(1 + ‖u‖2L2
H(ΩT ) + ‖p‖2L2

H(ΩT )),

where H := L2
Rn(D). In view of (7.8), we also have

‖∂̄Lβ(u)‖L2
H(ΩT ) ≤ C3(1 + ‖u‖L2

H(ΩT )).

Use now Lemma 7.5 to lift Lβ to a self-dual Lagrangian Lβ on L2(ΩT ;H1
0 (D))×L2(ΩT ;H−1(D)),

via the formula

Lβ(u, p) = inf

{
E
∫ T

0

∫
D

Lβw,t(∇u(t, x), f(t, x)) dx dt; f ∈ L2(ΩT ;L2
Rn(D)),−div(f) = p

}
= inf

{
Lβ(∇u, f); f ∈ L2(ΩT ;L2

Rn(D)),−div(f) = p
}
, (7.10)

Apply now Theorem 6.1 to get a process v ∈ Y2
H1

0 (D)
such that

Lβ(v,−ṽ) + 〈v, ṽ〉 = 0

Fv = B

v(0) = u0.

Now note that

0 = Lβ(v,−ṽ) + 〈v, ṽ〉

= inf
f∈L2(ΩT ;L2

Rn (D))

{
E
∫ T

0

∫
D

Lβ(w,t)(∇v, f) dx dt; div(f) = ṽ

}
+ E

∫ T

0

〈v(t), ṽ(t)〉
H1

0 ,H
−1
dt

= inf
f∈L2(ΩT ;L2

Rn (D))

{
E
∫ T

0

∫
D

Lβ(w,t)(∇v, f)− 〈∇v(x, t), f(x, t)〉 dx dt
}

= inf
f∈L2(ΩT ;L2

Rn (D))
Jv(f),
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where

Jv(f) := E
∫ T

0

∫
D

{Lβ(w,t)(∇v, f)− 〈∇v(x, t), f(x, t)〉} dx dt.

Note that condition (7.9) implies that L(y, 0) ≤ C(1+‖y‖2Rn), which means that Jv is coercive
on L2(ΩT ;L2

Rn(D)), thus there exists f̄ ∈ L2(ΩT ;L2
Rn(D)) with div(f̄) = ṽ such that

E
∫ T

0

∫
D

Lβ(w,t)(∇v, f̄)− 〈∇v(x, t), f̄(x, t)〉 dx dt = 0.

The self-duality of L then implies that f̄(x, t) = ∂̄L(∇v(x, t)) = β(∇v(x, t)). Taking diver-
gence leads to ṽ ∈ div (β(∇v)). Taking integrals over [0, t] and using the fact that v ∈ Y2

H1
0 (D)

finally gives ∫ t

0

div (β(∇v(s))) ds =

∫ t

0

ṽ(s)ds = v(t)− v(0)−
∫ t

0

Fv(s)dW (s)

= v(t)− u0 −
∫ t

0

B(v(s))dW,

which completes the proof.
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[16] N. Ghoussoub, Anti-symmetric Hamiltonians: Variational resolution of Navier-Stokes
equations and other nonlinear evolutions, Comm. Pure & Applied Math., vol. 60, no.
5 (2007) pp. 619-653

[17] N. Ghoussoub: Superposition of self-dual functionals for non-homogeneous boundary
value problems and differential systems, Journal of Discrete and Continuous Dynamical
Systems, Vol. 21, 1 (2008), p. 71-104.

[18] N. Ghoussoub, A variational theory for monotone vector fields. J. Fixed Point Theory
Appl. 4 (2008), no. 1, 107–135.

[19] N. Ghoussoub, Self-dual Partial Differential Systems and Their Variational Principles.
Springer Monographs in Mathematics, Springer, New York (2008).

[20] N. Ghoussoub, A. Moameni, Anti-symmetric Hamiltonians (II): Variational resolution
of Navier-Stokes equations and other nonlinear evolutions, AIHP-Analyse non linéaire,
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