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Optimal mass transport has come a long way since the 1781 “Mémoire sur la théorie des
déblais et des remblais” of Gaspard Monge, who was looking for the most economical way of
moving soil from one area to another. Mathematically, this amounts to minimizing the total cost∫
X c(x, Tx)dµ over all possible transport maps T that “push” the initial distribution µ of soil onto

a final distribution ν, where c(x, y) is the cost of moving x to y, which (for Monge) was proportional
to the Euclidian distance |x− y|.

1 Monge-Kantorovich problems

Many years later, Kantorovich linearized and compactified the problem by enlarging the constraint
set to contain all “transport plans”; that is, he allowed a piece of soil to be “split” between two or
more destination points, hence multivalued mappings. This relaxed version of Monge’s problem,
which earned Kantorovich, together with T. Koopmans, the Nobel Prize in economics in 1975 for
their work on optimum allocation of resources, consists of considering the following minimization
problem

Tc(µ, ν) := inf
{∫

X×Y c(x, y)dγ(x, y); γ ∈ Π(µ, ν)
}
. (1)

Here Π(µ, ν) is the set of measures γ on the product space X × Y whose marginals are µ and ν.
Kantorovich also defined a dual problem, allowing him to relate it to linear programming. It is
instructive to think of a manufacturing company shipping resources (say iron) from a distribution
µ(x) of mines on some landscape X ⊆ Rn to a distribution ν(y) of factories on a landscape Y ⊆ Rn,
where c(x, y) is the cost of shipping one unit of iron from a mine at location x to a factory at loca-
tion y; the goal is minimize the total shipping cost. A permissible γ represents a possible transport
plan; heuristically dγ(x, y) represents the amount of iron that should be shipped from mine x to
factory y. For a good outline of the 2-marginal case and its applications, we refer to Villani [7].

1.1 Multi-marginal Monge-Kantorovich problems

Suppose now that a manufacturing company is just beginning business and has not yet built their
factories. The company is making a certain product, requiring several resources, such as iron,
aluminum, nickel, etc. There is a distribution of mines µi(xi), supported on some set Xi ⊂ Rn,
producing each type of resource, and the cost to ship one unit of the ith resource from xi to a
location y is given by ci(xi, y). The company then wants to build its factories in locations that
minimize the total shipping costs of all the resources. That is, they want to build a distribution of
factories ν(y) on Y in order to minimize ∑m

i=1 Tci(µi, ν). (2)

Another way to interpret this problem is to consider the function

c(x1, ...., xm) = infy∈Y
∑m

i=1 ci(xi, y). (3)

Assuming this infimum is always attained at a unique point y(x1, x2, ...xm), there is an equivalence
between (2) and the problem of minimizing,

Tc(µ1, µ2, ..., µm) := inf
{∫

X1×.....×Xm
c(x1, x2, ...xm)dγ(x1, x2, ..., xm); γ ∈ Π

}
, (MK)

over the set Π := Π(µ1, µ2, ..., µm) of measures γ on X1× ...×Xm whose marginals are the µi. This
is the multi-marginal optimal transport (or Monge-Kantorovich) problem. The case m = 2 is obvi-
ously the above mentioned classical optimal transport problem (1). Intuitively, dγ(x1, x2, ..., xm)
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represents the amount of resources that are shipped from locations x1, x2, ..., xm to a certain fac-
tory y(x1, x2, ..., xm). A fundamental problem (largely settled when m = 2) is to determine for
which cost functions c, the infimum in (MK) is attained (uniquely!) by a measure supported by
“a graph”, meaning that

Tc(µ1, µ2, ..., µm) =
∫
X1
c(x, T1x, T2x, ...Tm−1x)dµ1(x),

for some maps Ti : X1 → Xi+1 that push the first marginal µ1 onto µi+1 for i = 1, ...,m − 1.
Recently, problems of this general type have begun to attract attention, due to surprisingly diverse
applications. But unlike the classical case (m = 2), the structure of solutions to multi-marginal
problems of form (MK) are not yet well understood. While there has been some progress on the
uniqueness and structure of solutions to (MK) (see [6],[5] and the references therein), it has mostly
been restricted to cost functions of the form (3), whereas many of these applications involve costs
which are not of this form. Below, we outline several different applications of this problem.

1.2 Multi-agent matching problems in economics

Recent papers link (MK) to a matching problem in economics where agents’ preferences depend
on external contracts [1]. For example, consider a collection of consumers, parametrized by the
set X1 ⊆ Rn, looking to buy custom built houses; imagine that the different components xj1
of a consumer x1 = (x1

1, x
2
1, ..., x

n
1 ) ∈ X1 represent characteristics which affect the consumers’

preferences for different types of houses, for example, their income, family size, age, etc. Think
of the probability measure µ1(x1) as representing the relative frequency of a consumer of type x1.
In order to build a house, a consumer must hire several (say m − 1) tradespeople: for example,
a carpenter, a plumber and an electrician. Imagine, for example, that X2 parametrizes the set
of carpenters available to be hired; the different components of x2 ∈ X2 may represent the age,
years of experience and safety record, for example, of the carpenter x2, and the measure µ2(x2) the
relative frequency of carpenters of type x2. The sets X3, ..., Xm will have similar interpretations in
terms of plumbers, electricians, etc.

Now, suppose the set of houses that can feasibly be built is parameterised by Y ⊆ Rn; the
different components of a house y ∈ Y may represent its size, location, etc. Of course, different
consumers prefer different types of houses; let f1(x1, y) ∈ R represent the utility consumer x1 would
derive from owning a house of type y. Similarly, preferences differ among carpenters, plumbers
and electricians as well; let fi(xi, y) be the utility worker xi would derive from building house y.
Consumers want to buy houses which they like as much as possible, but also want to pay as little
as possible for them. On the other hand, workers want to build houses making their utilities as
high as possible, but they also want to be paid as high a wage as possible. Informally, if consumer
x1 hires carpenter x2, plumber x3, etc, to build some feasible house, then

b(x1, x2, ...., xm) := supy∈Y
∑m

i=1 fi(xi, y)

is the maximal total utility that can be obtained by this collection of agents. The link with (MK)
is that finding an equilibrium in this market (in other words, an assignment of wages and agents
to different types of houses so that no one has an incentive to change jobs) is equivalent to solving
(MK), with cost function equal to −b.

2 Symmetric Monge-Kantorovich problems

Consider now problem (MK), but with the additional constraint that the measures γ in Π(µ1, µ2, ..., µm)
should be invariant under the cyclic permutation σ(x1, x2, ...xm) = (x2, x3, ..., xm, x1); note that in
this case, the marginals µi must all be equal to some common distribution µ. Here, the problem is
to determine for which costs c, there exists an optimal measure that is supported on a graph of the
form x → (x, Sx, S2x, ..., Sm−1x), where S is a µ-measure preserving m-involution, i.e. Smx = x
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a.e.

2.1 Monotone maps and polar factorizations of vector fields

When the cost function is given by c(x1, x2, ..., xm) = −
∑m

i=2〈ui(x1), xi〉, for a given family
of bounded vector fields (u2, u3, ..., um), the symmetric Monge-Kantorovich problem turns out
to be instrumental in the proof of the following representation result for the ui established by
Ghoussoub-Moameni [5]: There exist a cyclically antisymmetric saddle function H : Xm → R (i.e.,∑m−1

i=0 H(σi(·)) ≡ 0 on Xm) and a measure preserving map S : X → X with Sm = I such that

(u2(x), u3(x), ..., um(x)) = ∇x2,x3,...xmH(x, Sx, S2x...., Smx) for a.e. x ∈ X. (4)

This extends an earlier decomposition for a single vector field (m = 2) by the same authors. Note
that in the special case where the u′is are jointly m-monotone, one can take S to be the identity [4],
which extends a well known theorem of Krauss for 2-monotone vector fields. In the other extreme,
a classical result of Rockafellar yields that vector fields which are m-cyclically monotone for every
m are essentially sub-differentials of convex functions. Taking u1 = u, ui = 0 for i = 2, 3, ...m− 1,
the result of Ghoussoub-Moameni then yields that every bounded vector field u is m-monotone up
to a measure preserving m-involution.

2.2 Matching and the Roommate problem

The economic literature has mostly modeled the marriage market as a bipartite matching game
with transferable utility. Yet the bipartite assumption –even in the marriage market– is becoming
restrictive in some contexts, where a match does not have to include exactly one individual from
each of two exogenously given subpopulations, especially now that a growing number of countries
have authorized same-sex unions in some form. This leads to problems with symmetry constraints
in many types of matching problems [3]. Another example comes from a university housing of-
fice trying to assign students to dorm rooms, say three to a room. The problem of finding an
assignment which maximizes some measure of overall compatibility between roommates can be
formulated as (MK) but again restricted to measures γ which are invariant under any permutation
of the arguments. Heuristically, the invariance arises because the population of interest is not a
priori partitioned into disjoint subsets; one works with three copies of the original distribution of
students. If it is optimal to couple a trio (x1, x2, x3) of students together, it should also be optimal
to couple the trio (x2, x3, x1).

2.3 Density functional theory

A fundamental question in chemical physics is to determine the ground state energy of a system of
m-interacting electrons (for example, an atom). A partitioning of this search leads to consideration
of the Hohenberg-Kohn functional, which in the semi-classical limit, takes the form [2]:

FHK [µ] := infγ∈Π(µ,...µ)

∫
Rdm

∑
i 6=j

1
|xi−xj |dγ.

This is exactly problem (MK), where the cost function
∑

i 6=j
1

|xi−xj | represents the Coulombic

interaction energy between the electrons. Note that in this case, the marginals, which represent
the single particle densities of the electrons, are all the same, embodying the indistinguishability
of the electrons. The measures γ in Π(µ, µ, ..., µ) represent potential N -particle densities of the
system, each with single particle density µ. Heuristically, we can think of FHK [µ] as representing
the minimal (semi-classical) energy of all configurations of electrons, with single particle density µ.
The problem in density functional theory is then to minimize FHK [µ] (or FHK [µ] plus an external
potential) over all possible single particle densities µ. We should note that it is physically natural to
impose that the measures γ are invariant under any permutation of the arguments. This does not
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effect the value of FHK [µ], as symmetrizing the measure γ does not change the common marginal µ
or the value

∫
Rdm

∑
i 6=j

1
|xi−xj |dγ, due to the symmetry of the cost function. It is relevant, however,

to questions about the structure and uniqueness of the optimal γ. In the case of two electrons
(i.e., m = 2), it can be shown that the infimum FHK(µ) is then attained at a measure γ̄ which
determines the co-motion function x→ (x, Sx), with S2 = I. The case when m ≥ 3 is wide open.
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