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SUBADDITIVE ERGODIC THEORY IN
GENERAL FUNCTION SPACES
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I. Introduction: In this paper we try to give a systematic approach for the
extensions of some ergodic and subergodic thecrems form the classical
Lp-setting to moxe general function spa&es. Recently, %kcoglu and Suchesgton
[4] gave a method for doing so, based on the concept qf "truncated limits."
Our approvach exploits the weak-star compactness of the double dual E** of the
function space E involved and the exigteﬁce of a projection from E** onto E
whenever the latter is assumed to be weakly sequentially complete [17]. We
shall first intreduce the notions that will be relevant for the study of
ergodic—~type theorems on general function spaces.

Following Rkcoglu-Sucheston [3] we shall say that 'a seguence (fn) in &

Banach lattice E converges stochastically to £ in E if for every v in E+,

limﬂ[fn~ £l A V“E = 0. If now E has an order continuous norm with a weak
unit u, then E can be represented as a function space on some probability
space (R,¥,P). It is then easy to see that (fn) eonverges qtochastically to
f if and only if (fn) converges in probability to £ on {Q,Q}?). Moreover

(fn) would nerm-converge to f if it is also norm-uniformly integrah1e=.£hat

is lim  suphf X I = 0.
wa)»0 n " PE
Suppose now E is a Banach Lattice which is the range of a band.

projection Q@ in a Banach lattice G.. We shall say that E is an L =ideal in @

for some p (1 £ p < =} if lgxt? + 1 (1~0)xi® S_Hxﬂp for each x inHG. Typical

example; of spaces which are Lp-ideals in their second duals are

(a) reflexive Banach lattices (Q = Tdentity};

(b) . p-concave Banach lattices with p-concavity constant equal to one [16].
A mnorm I || on a Banach lattice E is said to be strictly monotone if

0 < f < g implies IIf} < Bgl for every £, g in E. Strictly convex norms are

clearly strictly monotone and the results of [4] give that every order
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continuous Banach lattice has an equivalent striclty monotone norm. The
corresponding superproperty 1s the following: A norm § [ is said to be
uniformly strictly monotoﬂg if for all € > 0, there exists & > 0 go that if
Dif<g.andﬂg-flzew'it.h UE0 < 1 then figh > NER + &.

If we denote by E an ultraproduct of a Banach lattice E [16], the
following lemma can be readily verified. )
Lemma I.1: The following properties are equivalent:

a} E has a wuniformly monotone norm.

b) E has a uniformly monotone Horm,

¢) E has a strictly monotene nopm.
d} E in g-concave for some 1 £ 49 <= with a concavity constant.équal to

ona.

Let now.T be a bounded linear operator on a Banach lattice G and
let Q be a band projection from G onto a sub-~ideal E. We shall say that T is
Q-stable if T maps B into itself. In other words {I-0}T0 = 0. We say that T

is Q-consisteént if for each x in G, Lim HQ[T(I-Q)]an = 0). T is 5aid to be
n

n
uniformly p-congigtent If for each x in G, the series Z Q[T(I-Q)]kx

k=0 i
converges. In this case we will denote by QTthe operator E Q[T(I-Q)]" from
. k=0

G onto E. .

) In the following proposition we give sufficient conditions on an
oPerator T and a preojection Q that ensure Q-stability and Q—consistency. The
proof is left to the reader.

Proggsition I.2 Let T be a positlve opsrator on & Banach lattice G and let @
be a band pro:ection from G onto a weakly sequentially complete ;deal E of

G. ’

(a) If T is Q-stable and (I-Q)~stable fhen T ig uniformly Q-consistent.

{b) If there exists a{0<w<1) 5d¢h that for each x in‘G,

ai0x + T(I—Q)x;E) <o lIx? then T is uniférmly Q*consistenf. (d(y,E) denctes
the distance from y to E and the condition holds in particular if
1(I-QyT(I~O}xl < & NxK)

() If E is an L1-zdeal in G, then every positive contraction on G is

uniformly Q~consistent.
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{d) If E is an Fp—ideal in G (1<p<=) then every positive contraction on G is
D-consistent. . ; )

(e} If T maps a weak unit of E into itsélf then T is Q-stable.

(£} If T is a lattice homomorphism Q on G that maps & weak unit of E into
itself then T is Q and (I-D)-gstabla.

(g) IE T is Q-stable and invertible then T is {I-Q)=stable.

The following two lemmas illustrate the importancé of the consistency
conditions. The main idea is that under such hypothesis one can "project”

the nice properties of some elements in the superspace 5 to the subspace E.

Lemma T.3 Tet Q he a band projection from a Banach lattice G onto a subideal
E of G, Let T b& & O-stable and Q-congistent cperator on G. If f is a fixed
peint for T in G+ then Of is a fixed point for T in E.

Proof Suppose f = T£. We prove by induction that for each k 2 1 we have:
(*) £ = T0E + [T(z-0)] *F

The assertion is true for k = 1 since

f = Tf = TQF + T(I-Q)E.,
Assume (*} is true up to k. We get by applying TQ
(he)y . TRE = TOTQE + TQ[T[I-Q)]kf = ng_f + TQ[T(I-Q)]kf
On the other hand, since f = TE, (*} gives
£ =7t = PoE + TIM(I-0"s = vP0e + woir(r-g1Fe + [T(z-0)1¥* e

Apply {**) to get f = TQf + [T(I—Q)]k+1f. Hence (*) is true for amy k > 1.
Apply now Q: DOf = TOf + Q[T(I—Q)Zkf for each kX > 1. By the Q=consitency of T
we get that iim ||Q[(I-Q7]kf|] =0 and QF = TRf.

ko .

Remark I.j: We did not need the fuil strength of Q-congistency Iin the above
proof. One actually need that Q[T(I-Q)]kf = 0 whenever it is stationary.
This is for instance assured if the norm on G is strictly monotone and " is a
contraction since 1f QP{I-QIf # ¢

then (I-Q)T(I-Q)f < T(I-D}f

and erz-0)1%e |f < [jrez-gif |
which is a contradiction. .

The following lemma is an extension of an idea of Brunel-Sucheston [6]
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Lemma 1.4- Let Q be a band projection a Banach lattice G onto a subideal E
of G. Tet T be a Q-Etahle and uniformly QO=conglstent operato: on G, then for

n—1
any 8, (s ) 1n G auch that 0 < E Z Tis for all n > 1 we have 0 < Qs
i=0
n-1 ”
F T Q g for allsa > 1.
i=0 .

Proof: Wote that s 2 s, hence Qs > 0s.. Also 5 + Ts,z;gzlhence s +7T0s +
T{I~Q)s > 8, and by applying Q we get Qs + QTQs + QT{I-Q}s > Qaz but QTQ = TQ
hence Qs + TQs + QT(I—Q)S > Qﬂ By induction on n, we get

=1 n-k

T orios 2 rhorrz-1Fs + 3 rlormiz-on¥s + qrriz-gn1Ts > o5 .-

i=0 i=0 iBU
‘But this implies ’

I = ( E QITt-0)] s) > Qs
i=0 k=0

e+ for each n > 0

and

z T QTs > Qs 1 for each n > 0.
i=0

The typical example of a superspace G is the double dual E** of E.
If B is weakly sequentially complete, then E is the range of a projection
band O in E*%, If now T is an operator on E, then T** is a O-stable
operator.

We shall say then that T is congistent (resp unifermly consistent)

If TH* g Q-consistent=(res§ @=uniformly consistent).

II ON THE NORM CONVERGENCE OF SUBADDITIVE PROCESSES

Let E be a Banach space and let T be a ceontraction on E (191 < 1),

We shall say that T is mean ergodic on B if it verifies one of the following
equivalent conditions: . . ;

n-1
E Tkx converges strongly to an element
k=0

H e

{1) For each x in E, Anx =

Px in E
(2) B = Ker (I~-T)& Im{I-T}
(3) ¥or each x in E, the gsequence (Anx)n has a weak cluster point.

In this case P iz a projection from E onto Ker(IFT) $atisfying PT =
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TP = P. For more details we refer to [8).

oA positive contraction on a Banach lattice E is gaid to be weak
order contractive if there exists a quasi-interior peint u in E such that Tu
£ u., If, moreover, there exists a strictly positive linear form i on E such
that T*p L B, then T ig said to be order contractiye.

Order contractions are the natural extensions of the contractions
on L1 which are alsoc contracticns on L, + Actually, every order contraction
on an order continuous Banach lattice induces a contraction on the.

L1 and L -sSpaces corresponding to u and B [17]. .

We also recall that a positive operator T on E is said to be
irreducible if {0} iz a maximal T-stable ideal among all T~stable ideals
different of E. .

A sequence (sn) in' E is said to be T—subadditive

n
(resp I-superadditive) of Brik < s, + T sk[regp 8 4k > Bn + sk]

for all integers n, k. Note that (sn) is T-additive (Sn+k= 8_ + Tnsk] if and

e —— n

n~1 .
enly if s = Z hs for each ng NW.
n i=0 1

Theorem IT.1 Every weak order contraceive.oyerator on a weakly sequentially

complete Banach lattice is mean ergodic.

Proof We shall ghow that E = Ker(I-T)}@® Im{I~T). TLet x = x+-x“ be an element
m—— + -

in E. For each ke N, the sequence {An(x A ku)}n_(resp {An(xf\ku)}n) ig in
the weakly compact order interval {0,kul. A 5tandérd diagonalization

argqument gives a subsequence (nj) and elements yk, zk such that for each k

(i) weak limit An_(x+A ku) = y5
i ‘
(1) weak limit An.(x_A K} = z*
j 1
(idd)_ my* = y* ana X = oK,

) k ) .
~ Clearly the seguences (yk) and (z') are Increasing ‘and norm
k
bounded, hence they converge to v (reap 2z} such that yk =¥YAk, 2 = 2zAk,
TY =y and Tz = z,

We shall show that x - (y=-z) belongs to Im{I~T). By the Hahn-
o —
Banach theorem, it is enough to prove.  that if x*sE: and x* = 0 on Im{I-T),
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then x*[x - (y=z)] = 0. But if x* = 0 on Im(I-‘I‘), thi.s implies that
x*(w) = x*{Tw) for each o in E, hence for each k>0,

x*(xA ku) = x*(T(x f\ku)) = x*(Tj(xA ku)) = x*(h (x+A ku)) which converges
"y

to x*(y )

It follows that for edch k>0, x*(x'A ku) = x*(y*] and by letting k
g0 to = we get that x*(x+) = x*{y). Similarly x*{x ) = x*{z) From which
follows that x*[x - (y-z)] = O. -7

- Now, we c¢an reprove the following result (17] without using the
Riesz interpolation theorem. '

Corollary IT.1 Every order contractive operator on an order continuous
Banach 1attice is mean ergodic.

Prqof As noted above, T induces a contraction T, on L1(K,u) which is a

¢contraction on E_(K,p), that is T,I is a weak ord;r contraction on the weakly
sequentially complete Banach lattice L1(l<,.p,). It follows by Theorem XI.? tht
Anf converges in L (K,u.) for each £ in E. If now gaL {K,u), then (A g) is in
the order interval [ -1gf o7 Igll u] which is uniformly integrable, hence A ]
converges strongly in E.

If now £ is any element in E, then for each ¢30, there exists g in
L=(K,u) such that If = gl < 6. It follows that '

IIAnf - .Amfl < i(n - Bm)gﬂ + H(An = A HE=g
‘L H(A - Am)gﬂ + 2¢

therefore lim sup iA f - B fl! < 25 and Anf convergas strongly in E.

Theorem IT.2 If T is a positive mean ergodic contraction on An order
continuous Banach lattice E, then for each k>1. Tk is mean ergodic.
Morecver, if P is the associated projection on Ker(I—Tk), then (Pk)k is a
"martingale® of projections (P P Pm if m_(_n] and for each kZ," we have

{I+T+ ... + ok 1)pk_ =p

Proof Fix k>t. It 1s easy to verify the following:

k=1 n-1 i nk-1

@ §ot Y e = 7 et
w0 i=0 i=0 .
o X ML
If we denote by An the sequence o z {T") then
pEE
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we get .

k"1) A¥ —xa

+ e
(5) (1_+-1- + T o nk

By (3), it is enough_ to prove that for each x in E + the sequence
[A x] has a weak cluster peint. For that nete that (5) gives that

0 <Ax kA, x Hence 0 < kpx < (A" JXV(xPx} < kA X VKPX, Eince T is
mean ergodic we get that Ankx converge to Px and lim (A:x)VkPx = kPx. On the
o

other hand,. the sequence {(Akx) (kPx)} is in the weakly compact order
interval [0,kPx] hence there exigts a subsequence {n.) and y £ kPx such that

(A x)f\ kPx goes weakly to y. Write now h A kPx + B, kax = Ak + KBx -
"5
te conclude that lim Ak X =y, If now Pk denotes the aasociated projection
e T3

on Ker(I-T } we get from (51 that

= kP, hence Pﬁ

(T+7+0+ 0o ¢+ p K = P

k
Before proceeding to the study of subadditive processes we shall

need@ the following concept: If T iz a mean ergedic positive operator on a

Banach- lattice E and P is the. associated projection on Kex(I-T), we shall say

that T is strq_g;y positive if P is strictly positive

(f >0 and Pf = 0 => £ = o).

Suppeose now T is a positive contraction on a weakly sequentially
complete Banach lattice E and u is.a positive fixed point of T, then E is
T-stable by Proposition I.2.e and T is mean ergodic on E by Theorem II Te
We shall say that T is locally strongly positive if fpr every positive f£ixed

element u in E+, the restriction of T to Eu is strongly pomitive. Obviously,
the two notions coincide if T has a -fixed point which is a weak unit of E.
The following propogition gives sufficient conditions on the

cperator T and the spacve E to ensure strong positivity.

Proposition IT.1 a} If E has a strictly monotone norm then every pos;t;ve
contraction is locally strongly positive. '

b) Every order contractlon is locally strongly positive.

¢) Every irreducible mean ergodic poeitive cperator with non-zero fixed

vectors is strongly positive,
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Proof We can assume without loss of generality that E is a Banach lattice
with a weak unit u that is T-invariant. _ _
Let P be the associated projection on Kef(I-T). To prove then that T ig
strongly positive it is enough to show that if 0 < ¥ < u'= Pu and if Py = Pu
then y = u. : - '

" In case a) note that P is a contraction, hehce Iyl = ful since
Fyt < Myl = Pyl = fpyl £ fyl. The strict monotonicity of the norm gives
then that y = u. For b) recall that T defines a positive contraétion on the
A-T. space L1(K,u) asgociated to the functional p in E*, ;f now
0 ¢y <u="Puand Py = Pu, the same reasoning as above applied to the I, =

y
p([xf) gives that u(Pu - y)} = 0 which implies that v = Pu = u

norm lxﬂ1

since } is stricﬁly positive. ¢) waa'proved in [17].

Now, we can prove the followiﬁg;

Théo;em I1. 3 Let E be an ordexr continuous Banach lattice., Let T hé a
locally stronrgly positive mean ergodic contraction, then for every positive
. 1
T-gubadditive sequence (sn) in E, we have the strong convergence ofn; snto
1 _ 1 n
inf o Psn = inf . Fnsn-- where Pn (resp P) are_the projections on Ker{I~T")
(resp Kexr (I-T)

Prcof Let P be the positive projection associated to the mean ergodic
contraction T.

n+k

since's < an + Tnak ¢ We have aince PT = P

n :
) + . . i
Psn+k < Psn FT 8, = Ps_+ Psk It follows that (Psn} iz a subadditive

positive sequence and ﬂ; Psk) converges strongly to inf ;—Psk by the resgults
. ' k

of [12]. We can write inf % Pg
.k
We shall show that % anconverges to Px.

x = Px for some x in E_ since PE is closéd._
Fix k > 0 and suppose n > k. Let N = N{n) be the jnteger part of
%.' By éubadditivity we have ‘
N
6) 8, < nL T

k=1
k z TNks.
=

(r=1ky T“ksn

. (r-1)ks

N
el LT

n=1
Since Tk is mean ergedic for each k, we have

1 {x-1)
- 4 T s, =P.3
N =1 k k

On the other hand

It =~

-
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3 k-1 - 1k—1
(8) lim -ﬁ-ll T s, < lim r E Ps.ll = 0. Write now
N =t 3 R
N
1 1 1 1 (r—T)k
@) Rs o8V ha < S =1T + = 351 ot 8 Vk B8 -
Let n+=, we get from (7) and (8)
1
(10} 11m sup || stPksk x kk”_o

On the other hand, for each k > 0, the sequence (- s A k Pkak)n

is in the order interval {U, % Pks ]. By diagcnalization, there exists a

subsequence {n,} and vectors ¥y i? Pksk such that weak

J
lim f-:; sn{\ %Ps]= for each k.

¥y
iod s

(11) P s +1sV Ps=:l—s +1-Ps.

1 1
.n.t k Ckk T on %, % x5k . n, Xk Ck°k
| 13 bl 3
we get by letting j+w, that all the yk's are the same (say) y and that

g|=
1]

=
=

R C o1
weak lJl.m . %o =Y £ inf * Pksk < P51
] i I |
But 1 ps converges weakly to Py hence Px = Py < P inf 1 8. )
1'1j nj - k k Kk

ot 1 - ine L
< 1;1{ k PPL8, = inf % Psk Px

gince T is locally strongly positive we deduce that

: 1 I -
y = 1;f % Pksk = inf X Psk = PX.
If follows that (;— & A Px} goes weakly to Px, hence strongly
3
by the results of {12]. &ince the reasoning ecan be made for each subsequence

(n } we get that (% s YA Px converges strongly to Px.
" By rewriting (9) with Px replacing % P S we get for each k

1 1 1
(12) Px < I;m;anPx L Bs VPx—kPksk

o] _ : . 1
hence 1:;“1 sn VvV PXx = Px since Px = inf * Pksk .
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5l

8 = Px

Ugze the identity (11) again to get lim n

n

Corollary II.2 Suppose one of the following conditions are satisfied:

(a) T is a mean ergodic positive contraction on a Banach lattice E with an

order continmuous and strictly menotone norm.

(b} T is a mean ergodi¢ irreducible positive contraction on an order

continucus Sanach lattice E.

{c) T is an order contraction on an order continuous Banach lattice E.
Then, for every positive T-gubadditive process (bn) in E, we have

1
the strong convergence of-; 8 -

Proof Follows from Theorem II.3, Corollary II.1 and Proposition II.1.
Now, we deal with non-necessarily positive subadditive processes.
It is well known that this case reduces to the study of positive

superadditive processes. Indeed, if (sn) is a T-subadditive process then the
n=1 i

process sﬁ = Z T sy - 8, is a positive superadditive process. O©On the other
i=0

hand, if one wants to reduce the problem to the case of positive subadditive
processes in order to apply the above results, one need to investigate the
possibility of finding an additive process above the given positive
superadditive process. This idea was exploited first by Kingman [14] and
extended by several authors (see [1], [6] and [12]. We shall give here an
extension of an idea of Brunel-Suchesten [6] and it will cover all the cases
known in the literature.

Let us say that a process (sn) is of bounded T=-variation if

1 m
(1) swp - || sy - 7s))
m i=1

Proposition IX.2 Let T be a uniformly consistent positive operator on a
weakly sequentially complete Banach lattice then, for every positive
T-superadditive process of bounded T-varijation (sn) in E, there exists s in

-1 .
E, such that ¢ ﬁ_sn < Z T's for all n > 1.

m
1
Proof Let ¢m'= - X (s. - Tsi_1). A standard computational lemma [1). gives
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for 1 < m < n
(14) T 2% > (1-n1)s
i=0 "= m n
Let now & be a weak¥-cluster point of (¢m) in E**, Since T** ig

weak*-continuous we have

n—-1 .
{15) F- (THr)tp > s, for each n > 1
i=0 .

Since T is uniformly consistent, Lemma Y.4 applies to get

n=-1 |
i
iZD T QT**é 208 = 8, for each n > 1. Note that s = QT**G belongs to E,-

Corollary II.3 Let T be a uniformly consistent, locally strongly positive
mean ergodic contraction on a weakly sequentially complete Banach lattice.
Then for every T-subadditive process of bounded T-variation (sn) we have the

1
strong convergence of ;-sn.

Proof The above remarks reduce the problem to peositive superadditive

sequences. The corellary follows from Theorem II.3 and Proposition II.2.

Corollary II.4 Suppose one of the following conditions is satisfied.

{a) 7T is a mean ergodic positive contraction on a Banach lattice E with a

strictly monotone norm such that E is én L1-idea1 in its second dual.

(b) T is a positive contraction on a reflexive Banach lattice with a
strictly monotone norm.

(c) T is a lattice homomorphism on a weakly sequentially complete Banach
lattice with a strictly monotone norm, which maps a weak unit into
itself. Then, for every T-subadditive process of bounded f—variation

1
(sﬁ) we have the strong convergence of E-sn in E.

Proof (a){b) follow from Corollary II.3 and the fact shown in Proposition
I.2.¢ that every positive contraction is uniformly consistent whenever E is
an L1~ideal in its second dual. (c) follows from Theorem II.1,

Proposition I.3.,b and Corollary II.3.

Problem II.1 Wote that if T is order contractive and (sn) is T-

superadditive positive with bounded variation then the above applied to the
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contraction that T induces on L1(K,p) gives that % s converges in the L~

norm to sup %—Psn £ E. We do not know if the convergence holds in the norm
n
of E.

III _ON THE STOCHASTIC CONVERGENCE OF SUPERADDITIVE PROCESSES.

In this section, we are concerned with the stochastie convergence
of Cesaro averages. We follow the ideas of Ackoglu-Suchesaton in the case of
L1[3] by noting that the restriction of a positive additiVe_process to an
absorbing set is positive superadditive. That is why we start our study of
stochastic convergence with these processes.

First we_recall the following renorming lemma due to Figiel-

Johngson-Tzafriri [11]. - .

Lemma III.1 Let P be a projection on a Banach lattice E. Let [||-||[ be

the semi-norm defined by |||x||| = sup {||Pg|!; ]y! S_Ix]}, and let I be the
ideal = {xEE; ﬂ|x H| = 0} then the completion of (E/I, I [In is weakly

sequentially complete if PE is. Moreover, the canonical map
Q:E+[E/I, |]| |||] is an isomorphism on PE.

In what follows the projection P_ﬁill be positive, hence I will be
the absolute Kernel of P that is I = {xeE; P[xl = 0} and the norm on E/T will
be [|lx|ll = [lelx] ||.

If T is a positive mean ergodic contraction on E and P is the
associated érojection, then T Induces a canonical contraction on
/1, 11 |1y since |l|ee (|} = ll2feel || < Nozls) = Nlelxl | = |||«

If T is strongly positive, then P is striectly positive and we

obtain then the completion of (E, |1| [I]) for a weaker norm which is

equivalent to the original one, on the. invariant subspace of T.

Lemma ITI.2 Let T be a mean ergodic positive contraction on a weakly
sequentially complete Banach lattice E such that the associated projection P
verifies the following property: .

(*) ¥e>0, 3650 such that if J|£]| > ¢ and £ > 0 then ||Pf W > 8 then for
every positive T-superadditive process (sn) verifying sup %-§|sn|[ £ ®, we
have the strong convergence of %-sn. ‘n

Proof First note that the gsequence (Psn) iz superadditive and
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1
sup — ||Psn [l <= , nence it converges to sup % Ps = Px by the results of
n

[12].

By superadditivity we get for a fixed k > 0, n >k and N = N(n)

being the integer part of -:-

N
{r-1}k Nk
(18) o _<_r£1 T S T8 £ 8y

As in Theorem 1.3

N
1 (r-1)k 1 Nk
lim — )" T s =Pa and lim = ”T 8 || =0
N N a1 k k'k _— N n-Nk
By writing

N
(17) 0 i( %l? } T(r T)ks¢k+ TNksn_mc}
r=1

we get for every k > O

-l

m
i

=]

1 1 1
€18)  lim H;snl\'}?Pksk- % P

n¥ee

Cn the other hand, we have

g .

1 1 1
(19) lim  Limsuwp [[=s -({-s A <3 ||
N - n'n n n k "kTk

Indeed, suppose not then there exists £ » 0 such that for

any k0 >0 and any n > 0 we can find k1 > ko such that
1 1 1

e s~ Ges VAL 2o Yl >e
k1 k1 k,! k1 k0 k[) ko
and in view of (18},

1 1 1 '
200 |l{=s)A{=p s ) -+ p s | <n for all n > k

nn ka k0 kﬂ k0 kO kO ‘E—

By (¥} choose & > 0 such that [ ]| > e and ¢ >0= [ee]l »a,

and let-n = 5 « Write now

F)

1 1
(2t s, “rPos =(rs -8 AT P o8 ) -
Ky kg kg kgkg ok Tk T R B R Fie B
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and apply P
(22). %1? k1— £6P5k0= P(£A5k1- %}Bk:\ ib pkﬂsko] )
P{koPk ®ky %1Ek1/\ %Bpkosko)'
We get “i}?ak1 - i;Ps o H >6 - %'= %-.
By repeating this procedure, we get a sequence (ki) suc£ that

which contradicts the conﬁergence of (P % sk}, hence (19) holds.

To finish the proof write

el N [ N R L el

n n n k m m
8 Pa P s s P 3 P s
n X k k'k m k" k k'k
PO NS - ) - (RN L

Use now (18) and (19) to deduce that ( %Asn} is a Cauchy segquence, hence it

is convergent to an element yeE. To identify the limit, notice that (18)

gives that
A Pksk B Pks Pksk
Yy ™ = % hence T £ ¥y
P
. : k' k ,
(19) gives that lim || y - ¢ f\"T;-_ || = 0 from which follows that
ke ’
" "
¥y = lim X = sup % .

k k

Lemma IIT.3 Let T be a strongly positive mean ergedic contraction on a

weakly sequentially complete Banach lattice. Let P be the asscciated
projection. For every positive T-superadditive process (sn) such that

S P s
sup % ||sn % < ®, we have the convergence of ;E' to sup

™ for the weaker

n
norm |{| |-
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Proof: Apply Lemma III.1 to deduce that the hypothesis of Lemma III.2 are
satisfied for (E,|[| |||). Hote that (*) is readily verified since
e Itt = dlele|l].

To come back to the original norm we need the following:

Lemma IXI.4 Let T be a strbngly positive mean ergodic contraction on a
weakly sequentially complete Banach lattice E. Let ”I H| be the norm

associated to the projection P on Ker (I-T), then for every usE+ + the

topolegies induced by the norms || [} ana [|| ||[ are equivalent on [0,u].
Proof: Without loss we can assume that 0 < £ % u and ||an|| + 0 .
Since [0,u] is weakly compact, there exists a subsequence (f_ ) and £ in

[o,u] such that f + £ weakly, hence an + Pf weakly and Pf = § which
k
implies that fn + D weakly, hence strongly [2]. Since this 1s true for any

subsequence, we get that |]fnll + 0.

Theorem IIT.1 If T is a strongly positive mean ergodic contraction on a
weakly sequentially complete Banach lattice, then for every T-superadditive

1
process (sn) such that sup n ![sn|l < =, we have the stochastic convergence

5, Pnsn
of — to sup .

n n

n s
Proof: By Lemma IYY.3, ;E converges to sup £~P5n= Px for the norm
' n
|11 [[|. That is for each ueE4, lim IH(*:; s, - ex)N ul|| = ¢. apply
n-w

now Lemma II1.4 to obtain that lim ||{ &Asn -ex)N ull = 0.

nswo

Lemma III.5 Let T be a positive operator on a Banach lattice G and let Q
be a band projection from © onto a subideal E of G such that T is Q-stable.
Than if (sn) is a positive-T-superadditive process in G then (an) is a

positive T-superadditive process in E.

n
Proof: Note that (I—Q)TnQ = 0 for each n > 0, hence if 5n+k z_sn + 7 Sk we

get

/

n n n
an+k Z_an + QT sk = Qsﬁ + T sk - (I-Q)T Sk
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= os + s - (1-9y2"0s, ~(1-0)2"(1-0) =

k k

n n n n _ n
an + T Bk - (I-Q)T (I—Q)sk Z_an + T Sk - T (I-Q)s = an + T st

Theorem I¥f.2 If T is a locally strongly positive contraction on a weakly

seqguentially complete Banach lattice and [s is a p031t1ve T-superadditive

process such that sup —-|]s || < @ then for every T-invariant pOSlthe
n
element u of E+
1) ;-Qu[sn convergeg stochasticaly (Qu is the projection on the support of
u)
sn
2) Pl A u converges strongly.
" 4
Proof: Vote that v is & quasi~interior point for the ideal E .

Let Qu(x) = sup {x A ku) be the band projection on E . HNote that T is
k
Qu-stable by Proposition I.2. T is mean ergodic on Eu by Theorem II.1.

Since T is locally strongly positive, T is strongly positive on Eu. By Lemma
I11.5, Qu(sn) is T-superadditive. Theorem IIIL.t applies and we get that %

Qusn converges stochastically. For (sn.A u)n note that

;fl Au-= ﬁ-Qu(sn) A u hence it is strongly convergent in view of the

relation
a5 Sm %n %
I Re-FhuleoR-F)A

Corollary IIT.1 Let E be a weakly sequentially complete Banach lattice.
Suppose one of the following conditions is verified

{a} T is a positive contraction and E has a strictly monotone norm,

{(b) T is an order contraction,

then for every positive T-superadditive process (s ) such that

l-sup Hs ” < =, we have the stochastic convergence of —-Q s, whenever Q

is the projection on the support of a T-invariant element u€E+.

Proof: Follows immediately from Theorem III.Z and Préposition I1.1 a) and
b).
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The following two lemmas are extensions of results of Akcoglu- Sucheston

[3] [4].

Lemma III.6 Let E be a weakly sequentially complete Banach lattice and let

(fn) be a positive bounded sequence in E, such that lim ”fn- '.l‘fn || = o,
n

Then: either (fn) converges stochastically to zero or there exists
a non-zero g in E+ such that Tg = g for every consistent operator T on E. If
(fn) is contained in an ideal F of E then g is also contained in F. The same
holds without any assumption on the contraction T if the morm on E** is

strictly monotone.

Proof: Suppose that (£ ) does not converge stochastically to zero, that is
Lim sup “fn A u]l > 0 for seme quasi-interior point u of the ideal ¢
generated by (fn) « Let U be an ultrafilter on N. Note that 0 5.an u S.fn'
hence if fu is a U-weak~limit in E of (fnau)n and £ is a U= weak*-limit of
(fn) in E**, then 0 j_fu < £ A u. Note that fu# 0 since (fn) does not
converge stochastically to 0.

On the other hand, since lim ||Tf - f !| and T** is weak*-
- n n
continuous, we have T**f = £, hence by the consistency condition and Lemma

I .3, TQf = Qf where Q is the band projection from E** onto E. Note now that

g =0f = sup £ A ka Z_fu and g is different of 0.
k -

N

Lemma IIT.7 If E be a weakly sequentially complete Banach lattice, then for
every consistent positive contraction T, there exists a unique decomposition
of E into the direct sum of two ideals E = F & Fl such that:

{i}) F has a weak unit u so that Tu = u,

(i1} If (fn) is a positive bounded sequence in E+ such that

lim ”fn - Tfn ||, then (I-R)fn converges stochastically to zero, where R is

the band projection on F.
The same holds without any assumption on the contraction T if the norm

on E** is supposed to be strictly monotone.

Proof: Let v be a weak unit of E. let,l:be the set of all closed ideals of

E such that each X in j:contains a weak unit uI with TuI = uI. For each I in

:E let vy be the band component of v in I.

=4 +u which is a weak unit for I_+ I, for any pair

Since T(u u )
I1+ 12 IT X 1 2

2
12, I, inl, we get that {VI; Iel} is a Airected subset of [0,v];
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hence Yy = 8Up v, exists and AL " for some sequence (In) in'. 1t

I n n

::

is clear that the ldeal F generated by u, Z

is the largest ideal
n ”u ’

of E on which T induces a weak order contraction.

Suppose now (f } is a bounded gequence in E such that
Lim ”'I‘fn - fn | = o. Let (I~R)T(I-R) be the induced operator on Fl It is
easy to see that (I-R)T(I~R} is Q-consistent where Q is the banad projection
from (Fl)** onto Fl. Moreover, {(I«R)T{I-R) does not have -any non-zero fixed
point. 1Indeed, suppose (I=R)T(I-R} z = z for some z in E+, that is zEF’L and
{I-R)Tz = z, It follows that Tz > z and the sequence (Tnz] is increasing and
norm bounded since ”Tnz ” £ ||z||, hence it converges to w. Note that Tw =
w and w > z. But this implieg tha:,T(Pn +w) = u, +tw which is a weak unit
for the ideal generated by uy + w which contradiets the maximality of F since
(I-R)(u, + w) = (I-R)w > (X-R}z = z. It follows that z = 0.

On the other hand TF € F hence (I~R)TR = 0. and

||(I—R)fn = (I-RINI-RIE || = Il x-rog_ - (I-R)TE + (I-R)TRE ||
lr-mycz-me 1l < lle_ - ¢ || . It follows that lim
”(I—R)fn - (I-RIT(I-RIE_ || = 0. Lemma IIT.7 applies to the operator
(I-R)T{I-R) to get that (I-R)f converges stochastically to 0.
Following Ackoglu- Sucheston [3] we shall call F the positive part

and Fl the mull part of T.

Now, we can prove the following:

Theorem IIT.3 Let B be a weakly sequentially complete Banach lattice, Let

T be a consistent and locally strongly positive contraction on E, then for

n-1

each feE, the sequence Anf = l X T f converges stochastically for each f in
k=0

E.

Proof: S8ince T is consistent, use Lemma IIT.7 to £ind the positive and null

part of T(F and FJ' sayl). It follows that (I—R)Anf + 0 stochastically since

lim IIAn - Thnfl' = 0. On the other hand RA T is a positive T-superadditive
o
process on F, hence it converges stochastically by Theorem TT.2.

174




Subadditive Ergodic Theory

Corollary III.2 Buppose that either

a} E** has a strictly monotone norm
or
b} E has a strictly monotone norm and E is an gp—iqeal in E** for gome p

{1£ p<=), then every positive econtraction on E is stochastically ergotic.

Proof: a) follows from Remark I .1 since it ensures that Of is a fixed point
for T whenever f is a fixed point for T**. fThe faast that E has a strictly
monotone norm {nsures that T ig locally strongly positive.

b) follows from Theorem III.3 and Proposition I.2.

Corollary III.3 If E is an vaideal in E** for some p (1£p<™=), then every
irreducikle contraction is stochastically ergodic.
Progf: Sinee F is a T-stable ideal, then either F = {0} which implies tht

(Amx) goes to zero stochastically for each x in E. Otherwise F = B and T ig

n-1 ,
then mean ergodic. WNote that if fsE+, then RAnf 2 z ', 1f
i=0
T K L
| ¥ rIT(z=-R)1"2 || = IR |l < =, then we get R feF and 0 < ®a £ < TR £
n=0 T TOm Ty T

which in view of Theorem IT.3 for positive-T subadditive processes, implies
that RAnf actually converges strongly. ﬁote that the condition HRTf ”<m
fEE+ is exactly the R-uniform congistency of T. In this case Anf can be
decomposed into a strongly convergent part RAnf and another part (I—R)nnf
which is steochastically convergent to zero. Here we summarize the cases
where this holds.

Corollary TI¥1.4 Under the hypothesis of Corollary III.2, any of the
followiqg conditions imply that VfEE, Ahf is the sum of a norm converging
part and a stochastically null part.

(a) T is a positive contraction and F is an L1-idea1 in E.

(b} T is a contractive lattice hemomorphism.
{¢) T is an irreducible positive contraction.
(d) T is an invertible positive contraction.

Proof: Aany of these conditions imply that T is R-uniformly consistent

(Proposition 1.2}
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