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Information vs randomness

» Information is structure, regularity

» Randomness is lack of structure, noise.
However some times we can obfuscate information.
We make it look like noise ...
..while still being able to extract it
from what is apparently a random object.

We study the limits of this phenomenon in the context of...



Algorithmic Randomness

Randomness with respect to effective processes.

Frameworks:

» Measure (effective statistical tests)

» Incompressibility (Kolmogorov complexity)
» Effective betting strategies (martingales)

Strengths of randomness correspond to ...

..complexity requirements of processes.

[ Too much randomness: information extraction impossible ]




The plan of the talk

1) Finite/Infinite examples of information vs randomness.

2) Our problem: optimizing the redundancy.

3) Existing works on this topic.

4) Establishing optimal lower bounds.

6) The known method(s).
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(1)

(2)

(3)

(4)

(5) The main result: optimal coding.
(6)

(7) The new coding method.

(8)

8) Verification of the new coding method.



Finite example

Prefix-free machines as decompressors

Prefix-free machines as information extractors
M(o) = 7: o describes T

Shortest descriptions are random: K(o) > |o]
Most strings are very random: K (o) > |o| + K(|o)

Very random strings cannot be decompressed into anything.

If o is very random then M(o-) does not converge.




Infinite examples

I—Ig—randoms do not compute the halting problem
Hg—randoms do not compute any complete extension of PA

Hg—randoms do not compute anything incomputable that is
computed by the halting problem.

Martin-Lof randomness is uniformly Hg—randomness

It has the most interesting interactions with computablility

Kucera-Gacs theorem: Every sequence is computable from
a Martin-Lof random sequence.




Answers Charles Bennett’s question

Logical Depth and Physical Complexity

Charles H. Bennett Turing Ma

A Half-Century Survey

Edited by
HOLF HERKEN

Abstract. Some mathemaical and natural objcts (a random sequence, a sequence of 7eros,
. g the di

OXPORD SCIENCE PUBLICATIONS

This is the infinite analog of far more obvious fact that
every finite string is computable from an algorithmically
random string (e.g. its minimal program).
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Finite/Infinite analogies — string vs stream coding

Notion Finite Infinite
Source o X
Code o* Y
Code-length lo¥| n - f(n)

Optimal code K(o) ?
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Finite/Infinite analogies — string vs stream coding
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Computing from random sequences

How many extra bits of a random do we need in order to
compute the first n bits of a sequence in general?

Kucera achieved redundancy nlogn in this reduction.

Gécs achieved redundancy 3 y/n -logn via block-coding.

Redundancy cannot be O(1) (Downey/Hirschfeldt).

What is the optimal redundancy ?



Reprinted from INFORMATION D CONTROL Vol. 70, No. 2/3, August/September 1986
All Rights Rescrved by Academic Press, New York and London Printed in Belgium

Every Sequence |s Reducible to a Random One
PETER GACs*

Computer Science Department, Boston University,
Boston, Massachusetts 02215

Every infinite sequence is Turing-reducible to an infinite sequence which is ran-
dom in the sense of Martin-L6f.  © 1986 Academic Press, Inc.

INTRODUCTION

Charles Bennett asked whether every infinite binary sequence can be
obtained from an “incompressible” one by a Turing machine. He proved
that this is the case for arithmetical sequences. The question has some
philosophical interest because it permits us to view even very pathological
sequences as the result of the combination of two relatively well-
understood processes: the completely chaotic outcome of coin-tossing, and
a transducer algorithm.



THEOREM. Let E be a constructive closed set with A(E)> 0. Then there
exists a process F such that F(E)= B. Moreover, there is a constant ¢ such
that on every nonterminal string x of length n we have

|[F(x)|>n—3./nlogn+ec.

The last property of F says that we need no more than 3 \/n log n bits of
redundant information in our uniform generation of arbitrary sequences
from random ones.



THE JOURNAL OF SyMBoLIC LoGic
Volume 69. Number 3. Sept. 2004

ON THE CONSTRUCTION OF EFFECTIVELY RANDOM SETS

WOLFGANG MERKLE AND NENAD MIHAILOVIC

Proof by martingales...

..yes we have redundancy o (n).



Every Sequence is Decompressible from a
Random One

David Doty *

Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
ddoty al iastate dot edu

Abstract. Kuéera and Gécs independently showed that every infinite
sequence is Turing reducible to a Martin-Lof random sequence. We ex-
tend this result to show that every infinite sequence S is Turing reducible
to a Martin-Lof random sequence R such that the asymptotic number
of bits of R needed to compute n bits of S, divided by n, is precisely
the constructive dimension of S. We show that this is the optimal ratio
of query bits to computed bits achievable with Turing reductions. As an
application of this result, we give a new characterization of constructive
dimension in terms of Turing reduction compression ratios.

B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of

Information Transmission, 22:170-179, 1986.
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Computing from random sequences

How many extra bits of a random do we need in order to
compute the first n bits of a sequence in general?

Kucera achieved redundancy nlogn in this reduction.

Gécs achieved redundancy 3 y/n -logn via block-coding.

Redundancy cannot be O(1) (Downey/Hirschfeldt).

What is the optimal redundancy ?



Optimal lower bounds

Barmpalias/Lewis/Teutsch, Information and Computation
2016:

Suppose that g is a nondecreasing computable function
such that 3; 2780 = co.

Then there exists a sequence which is not computable from
any random sequence with use n + g(n).

Proof by effective martingales with controlled wager granularity.
Turing reductions — betting strategies.

Smaller oracle-use — larger wagers.



Lower bound by betting strategies with restricted
wagers

Betting strategies are often formalized by martingales.

A strategy with restricted wagers is only allowed to bet an
amount from a specified set of values at each step.

Integer-valued martingales is a well-studied example.

A g-granular martingale bets multiples of 278() at step s.

If g is computable and Y; 2780) = oo given any g-granular
supermartingale M, there is a real X and a supermartingale
N such that N succeeds on X but M doesn’t succeed on X.




Reductions @ with tight use and martingales

Turing functional ® induces a supermartingale.

Low use in the Turing functional corresponds to decreased
granularity on the martingale.

Decreased granularity allows non-randoms to succeed.

If a real succeeds in the ®-martingale, then the complexity

of the image affects the complexity of the oracle that maps to it.

A dip in the complexity of the image creates a dip in the
complexity of the oracle.

If the ®-martingale succeeds on a non-random X then any
Y that ®-maps to X is non-random.




Optimal lower bounds

Barmpalias/Lewis/Teutsch, Information and Computation
2016:

Suppose that g is a nondecreasing computable function
such that 3; 2780 = co.

Then there exists a sequence which is not computable from
any random sequence with use n + g(n).

Proof by effective martingales with controlled wager granularity.
Turing reductions — betting strategies.

Smaller oracle-use — larger wagers.



Conjecture

Suppose that g is a nondecreasing computable function
such that ; 278(1) < oo,

Then every sequence is computable from a random one
with redundancy g(n) + O(1).

A new coding method into random sequences is needed....

..for any improvement of the known bounds.



Theorem (Barmpalias and Lewis 2016)

Suppose that g is a nondecreasing computable function
such that ;2780 < 1.

Then every sequence is computable from a random one
with redundancy g(n).

A new coding method into random sequences was needed....

..for any improvement of the known bounds.

If P is a 19 class and Y; 2780 < p(P) then every real is
computable from a member of £ with redundancy g.



The known method (simple form)

(1) Start with a IT9 class # # @ which only contains randoms.
(2) Choose the length ¢; of the block which will code bit i.
(3) The oracle use for the first n bits will be L, = Y., 6.

(4) Form the subclass $* of $ with the property that

for each X € £* and each n, there are at least 2 extensions
of X I, of length L, in X € P*.

and ...

(5) Hope that P* #0 (due to the growth of (£)).



How does the code-tree look like?

Isomorphic to the full binary tree.



What is the required growth of (£;)?

If 3,276 <co then you can find P with  P* # 0

If Y26 =c0 then P =0
What oracle-use does this condition allow?

L, = Zlogi =logn! ~n-logn.

i<n
Why so bad?

Logarithmic overheads are pilled on the top of one another.



We pay a price for a good-looking code-tree
— Every string has a unique code.

— IfY codes X then Y |1, is computable from X [, and 0.
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Why don’t we code in blocks? (Gécs)

(1) Overheads concern the coding steps and not the coded bits.
(2) If I code 200 bits in two steps, I only need 2log2 overhead.
(3) At step n code m, more bits with logn added overhead.

(4) Lets make my grow like crazy!

..not so fast...

In order to compute bit mg 4+ m; + 1 we need to compute
bits mg + m; +j, ] <mao.

and ...

(5) This is an extra overhead from the source block-lengths.



The known method (with block-coding)

(1) Start with a IT? class # # @ which only contains randoms.
(2) Choose the length m; of the block coded at step i.
(3) Choose the length ¢; = m; + g(i) for the ith block.

(4) The oracle-use for the first M,, = };.,, mj bits is
Ly = Yicn G-

(5) Form the subclass $* of P with the property that

for each X € £* and n, there are at least 2™» extensions of
X I, of length L, in X € P*.

and ...

(5) Hope that P* #0 (due to the growth of (£)).



What is the required growth of (£;)?

If 3,2™76 <00 then you can find P with P* £ 0

If Y,2m b4 =c0 then P =0

What oracle-use does this condition allow for the bits in
[Mna M, + mn)?

L, = Mn+mn—|—210gi~1\/[n+1+n'logn.

i<n

What choice of (m;) minimizes the oracle-use?



What is the required growth of (£;)?

If 3,280 < 1 and

m, + )" g(i) < h(zmi)

i<s i<s

then h is an upper bound for the oracle use.

The choice m; = i is a nearly optimal choice giving oracle-

use:
n+ vn-log V.

The code-tree is isomorphic to the full (m;)-branching tree.






(&;)-labelable trees

(1) consistency of string-labels

(2) level ¢, has at least one label for each o € 2"

If P is a tree and u(P) > F_, 214 then it is (¢;)—labelable
up to level k.

Labelable iff it is splice-reducible to the full binary tree.




Not labelable



The new coding

(1) A greedy algorithm looking for the cheapest split;
(2) many identical labels co-exist at a level £,

(3) Each label has a unique active copy;

(4) the active copy of a label is the one placed last
(5) the inactive copies are saturated

(6) the weight of the active nodes is

Z 9i-ti

i



Theorem (Barmpalias and Lewis 2016)

Suppose that g is a nondecreasing computable function
such that ;2780 < 1.

Then every sequence is computable from a random one
with redundancy g(n).

A new coding method into random sequences was needed....

..for any improvement of the known bounds.

If P is a 19 class and Y; 2780 < p(P) then every real is
computable from a member of £ with redundancy g.



Why does it not terminate?

At any s, each labelled real in Pg has its largest label active.
If Dy = 2 — Pg and Ug(v) the set of active strings p 2 v,

For each s and labelled v, we have [v] C [Ds] U [Ug(v)]

so if all extensions of A become inactive,

1< (1 —,u(P)) + Z 9i~li

contradiction.



Thank you for your attention!
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