
1/39

Coding information into random reals

by George Barmpalias
joint work with Lewis-Pye and Teutsch

December 6, Oaxaca

Victoria University of Wellington
Chinese Academy of Sciences

2/39

3/39

Information vs randomness

▶ Information is structure, regularity

▶ Randomness is lack of structure, noise.

However some times we can obfuscate information.

We make it look like noise …

…while still being able to extract it

from what is apparently a random object.

We study the limits of this phenomenon in the context of…

4/39

Algorithmic Randomness

Randomness with respect to effective processes.

Frameworks:

▶ Measure (effective statistical tests)

▶ Incompressibility (Kolmogorov complexity)

▶ Effective betting strategies (martingales)

Strengths of randomness correspond to …

…complexity requirements of processes.

Too much randomness: information extraction impossible

5/39

The plan of the talk

(1) Finite/Infinite examples of information vs randomness.

(2) Our problem: optimizing the redundancy.

(3) Existing works on this topic.

(4) Establishing optimal lower bounds.

(5) The main result: optimal coding.

(6) The known method(s).

(7) The new coding method.

(8) Verification of the new coding method.

6/39

Finite example

Prefix-free machines as decompressors

Prefix-free machines as information extractors

M(σ) = τ: σ describes τ

Shortest descriptions are random: K(σ) ≥ |σ|

Most strings are very random: K(σ) ≥ |σ|+ K(|σ|)

Very random strings cannot be decompressed into anything.

If σ is very random then M(σ) does not converge.

7/39

Infinite examples

Π0
2-randoms do not compute the halting problem

Π0
2-randoms do not compute any complete extension of PA

Π0
2-randoms do not compute anything incomputable that is

computed by the halting problem.

Martin-Löf randomness is uniformly Π0
2-randomness

It has the most interesting interactions with computablility

Kucera-Gács theorem: Every sequence is computable from
a Martin-Löf random sequence.

8/39

Answers Charles Bennett’s question

This is the infinite analog of far more obvious fact that
every finite string is computable from an algorithmically
random string (e.g. its minimal program).

9/39

Finite/Infinite analogies – string vs stream coding

Notion Finite Infinite

Source σ X

Code σ∗ Y

Code-length |σ∗| n 7→ f(n)

Optimal code K(σ) ?

10/39

Finite/Infinite analogies – string vs stream coding

Notion Finite Infinite

Source σ X

Code σ∗ Y

Code-length |σ∗| n 7→ f(n)

Optimal code K(σ) n 7→ K(X ↾n)?

11/39

Finite/Infinite analogies – string vs stream coding

Notion Finite Infinite

Source σ X

Code σ∗ Y

Code-length |σ∗| n 7→ f(n)

Optimal code K(σ) ((((((hhhhhhn 7→ K(X ↾n)

12/39

Finite/Infinite analogies – string vs stream coding

Notion Finite Infinite

Source σ X

Code σ∗ Y

Code-length |σ∗| n 7→ f(n)

Optimal code K(σ) f ≥ K(X ↾n)

13/39

Computing from random sequences

How many extra bits of a random do we need in order to
compute the first n bits of a sequence in general?

Kucera achieved redundancy n log n in this reduction.
Gács achieved redundancy 3

√
n · log n via block-coding.

Redundancy cannot be O(1) (Downey/Hirschfeldt).

What is the optimal redundancy ?

14/39

15/39

16/39

Proof by martingales…

…yes we have redundancy o (n).

17/39

18/39

Computing from random sequences

How many extra bits of a random do we need in order to
compute the first n bits of a sequence in general?

Kucera achieved redundancy n log n in this reduction.
Gács achieved redundancy 3

√
n · log n via block-coding.

Redundancy cannot be O(1) (Downey/Hirschfeldt).

What is the optimal redundancy ?

19/39

Optimal lower bounds
Barmpalias/Lewis/Teutsch, Information and Computation
2016:

Suppose that g is a nondecreasing computable function
such that ∑i 2−g(i) = ∞.

Then there exists a sequence which is not computable from
any random sequence with use n + g(n).

Proof by effective martingales with controlled wager granularity.

Turing reductions → betting strategies.

Smaller oracle-use → larger wagers.

20/39

Lower bound by betting strategies with restricted
wagers

Betting strategies are often formalized by martingales.

A strategy with restricted wagers is only allowed to bet an
amount from a specified set of values at each step.

Integer-valued martingales is a well-studied example.

A g-granular martingale bets multiples of 2−g(s) at step s.

If g is computable and ∑i 2−g(i) = ∞ given any g-granular
supermartingale M, there is a real X and a supermartingale
N such that N succeeds on X but M doesn’t succeed on X.

21/39

Reductions Φ with tight use and martingales
Turing functional Φ induces a supermartingale.

Low use in the Turing functional corresponds to decreased
granularity on the martingale.

Decreased granularity allows non-randoms to succeed.
If a real succeeds in the Φ-martingale, then the complexity
of the image affects the complexity of the oracle that maps to it.

A dip in the complexity of the image creates a dip in the
complexity of the oracle.

If the Φ-martingale succeeds on a non-random X then any
Y that Φ-maps to X is non-random.

22/39

Optimal lower bounds
Barmpalias/Lewis/Teutsch, Information and Computation
2016:

Suppose that g is a nondecreasing computable function
such that ∑i 2−g(i) = ∞.

Then there exists a sequence which is not computable from
any random sequence with use n + g(n).

Proof by effective martingales with controlled wager granularity.

Turing reductions → betting strategies.

Smaller oracle-use → larger wagers.

23/39

Conjecture

Suppose that g is a nondecreasing computable function
such that ∑i 2−g(i) < ∞.

Then every sequence is computable from a random one
with redundancy g(n) + O(1).

A new coding method into random sequences is needed….
…for any improvement of the known bounds.

24/39

Theorem (Barmpalias and Lewis 2016)

Suppose that g is a nondecreasing computable function
such that ∑i 2−g(i) < 1.

Then every sequence is computable from a random one
with redundancy g(n).

A new coding method into random sequences was needed….
…for any improvement of the known bounds.

If P is a Π0
1 class and ∑i 2−g(i) < µ(P) then every real is

computable from a member of P with redundancy g.

25/39

The known method (simple form)

(1) Start with a Π0
1 class P , ∅ which only contains randoms.

(2) Choose the length ℓi of the block which will code bit i.

(3) The oracle use for the first n bits will be Ln =
∑

i<n ℓi.

(4) Form the subclass P∗ of P with the property that

for each X ∈ P∗ and each n, there are at least 2 extensions
of X ↾Ln of length Ln+1 in X ∈ P∗.

and …

(5) Hope that P∗ , ∅ (due to the growth of (ℓi)).

26/39

How does the code-tree look like?

Isomorphic to the full binary tree.

27/39

What is the required growth of (ℓi)?

If ∑
i 2−ℓi < ∞ then you can find P with P∗ , ∅

If ∑
i 2−ℓi = ∞ then P∗ = ∅

What oracle-use does this condition allow?

Ln =
∑
i<n

log i = log n! ∼ n · log n.

Why so bad?

Logarithmic overheads are pilled on the top of one another.

28/39

We pay a price for a good-looking code-tree

λ

1

11

110111

10

100101

0

01

011010

00

001000

→ Every string has a unique code.

→ If Y codes X then Y ↾Ln is computable from X ↾n and ∅′.

29/39

Why don’t we code in blocks? (Gács)

(1) Overheads concern the coding steps and not the coded bits.

(2) If I code 200 bits in two steps, I only need 2 log 2 overhead.

(3) At step n code mn more bits with log n added overhead.

(4) Lets make mn grow like crazy!

…not so fast…

In order to compute bit m0 + m1 + 1 we need to compute
bits m0 + m1 + j, j < m2.

and …

(5) This is an extra overhead from the source block-lengths.

30/39

The known method (with block-coding)
(1) Start with a Π0

1 class P , ∅ which only contains randoms.

(2) Choose the length mi of the block coded at step i.

(3) Choose the length ℓi = mi + g(i) for the ith block.

(4) The oracle-use for the first Mn =
∑

i<n mi bits is
Ln =

∑
i<n ℓi.

(5) Form the subclass P∗ of P with the property that

for each X ∈ P∗ and n, there are at least 2mn extensions of
X ↾Ln of length Ln+1 in X ∈ P∗.

and …

(5) Hope that P∗ , ∅ (due to the growth of (ℓi)).

31/39

What is the required growth of (ℓi)?

If ∑
i 2mi−ℓi < ∞ then you can find P with P∗ , ∅

If ∑
i 2mi−ℓi = ∞ then P∗ = ∅

What oracle-use does this condition allow for the bits in

[Mn, Mn + mn)?

Ln = Mn + mn +
∑
i<n

log i ∼ Mn+1 + n · log n.

What choice of (mi) minimizes the oracle-use?

32/39

What is the required growth of (ℓi)?

If ∑i 2−g(i) < 1 and

ms +
∑
i≤s

g(i) ≤ h
(∑

i<s
mi

)
then h is an upper bound for the oracle use.

The choice mi = i is a nearly optimal choice giving oracle-
use:

n +
√

n · log
√

n.

The code-tree is isomorphic to the full (mi)-branching tree.

33/39

34/39

(ℓi)-labelable trees

(1) consistency of string-labels
(2) level ℓn has at least one label for each σ ∈ 2n

If P is a tree and µ(P) > ∑k
t=1 2t−ℓt then it is (ℓi)−labelable

up to level k.

Labelable iff it is splice-reducible to the full binary tree.

35/39

Not labelable

36/39

The new coding

(1) A greedy algorithm looking for the cheapest split;

(2) many identical labels co-exist at a level ℓn

(3) Each label has a unique active copy;

(4) the active copy of a label is the one placed last

(5) the inactive copies are saturated

(6) the weight of the active nodes is∑
i

2i−ℓi

37/39

Theorem (Barmpalias and Lewis 2016)

Suppose that g is a nondecreasing computable function
such that ∑i 2−g(i) < 1.

Then every sequence is computable from a random one
with redundancy g(n).

A new coding method into random sequences was needed….
…for any improvement of the known bounds.

If P is a Π0
1 class and ∑i 2−g(i) < µ(P) then every real is

computable from a member of P with redundancy g.

38/39

Why does it not terminate?

At any s, each labelled real in Ps has its largest label active.

If Ds = 2ω −Ps and Us(ν) the set of active strings ρ ⊇ ν,

For each s and labelled ν, we have [ν] ⊆ [Ds] ∪ [Us(ν)]

so if all extensions of λ become inactive,

1 ≤
(
1 − µ(P)

)
+
∑

i
2i−ℓi

contradiction.

39/39

Thank you for your attention!

