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Normality

e a weak notion of randomness
@ introduced by Borel in 1909
o “law of large numbers” for blocks of events

Definition

Let be N,;b> 2, and ¥ ={0,...,b—1}.
A real z is normal in base b if for every string o € ¥*

number of occurrences of ¢ in the first n
. digits of the expansion of z in base b b=l
1m =
n n

@ almost all numbers are normal to all bases

@ normality is not base invariant



Martingales

Definition

Let be N;b > 2, and ¥ ={0,...,b—1}.
A martingale in base b is a function f : ¥* — RZ% such that

flo)=b"")" f(oa).

a€EX
We say that M succeeds on s € XN iff

limsup f(s [ n) = co.

o A martingale is a formalization of a betting strategy

o f(o) is the capital of the gambler after having seen o. He starts
with an initial capital of f(0)

o The betting is fair in that the expected capital after the next bet
is equal to the current capital
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Normality and martingales generated by finite automata

Definition (Schnorr & Stimm, 1972)

A martingale f is generated by a DFA if there is a DFA
M =(Q,%,9,q,Q), and a function g: @ x ¥ — R such that

floa) = g(6%(0,90),0) f (o)

for any word ¢ € ¥* and symbol a.

o the betting factors ! f(('o a)) only depend on the instantaneous state
0*(0,qo) and the symbol a

o the value of the betting factor is not computed by the DFA, just
selected through g
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Definition (Schnorr & Stimm, 1972)

A martingale f is generated by a DFA if there is a DFA
M =(Q,%,9,q,Q), and a function g: @ x ¥ — R such that

foa) = g(6%(o,90), a) f(0)

for any word ¢ € ¥* and symbol a.

o the betting factors ! f(('o a)) only depend on the instantaneous state

0*(0,qo) and the symbol a
o the value of the betting factor is not computed by the DFA, just
selected through g

Theorem (Schnorr & Stimm, 1972)

x is normal in base b if and only if no martingale in base b generated
by a DFA succeeds on the expansion of x in base b.

We extend this result to “normality” for other measures, and
“martingales” for other measures.



Subshifts

Let X be a finite alphabet.

Definition

A subshift is a tuple (X,T) where
e X is some closed subset of XN with the product topology
o X is invariant under T, i.e. T(X) C X
e T is the continuous mapping defined by (T°(s)), = Sp+1-




Subshifts

Let X be a finite alphabet.

Definition

A subshift is a tuple (X, T) where
e X is some closed subset of XN with the product topology
o X is invariant under T, i.e. T(X) C X
e T is the continuous mapping defined by (7'(s)), = Sni1.

(X,T) is a subshift if and only if there exists a set A C ¥* such that
X coincides with the set of sequences having no substrings in A.

o if A is finite then (X, T) is called a Markov subshift (or
subshift of finite type, SFT)

o if A is a regular language then (X, T) is called sofic subshift
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Examples of subshifts

The Cantor space {0, 1}" is the full subshift J

sequences in {0, 1} such that the next
symbol after a 1 is always a 0

is Markov: A = {11}

X = sequences in {0, 1} with at most one occurrence of 1

is not Markov but it is sofic: A = 10*1 = {11,101, 1001, 10001, ...}

v




Normality for other measures

An invariant measure on a subshift (X, T) is a probability measure
P on X such that PoT~! = P.

Definition

Let P be an invariant measure. We say s € X is distributed
according to P if for all continuous f: X — R we have

Tzm Zn<Nf(Tns) :/f dP.

N—oc0 N




Normality for other measures

An invariant measure on a subshift (X, T) is a probability measure
P on X such that PoT~! = P.

Definition

Let P be an invariant measure. We say s € X is distributed
according to P if for all continuous f: X — R we have

Tzm Zn<Nf(Tns) :/fdP

N—oc0 N

If X is the full subshift on ¥ = {0,...,b— 1} and A(a) = b~ for
a € ¥ is the uniform measure then

the real 0.s
s is distributed according to A iff (written in base b)
is normal in base b




Martingales for other measures

Definition

Let L C ¥* and let P be a probability measure P on XV which is
L-supported (P(c) > 0iff o € L).
A P-martingale is a function f: L — R2° such that

flo)=)_ P(oa|o)f(oa).
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Martingales for other measures

Definition

Let L C ¥* and let P be a probability measure P on XV which is
L-supported (P(c) > 0iff o € L).
A P-martingale is a function f: L — R2° such that

flo)= ) P(oa|o)f(ca).

a€x
ca€Ll

When P = ), the uniform measure on {0,...,b— 1}, the classical
definition of a martingale is recovered:

Moa|o)=Aa)=b"




The result by Schnorr & Stimm for Markov measures

Let Lx be the set of all words appearing in the sequences of X.

Theorem

Let (X,T) be a Markov subshift and let P be a L x-supported Markov
measure which is invariant and irreducible. Then s € X is distributed
according to P iff no P-martingale generated by a DFA succeeds on s.

o the original Schnorr and Stimm'’s result is the special case when
X =¥N and P = \ is the uniform measure

o the Markov condition is used because we need some form of
memorylessness on the measure to make it compatible with the
memoryless computation of a finite automaton
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From integer to real bases

Proposition

Let b e N,b > 1.
x is normal in base b iff (£b™)nen is u.d. modulo one.




From integer to real bases

Proposition

Let b € N,b > 1.
x is normal in base b iff (£b™)nen s u.d. modulo one.

We propose to study this notion:

Definition (Normality for real bases)

Let BeR, 8> 1.
x is normal in base 3 iff (25")en is u.d. modulo one.

By a result of Brown, Moran and Pearce (1986), there are irrational
(’s such that there are uncountably many reals z which are normal in
any integer base but not normal in base f3.
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Definition

z is polynomial time random in base b if no polynomial time
computable martingale succeeds on the expansion of z in base b.




Normality and polytime computable martingales

Definition

z is polynomial time random in base b if no polynomial time
computable martingale succeeds on the expansion of z in base b.

@ polynomial time random in base b = normal in base b (Schnorr
1971)
@ polynomial time randomness is base invariant (F, Nies 2015)

e polynomial time random in a single integer base > 2 = normal
for all integer bases > 2

Question

polynomial time randomness = normal in base 8 € Q (8 > 1)?




The formulation of normality in terms of u.d.

x is normal in base 8 iff (28"),en is u.d. modulo one

If 8 is integer:

o the map
Ts(x) = (Bx) mod 1

is equivalent to a “shift” rightwards in the space of sequences
{0,...,8 — 1} when z is mapped to its expansion in base 3

o (zf") mod 1 =T} (z)
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The formulation of normality in terms of u.d.

x is normal in base 8 iff (28"),en is u.d. modulo one

If B is integer:
o the map
Ts(x) = (Bx) mod 1
is equivalent to a “shift” rightwards in the space of sequences
{0,...,8 — 1} when z is mapped to its expansion in base 3
e if 3 is not integer, how to represent numbers in base 37
o (zf") mod 1 =T} (z)
e if 8 is not integer, this is false
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Let 6 € R, B8 > 1. A B-expansion of z is

ap . a1 a2 as. ..

oz =ao+ 2,50 F
@ ap, €N, and
e 0<a,<pBforn>0

o foralln>0,%, a/8 <1/8"

Example
e /=2
e The B-expansion of 3/4 is 0.11000000000 . ..
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[-expansions

Let 6 € R, B8 > 1. A B-expansion of z is

ap . a1 a2 as. ..

x:a0+2n>og_z’
@ ap, €N, and

e 0<a,<pBforn>0
°

forall n >0, >°,., a;/B" <1/8"

Example
e /=2
e The B-expansion of 3/4 is 0.11000000000 . ..
o The B-expansion of 2 - 3/4 is 1.10000000000. . .
e (3= ¢, the golden ratio (3 ~ 1.618, 32 — 3 —1 = 0):
o The S-expansion of 1/ is 0.1000000000 . . .
e The f-expansion of 8 is 1.10000000000. ..




[-expansions of 1

We are interested in the $-expansion of numbers in [0,1). We
represent them simply by

%alagag... J

For the special case of 1, we extend the above representation by
continuity (we force ag to be 0; the condition in red is not satisfied)

Example
o The 2-expansion of 1is 11111111... (1=3+ g+ 95+ o +...)
o The ¢-expansion of 1is 10101010... (1=3+ H+ 5+ +...)
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[-shifts

Let ¥ ={0,...,[8] —1]}. The S-expansions of [0,1) is the set

{s € XN | (Vn) T"s <jex the B-expansion of 1}

Definition
The B-shift is the subshift (Xgz,T), where

X5 ={s€ XN | (Vn) T"s <jox the S-expansion of 1}

Example

o The 2-shift is the full shift {0, 1}

o The ¢-shift is the set of sequences on {0, 1} such that no two 1’s
occur consecutively in them

v
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integer coefficients, such that all its conjugate values (that is, all the
other roots of its minimal polynomial) have absolute values < 1.
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Pisot numbers

Definition

B € R is Pisot if § > 1 and § is the root of a monic polynomial in
integer coefficients, such that all its conjugate values (that is, all the
other roots of its minimal polynomial) have absolute values < 1.

Example
o all integers n > 1 are Pisot numbers
o rational Pisot numbers are integers
o the golden ratio 1.618. ..

Pisot numbers are “asymptotically integers” (Bertrand 1986):
B is Pisot iff ., (distance from B™ to its closest integer) < co

For § Pisot we have (Bertrand 1986):
o the B-expansion of 1 is eventually periodic and X3 is a sofic
subshift
o if a real number = has a -expansion that is distributed according
to Pg (the Parry measure), then z is normal in base £
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Putting all pieces together

Theorem

If  is polynomial time random then x is normal in base (3 for all
Pisot .

Proof sketch

@ Suppose (£™)nen is not u.d. mod 1. Let s = S-expansion of x.

o By Bertrand’s theorem, s is not distributed according to Pjs.
o Consider (Xg,T) and use

Theorem

Let (X, T) be a Markov subshift and let P be
a Markov measure with support X which is
invariant and irreducible. Then s € X is
distributed according to P iff no P-martingale
generated by a DFA succeeds on s.
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Putting all pieces together

Theorem

If  is polynomial time random then x is normal in base (3 for all

Pisot .

Proof sketch

@ Suppose (£™)nen is not u.d. mod 1. Let s = S-expansion of x.
o By Bertrand’s theorem, s is not distributed according to Pjs.

e (Xp,T) is not Markov, so we can’t use

Theorem

Let (X, T) be a Markov subshift and let P be
a Markov measure with support X which is
invariant and irreducible. Then s € X is
distributed according to P iff no P-martingale
generated by a DFA succeeds on s.

But (X3,T) is sofic, and

we can use

The generalization of < to

Another Theorem
sofic subshifts still holds. J
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Putting all pieces together

Theorem

If  is polynomial time random then x is normal in base (3 for all
Pisot .

Proof sketch
@ Suppose (2™)nen is not u.d. mod 1. Let s = S-expansion of z.
o By Bertrand’s theorem, s is not distributed according to Pjs.

e (Xp,T) is not Markov, so we can’t use But (X3, T) is sofic, and

Theorem we can use

Let (X,T) be a Markov subshift and let P be | ~Another Theorem

a Markov measure with support X which is L.

invariant and irreducible. Then s € X is The genera‘hzatl(_)n of <= to J
distributed according to P iff no P-martingale sofic subshifts still holds.
generated by a DFA succeeds on s.

o There is a Pg-martingale f generated by a DFA which succeeds
on s.
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Putting all pieces together

Theorem
If  is polynomial time random then x is normal in base (3 for all
Pisot .
Proof sketch
@ Suppose (28")nen is not u.d. mod 1. Let s = B-expansion of .

By Bertrand’s theorem, s is not distributed according to Pjs.
X3,T) is not Markov, so we can’t use
(X, T) ’ But (X3, T) is sofic, and

Theorem we can use

Let (X,T) be a Markov subshift and let P be | ~Another Theorem

a Markov measure with support X which is L.

invariant and irreducible. Then s € X is The genera‘hzatl(_)n of <= to J
distributed according to P iff no P-martingale sofic subshifts still holds.
generated by a DFA succeeds on s.

There is a Pg-martingale f generated by a DFA which succeeds

on s.

Use that s and Pg are polytime computable to obtain, from f, a
classical polytime martingale in base 2 which succeeds on the

binary representation of x. 20



Thank you!
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