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Normality

a weak notion of randomness

introduced by Borel in 1909

“law of large numbers” for blocks of events

Definition

Let b ∈ N, b ≥ 2, and Σ = {0, . . . , b− 1}.
A real x is normal in base b if for every string σ ∈ Σ∗

lim
n

number of occurrences of σ in the first n
digits of the expansion of x in base b

n
= b−|σ|

almost all numbers are normal to all bases

normality is not base invariant
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Martingales

Definition

Let b ∈ N, b ≥ 2, and Σ = {0, . . . , b− 1}.
A martingale in base b is a function f : Σ∗ → R≥0 such that

f(σ) = b−1
∑
a∈Σ

f(σa).

We say that M succeeds on s ∈ ΣN iff

lim sup
n

f(s � n) =∞.

A martingale is a formalization of a betting strategy

f(σ) is the capital of the gambler after having seen σ. He starts
with an initial capital of f(∅)
The betting is fair in that the expected capital after the next bet
is equal to the current capital
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Outline

1 Normality for non-uniform measures and DFA martingales

2 Normality for non-integer bases and polytime martingales
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Normality and martingales generated by finite automata

Definition (Schnorr & Stimm, 1972)

A martingale f is generated by a DFA if there is a DFA
M = 〈Q,Σ, δ, q0, Qf 〉, and a function g : Q× Σ→ R such that

f(σa) = g(δ∗(σ, q0), a)f(σ)

for any word σ ∈ Σ∗ and symbol a.

the betting factors f(σa)
f(σ) only depend on the instantaneous state

δ∗(σ, q0) and the symbol a

the value of the betting factor is not computed by the DFA, just
selected through g

Theorem (Schnorr & Stimm, 1972)

x is normal in base b if and only if no martingale in base b generated
by a DFA succeeds on the expansion of x in base b.

We extend this result to “normality” for other measures, and
“martingales” for other measures.
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Subshifts

Let Σ be a finite alphabet.

Definition

A subshift is a tuple (X,T ) where

X is some closed subset of ΣN with the product topology

X is invariant under T , i.e. T (X) ⊆ X
T is the continuous mapping defined by (T (s))n = sn+1.

(X,T ) is a subshift if and only if there exists a set A ⊆ Σ∗ such that
X coincides with the set of sequences having no substrings in A.

if A is finite then (X,T ) is called a Markov subshift (or
subshift of finite type, SFT)

if A is a regular language then (X,T ) is called sofic subshift
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Examples of subshifts

The Cantor space {0, 1}N is the full subshift

X =
sequences in {0, 1}N such that the next
symbol after a 1 is always a 0

is Markov: A = {11}

X = sequences in {0, 1}N with at most one occurrence of 1

is not Markov but it is sofic: A = 10∗1 = {11, 101, 1001, 10001, . . . }
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Normality for other measures

An invariant measure on a subshift (X,T ) is a probability measure
P on X such that P ◦ T−1 = P .

Definition
Let P be an invariant measure. We say s ∈ X is distributed
according to P if for all continuous f : X → R we have

lim
N→∞

∑
n<N f(Tns)

N
=

∫
f dP.

If X is the full subshift on Σ = {0, . . . , b− 1} and λ(a) = b−1 for
a ∈ Σ is the uniform measure then

s is distributed according to λ iff
the real 0.s

(written in base b)
is normal in base b
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Martingales for other measures

Definition

Let L ⊆ Σ∗ and let P be a probability measure P on ΣN which is
L-supported (P (σ) > 0 iff σ ∈ L).
A P -martingale is a function f : L→ R≥0 such that

f(σ) =
∑
a∈Σ
σa∈L

P (σa | σ)f(σa).

When P = λ, the uniform measure on {0, . . . , b− 1}, the classical
definition of a martingale is recovered:

λ(σa | σ) = λ(a) = b−1
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The result by Schnorr & Stimm for Markov measures

Let LX be the set of all words appearing in the sequences of X.

Theorem

Let (X,T ) be a Markov subshift and let P be a LX -supported Markov
measure which is invariant and irreducible. Then s ∈ X is distributed
according to P iff no P -martingale generated by a DFA succeeds on s.

the original Schnorr and Stimm’s result is the special case when
X = ΣN and P = λ is the uniform measure

the Markov condition is used because we need some form of
memorylessness on the measure to make it compatible with the
memoryless computation of a finite automaton
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Outline

1 Normality for non-uniform measures and DFA martingales

2 Normality for non-integer bases and polytime martingales
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From integer to real bases

Proposition

Let b ∈ N, b > 1.
x is normal in base b iff (xbn)n∈N is u.d. modulo one.

We propose to study this notion:

Definition (Normality for real bases)

Let β ∈ R, β > 1.
x is normal in base β iff (xβn)n∈N is u.d. modulo one.

By a result of Brown, Moran and Pearce (1986), there are irrational
β’s such that there are uncountably many reals x which are normal in
any integer base but not normal in base β.
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Normality and polytime computable martingales

Definition
x is polynomial time random in base b if no polynomial time
computable martingale succeeds on the expansion of x in base b.

polynomial time random in base b ⇒ normal in base b (Schnorr
1971)

polynomial time randomness is base invariant (F, Nies 2015)

polynomial time random in a single integer base ≥ 2 ⇒ normal
for all integer bases ≥ 2

Question

polynomial time randomness ⇒ normal in base β ∈ Q (β > 1)?
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The formulation of normality in terms of u.d.

x is normal in base β iff (xβn)n∈N is u.d. modulo one

If β is integer:

the map
Tβ(x) = (βx) mod 1

is equivalent to a “shift” rightwards in the space of sequences
{0, . . . , β − 1}N when x is mapped to its expansion in base β

if β is not integer, how to represent numbers in base β?

(xβn) mod 1 = Tnβ (x)

if β is not integer, this is false
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β-expansions

Let β ∈ R, β > 1. A β-expansion of x is

a0 . a1 a2 a3 . . .

x = a0 +
∑
n>0

an
βn ,

an ∈ N, and

0 ≤ an < β for n > 0

for all n > 0,
∑
i>n ai/β

i < 1/βn

Example

β = 2:

The β-expansion of 3/4 is 0.11000000000 . . .
The β-expansion of 2 · 3/4 is 1.10000000000 . . .

β = φ, the golden ratio (β ≈ 1.618, β2 − β − 1 = 0):

The β-expansion of 1/β is 0.1000000000 . . .
The β-expansion of β is 1.10000000000 . . .
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β-expansions of 1

We are interested in the β-expansion of numbers in [0, 1). We
represent them simply by

��a0 . a1 a2 a3 . . .

For the special case of 1, we extend the above representation by
continuity (we force a0 to be 0; the condition in red is not satisfied)

Example

The 2-expansion of 1 is 11111111 . . . (1 = 1
2 + 1

22 + 1
23 + 1

24 + . . . )

The φ-expansion of 1 is 10101010 . . . (1 = 1
φ + 1

φ3 + 1
φ5 + 1

φ7 + . . . )
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β-shifts

Let Σ = {0, . . . , dβe − 1]}. The β-expansions of [0, 1) is the set

{s ∈ ΣN | (∀n) Tns <lex the β-expansion of 1}

Definition

The β-shift is the subshift (Xβ , T ), where

Xβ = {s ∈ ΣN | (∀n) Tns ≤lex the β-expansion of 1}

Example

The 2-shift is the full shift {0, 1}N

The φ-shift is the set of sequences on {0, 1}N such that no two 1’s
occur consecutively in them

18
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Pisot numbers

Definition
β ∈ R is Pisot if β > 1 and β is the root of a monic polynomial in
integer coefficients, such that all its conjugate values (that is, all the
other roots of its minimal polynomial) have absolute values < 1.

Example

all integers n > 1 are Pisot numbers

rational Pisot numbers are integers

the golden ratio 1.618 . . .

Pisot numbers are “asymptotically integers” (Bertrand 1986):

β is Pisot iff
∑
n≥0 (distance from βn to its closest integer) <∞

For β Pisot we have (Bertrand 1986):

the β-expansion of 1 is eventually periodic and Xβ is a sofic
subshift
if a real number x has a β-expansion that is distributed according
to Pβ (the Parry measure), then x is normal in base β
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Putting all pieces together

Theorem
If x is polynomial time random then x is normal in base β for all
Pisot β.

Proof sketch

Suppose (xβn)n∈N is not u.d. mod 1. Let s = β-expansion of x.
By Bertrand’s theorem, s is not distributed according to Pβ .

(Xβ , T ) is not Markov, so we can’t use

Theorem

Let (X,T ) be a Markov subshift and let P be
a Markov measure with support X which is
invariant and irreducible. Then s ∈ X is
distributed according to P iff no P -martingale
generated by a DFA succeeds on s.

But (Xβ , T ) is sofic, and
we can use

Another Theorem

The generalization of ⇐ to
sofic subshifts still holds.

There is a Pβ-martingale f generated by a DFA which succeeds
on s.
Use that s and Pβ are polytime computable to obtain, from f , a
classical polytime martingale in base 2 which succeeds on the
binary representation of x.

20
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binary representation of x.
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Thank you!

21


	Normality for non-uniform measures and DFA martingales
	Normality for non-integer bases and polytime martingales

