

TBD Three backoff dilemmas

Michael A. Bender

TBD Three backoff dilemmas

Michael A. Bender

Joint work with Jeremy Fineman, Seth Gilbert, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young.

Backoff is about sharing

Classic scenario:

- Many devices.
- 1 (shared) resource.
- Only one device can access the resource at a time!

Examples:

- LANs
- Wireless networks
- Transactional memory
- Lock acquisition
- E-mail retransmission
- Congestion control (e.g., TCP)

Ethernet

Backoff as scheduling problem

packets

• unit length jobs

shared channel

single "processor"

objective: minimize makespan

 broadcast all packets on channel to maximize throughput

scheduling subtlety: backoff mechanism

 how to coordinate access to channel

shared channel packets to broadcast on channel

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

Repeat until successful transmission

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

Bad scenario: thousands of devices contending for the channel.

- Try to broadcast
- If failure then randomly choose t in window W and wait t seconds.

Standard answer: Binary exponential backoff [Metcalfe and Boggs '76]

Window size W = 2

- Randomly choose slot t in window.
- Try to transmit at slot t.
- If failure, wait to end of W. Then double W.

Standard answer: Binary exponential backoff [Metcalfe and Boggs '76]

Window size W = 2

Why double?

- Randomly choose slot t in window.
- Try to transmit at slot t.
- If failure, wait to end of W. Then double W.

Standard answer: Binary exponential backoff [Metcalfe and Boggs '76]

- Randomly choose slot t in window.
- Try to transmit at slot t.
- If failure, wait to end of W. Then double W.

This talk

TBD (three backoff dilemmas).

- minimize makespan (maximize throughput)
- minimize # tries to access resource (minimize energy)
- achieve robustness to jamming or failures

Binary exponential backoff scales poorly.

• batch (all release times = 0)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson, SPAA 05]

• dynamic arrivals (arbitrary release times)

Better randomized backoff algorithms

- batch
- dynamic arrivals

[Bender, Fineman, Gilbert, Young, SODA 16]

[Bender, Kopelowitz, Pettie Young STOC 16]

Good pictures help convey intuition.

Good pictures help convey intuition.

So in preparing this talk, the first thing I did is type "backoff" into Google.

What Google says about backoff is intuitive but off topic.

What Google says about backoff is intuitive but off topic.

What Google says about "randomized backoff" is on topic but less algorithmic...

000							randomized backoff - Google Search							10
	Î +	Q, https 🖨 ran	domized backs	er -								C		0
1		and the second second	14772-				randomized backoff - Google Search							+
1							10 Q				-			
Google randomized backoff											N	Share	•	
0			Revenue .					1					-	
											-			
	Web	Images	Videos	News	Shopping	More -	Search tools			SafeSe	afeSearch	- 3	ů.	

What Google says about "randomized backoff" is on topic but less algorithmic...

What Google says about "randomized backoff" is on topic but less algorithmic...

Model for multiple-access channels

Time is divided into discrete slots.

In every slot, a device can:

- **Broadcast** (access the channel)
- Listen (sense the channel)

Model for multiple-access channels

Time is divided into discrete slots.

In every slot, a device can:

- **Broadcast** (access the channel)
- Listen (sense the channel)

Results (known to every broadcaster/listener):

- If exactly one device broadcasts, then success.
- If two or more devices broadcast, then failure.
- If zero devices broadcast, then nothing.

What's this a picture of?

What's this a picture of?

What's this a picture of?

Real networks/

systems deviate from

What's this a picture of?

Real networks/

systems deviate from

What's this a picture of?

Real networks/

systems deviate from

Binary exponential backoff is broken

batch (all release times = 0)
dynamic arrivals (arbitrary release times)

Batch scenario

throughput = 4/12

All *n* packets arrive time t = 0. Let makespan = *T*. Throughput: *n*/*T*.

Exponential backoff on batches

Window size W = 2

Repeat until successful transmission:

- Randomly choose slot t in window.
- Try to broadcast at slot t.
- If collision, wait to end of W. Then double W.

Why double? What if the window size changes by a different factor?

Constant-sized windows

• W is a fixed constant

back off slowly

Binary exponential growth

• After collision: W = 2W

Constant-sized windows

• W is a fixed constant

Additive increase

• After collision: W = W + 1

back off slowly

Binary exponential growth

• After collision: W = 2W

Constant-sized windows

• W is a fixed constant

Additive increase

• After collision: W = W + 1

Logarithmic growth

• After collision:
$$W = W\left(1 + \frac{1}{\log W}\right)$$

Binary exponential growth

• After collision: W = 2W

back off slowly

Constant-sized windows

• W is a fixed constant

Additive increase

• After collision: W = W + 1

Logarithmic growth

• After collision: $W = W \left(1 + \frac{1}{\log W} \right)$

LogLog growth

• After collision: $W = W \left(1 + \frac{1}{\log \log W} \right)$

Binary exponential growth

• After collision: W = 2W

Constant-sized windows

• W is a fixed constant

Additive increase

• After collision: W = W + 1

Logarithmic growth

• After collision: $W = W \left(1 + \frac{1}{\log W} \right)$

LogLog growth

• After collision: $W = W \left(1 + \frac{1}{\log \log W} \right)$

Binary exponential growth

• After collision: W = 2W

Approx. running time

exponential in *n*

 $\widetilde{O}(n^2)$

 $\widetilde{O}(n \log n)$

 $\widetilde{O}(n \log \log n)$

 $\widetilde{O}(n\log n)$

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Comparison [Gilbert 14]

Time

Number of packets

Constant-sized windows

• W is a fixed constant

Additive increase

• After collision: W = W + 1

Logarithmic growth

• After collision:
$$W = W\left(1 + \frac{1}{\log W}\right)$$

<u>Actual running time</u>

exponential in *n*

 $O(n^2/\log n)$

 $O(n \log n)$

 $O(n \log n / \log \log n)$

LogLog growth

• After collision: $W = W \left(1 + \frac{1}{\log \log W} \right)$

 $O(n \log \log n / \log \log \log n)$

Binary exponential growth

• After collision: W = 2W

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Backoff for batches

Exponential backoff is asymptotically disappointing

- Used everywhere.
 - Poor throughput: < 1/polylog(n).
 - Example experiment: *n*=100.
 - About 10% of slots are used.
 - About 90% of resource is wasted!

A COMPANY OF A COM

LogLog backoff is better

- In simple experiments, much better.
- It's the best monotonic backoff for batch arrivals.
- But it *cannot* achieve a makespan of O(n) (constant throughput).

Next few slides: dynamic arrivals

(packets have arbitrary release times)

Queuing theory (with Poisson arrivals)

[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96] [Raghavan and Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]

- Goal: achieve stability with good arrival rates.
- Exponential backoff is not as stable as polynomial backoff.

Adversarial queuing theory arrivals

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with *n* fixed stations

[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus, Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

- Adversarial injections
- Often deterministic algorithms: round-robin/binary search/etc.

Exponential backoff may not recover from bursts for a time superpolynomial in the size of the burst. [Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

(for a time superpolynomial in *m*)

Broadcast probability

 A packet in the system for *d* time units broadcasts with probability Θ(1/*d*).

Contention at time t

• The contention at time *t* is the sum of the broadcast probabilities of all packets currently in the system.

Contention at time t

• The contention at time *t* is the sum of the access probabilities of all jobs currently in the system.

contention c = O(1)

prob(slot t is successful) = O(1)

contention $c = \Omega(1)$

• prob(the slot is successful) = $2^{-\Theta(c)} \leftarrow$

The success probability is exponentially small in the contention.

contention c = o(1)

• prob(slot is not empty) = $\Theta(c)$

$$O(\log m) = O\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{\text{poly}(m)}\right)$$

$$O(\log m) = O\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{\text{poly}(m)}\right)$$

Morals for binary exponential backoff

Morals for binary exponential backoff

Morals for binary exponential backoff

How to scale exponential backoff

•Analyze batch arrivals (a single burst).

Analyze dynamic arrivals...
 by reducing to series of batches.

Good makespan, good # broadcasts

with jamming/failures: without jamming:

[Bender, Fineman, Gilbert, Young, SODA 16] [Bender, Kopelowitz, Pettie, Young, STOC 16]

Batch arrivals

TBD

minimize makespan minimize effort achieve robustness to faults and jamming

throughput = 4/12

Constant throughput for batches

Claim: When $W=\Theta(n)$, there are $\Theta(n)$ successes w.h.p..

Upshot: We can reduce W by a constant factor

Constant throughput for batches

Claim: When $W=\Theta(n)$, there are $\Theta(n)$ successes w.h.p..

Upshot: We can reduce W by a constant factor.

Constant throughput for batches

Claim: When $W=\Theta(n)$, there are $\Theta(n)$ successes w.h.p..

Upshot: We can reduce W by a constant factor.

Sawtooth backoff [Bender, Farach-Colton, He, Kuszmaul, Leiserson '05]

Guess a value of W = n. Back on with window size W/2, W/4, W/8, ... Back off with W = 2n.

Sawtooth backoff [Bender, Farach-Colton, He, Kuszmaul, Leiserson '05]

[Greenberg and Leiserson '89]

Theorem: For *n* packet that arrive at time 0, w.h.p., all packets transmit after

O(n) time $\Rightarrow O(1)$ throughput

 $O(\log^2 n)$ attempts.

Sawtooth backoff

[Greenberg and Leiserson '89] [Gereb-Graus and Tsantilas '92] [Bender, Farach-Colton, He, Kuszmaul, Leiserson '05]

Theorem: For *n* packet that arrive at time 0, w.h.p., all packets transmit after

O(n) time $\Rightarrow O(1)$ throughput

O(log² n) attempts.

(If we know *n*, we obtain O(*n*) makespan with O(1) expected attempts.)

Some Results for Dynamic Arrivals

[Bender, Fineman, Gllbert, Young SODA16]

Theorem:

- *n* = # packets.
- *f* = # slots blocked by adversary.

makespan: O(n+f) in expectation

- $\Theta(1)$ throughput when f=O(n).
- # broadcasts: $O(\log^2(n+f))$ in expectation.

Some Results for Dynamic Arrivals

[Bender, Fineman, Gllbert, Young SODA16]

Theorem:

- *n* = # packets.
- *f* = # slots blocked by adversary.

makespan: O(n+f) in expectation

• $\Theta(1)$ throughput when f=O(n).

broadcasts: $O(\log^2(n+f))$ in expectation.

(We think listening can also be optimized, but that's not what this paper is above.)

(Not complicated algorithm. Complicated analysis.)

Some Results for Dynamic Arrivals

[Bender, Kopelowitz, Pettie, Young, STOC16]

Theorem:

- *n* = # packets.
- no jamming of slots.

makespan: O(n) in expectation.

channel accesses: O(log log*n) in expectation.

(Complicated algorithm and analysis.)

maximize throughput

minimize effort achieve robustness

[Bender, Fineman, Gllbert, Young SODA16]

throughput = 4/12

Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into batches.

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into batches.

We can simulate two channels on one.

One assumption: even/odd round parity is known. Can be dispensed with as well.

Assume two channels.

We use the 2nd channel to synchronize into batches.

We can simulate two channels on one.

One assumption: even/odd round parity is known. Can be dispensed with as well.

Control channel implements a busy signal [Wu and Li '88] [Haas and Deng '02] .

Control channel implements a busy signal [Wu and Li '88] [Haas and Deng '02] .

Control channel implements a busy signal [Wu and Li '88] [Haas and Deng '02] .

Control channel implements a busy signal [Wu and Li '88] [Haas and Deng '02] .

Control channel implements a busy signal [Wu and Li '88] [Haas and Deng '02] .

Protocol on one channel

[Bender, Fineman, Gilbert, Young 16]

Wait until two consecutive "silent" rounds.

Set round counter to 0:

- In odd rounds: broadcast (simulate control channel).
- In even rounds: run Sawtooth backoff (simulate data channel).

Theorem: For *n* requests that arrive dynamically, Synchronized Sawtooth achieves $\Theta(1)$ throughput, w.h.p.

Theorem: For *n* requests that arrive dynamically, Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

Dynamic arrivals

TBD

[Bender, Fineman, Gllbert, Young SODA 16]

maximize throughput minimize effort achieve robustness to jamming

throughput = 4/12

It's all about contention

Goal: waste O(1) fraction of slots.

Goal: achieve $\Theta(1)$ contention on a constant fraction of all slots without doing too many broadcasts.

(Recall: contention = sum of broadcast probabilities.)

Dynamic Arrivals with Jamming

[Bender, Fineman, Gllbert, Young SODA16]

Theorem:

- *n* = # packets.
- *f* = # slots blocked by adversary.

makespan: O(n+f) in expectation

- $\Theta(1)$ throughput when f=O(n).
- # broadcasts: $O(\log^2(n+f))$ in expectation.

For a packet that's been *active* for *t* slots:

- **Broadcast** on **control channel** with prob $\Theta((\log t)/t)$.
- **Broadcast** on **data channel** with prob $\Theta(1/t)$.
- If successful, terminate.
- If ≥(7/8) t data slots are empty, then become inactive.

For an *inactive* request:

- Wait until the first *silent* slot on the *control channel*.
- Become *active*.

Cheap probabilistic

busy signal.

For a packet that's been *active* for *t* slots:

- **Broadcast** on **control channel** with prob $\Theta((\log t)/t)$.
- **Broadcast** on **data channel** with prob $\Theta(1/t)$.
- If successful, terminate.
- If ≥(7/8) t data slots are empty, then become inactive.

For an *inactive* request:

- Wait until the first *silent* slot on the *control channel*.
- Become *active*.

For a packet that's been *active* for *t* slots:

- **Broadcast** on **control channel** with prob $\Theta((\log t)/t)$.
- **Broadcast** on **data channel** with prob $\Theta(1/t)$.
- If successful, terminate.
- If ≥(7/8) t data slots are empty, then become inactive.

For an *inactive* request:

- Wait until the first *silent* slot on the *control channel*.
- Become *active*.

- Wait until the first silent slot on the control channel.
- Become *active*.

Batches based upon contention

Group packets into synchronized batches.

Batches based upon contention

Group packets into synchronized batches.

Managing Contention depends on age structure of packets

How contention changes depends on the age structure of the packets.

young packets:

- create a lot of contention,
- but their contention reduces *quickly* as they age.

 $1 \rightarrow 1/2 \rightarrow 1/3 \rightarrow 1/4 \rightarrow 1/5 \dots$

old packets:

- create little contention,
- but their contention reduces *slowly* as they age.

 $1/1000 \rightarrow 1/1001 \rightarrow 1/1002 \rightarrow 1/1003 \rightarrow 1/1004 \dots$

Batches now overlap.

- Many batches are running simultaneously with different start times.
- We can't use w.h.p. analysis on each batch.
- Contention is a slippery parameter.
- How contention changes depends on the age structure of the packet.

Idea of Structural Argument

If no new batch joins:

 each time the contention halves, it takes 2X as long before it halves again. (There's no guarantee on how long it takes to halve.)

contention=
$$C/2$$
 contention= $C/4$ contention= $\Theta(1)$

With constant probability:

- No new batch arrives until the contention is $\Theta(1)$.
- The contention stays $\Theta(1)$ for a long time.
- The contention doesn't shrink to o(1) for too long before a new batch enters the system.

Dynamic Arrivals without Jamming

[Bender, Kopelowitz, Pettie, Young, I 5]

Theorem:

- *n* = # packets.
- no jamming of slots.

expected makespan: O(n).

expected # channel accesses: O(log log*n).

Ideas: Backoff Without Jamming

Active packets collectively estimate n. Then they run sawtooth with the right $\Theta(n)$. The hardest part of estimating n, is estimating $\log^* n$.

Morals for better backoff algorithms

Morals for better backoff algorithms

Morals for better backoff algorithms

We should strive for protocols that scale.

We should strive for protocols that scale.

Exponential backoff is broken (but ubiquitous)

- batch--backs off too quickly
- dynamic arrivals--doesn't deal well with bursts.

We should strive for protocols that scale.

Exponential backoff is broken (but ubiquitous)

- batch--backs off too quickly
- dynamic arrivals--doesn't deal well with bursts.

Asymptotically better algorithms have provably good guarantees.
Summery Slide

We should strive for protocols that scale.

Exponential backoff is broken (but ubiquitous)

- batch--backs off too quickly
- dynamic arrivals--doesn't deal well with bursts.

Asymptotically better algorithms have provably good guarantees.

What about other models and metrics?