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Backoff is about sharing
Classic scenario: 
• Many devices.

• 1 (shared) resource.

• Only one device can access the  

resource at a time!


Examples: 
• LANs

• Wireless networks

• Transactional memory

• Lock acquisition

• E-mail retransmission

• Congestion control (e.g., TCP)



Backoff as scheduling problem
packets 
• unit length jobs


shared channel  
• single “processor”


objective: minimize makespan 
• broadcast all packets on channel to 

maximize throughput


scheduling subtlety:  backoff 
mechanism 
• how to coordinate access to 

channel
packets to  
broadcast  
on channel

shared  
channel



Randomized backoff
Repeat until successful transmission  
• Try to broadcast 
• If failure then  
randomly choose t in window W  
and wait t seconds. 

[Abramson ’70]
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Randomized backoff
Repeat until successful transmission  
• Try to broadcast 
• If failure then  
randomly choose t in window W  
and wait t seconds. 

[Abramson ’70]

Bad scenario: thousands of devices 
contending for the channel.

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

W W
Basic backoff question:  

How to choose and adapt the 
window size W. 



Standard answer: Binary exponential backoff

Window size W = 2 

Repeat until successful transmission: 
• Randomly choose slot t in window. 
• Try to transmit at slot t. 
• If failure, wait to end of W.  
Then double W. 
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Standard answer: Binary exponential backoff

Window size W = 2 

Repeat until successful transmission: 
• Randomly choose slot t in window. 
• Try to transmit at slot t. 
• If failure, wait to end of W.  
Then double W. 

Why double?  
What if the window size 

changes by a different factor? 

How many attempts 
until a success? 

What about 
robustness 
guarantees? 

[Metcalfe and Boggs ‘76]

Are there any 
guarantees on 
makespan and 
throughput?

This talk: some answers to 
these research questions. 

How well does 
exponential backoff 
deal with arbitrary 

release times? 
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Exponential backoff 
scales poorly. 

poor throughput

fragile/not 
robust to 
failures

But it is used all over the place, often 
hidden inside other protocols. 

This talk: some fixes to 
exponential backoff.   

And other backoff algorithms. 



This talk

TBD (three backoff dilemmas). 
• minimize makespan (maximize throughput)

• minimize # tries to access resource (minimize energy)

• achieve robustness to jamming or failures


Binary exponential backoff scales poorly.  
• batch (all release times = 0)

• dynamic arrivals (arbitrary release times)


Better randomized backoff algorithms 
• batch

• dynamic arrivals [Bender, Fineman, Gilbert, Young, SODA 16]

[Bender, Kopelowitz, Pettie Young STOC 16]

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson, 

SPAA 05]
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This talk: asymptotic analysis of 

— exponential backoff and 


— more efficient alternatives.

What Google says about “randomized backoff” is on topic 
but less algorithmic...
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Model for multiple-access channels
Time is divided into discrete slots. 

In every slot, a device can: 
• Broadcast (access the channel)

• Listen (sense the channel)

Results (known to every broadcaster/listener): 
• If exactly one device broadcasts, then success.

• If two or more devices broadcast, then failure.

• If zero devices broadcast, then nothing.

success failure nothing
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TBD  
(Three backoff dilemmas)

Binary exponential backoff is 
broken 

• batch (all release times = 0) 
• dynamic arrivals (arbitrary release times) 



All n packets arrive time  t = 0.

Let makespan = T.

Throughput: n/T.

packet-play-device. be 
consistent.Batch scenario  

throughput = 4/12
0 T



Exponential backoff on batches
Window size W = 2 

Repeat until successful transmission: 
• Randomly choose slot t in window. 
• Try to broadcast at slot t. 
• If collision, wait to end of W.  
Then double W.

Why double?  
What if the window size 

changes by a different factor? 
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What backoff rate is best for batches? 

Constant-sized windows 
• W is a fixed constant 

Additive increase 
• After collision:


Logarithmic growth 
• After collision:  


LogLog growth 
• After collision:


Binary exponential growth 
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

Approx. running time

exponential in n

O(n log n)

O(n log n)

O(n2)

O(n loglog n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

~
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Constant-sized windows 
• W is a fixed constant 

Additive increase 
• After collision:


Logarithmic growth 
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What backoff rate is best for batches? 

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

exponential in n

O(n log n)

O(n log n/loglog n)

O(n2/log n)

O(n loglog n / logloglog n)

Actual running time

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Optimal (monotonic):
O(n loglog n / logloglog n)  



Backoff for batches 
Exponential backoff is asymptotically 
disappointing 
• Used everywhere.

• Poor throughput: < 1/polylog(n).

• Example experiment: n=100.

‣ About 10% of slots are used. 
‣ About 90% of resource is wasted! 

LogLog backoff is better  
• In simple experiments, much better.

• It’s the best monotonic backoff for batch arrivals.

• But it cannot achieve a makespan of O(n)  

(constant throughput).



Queuing theory (with Poisson arrivals)  
[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96]  [Raghavan and 
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]  
• Goal: achieve stability with good arrival rates.

• Exponential backoff is not as stable as polynomial backoff. 


Adversarial queuing theory arrivals  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05] 
• Exponential backoff does not adapt well to bursts.


Adversarial queueing theory with n fixed stations  
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus, 
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc 
• Adversarial injections

• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals 
(packets have arbitrary release times)



m

Exponential backoff and bursts
Exponential backoff may not recover from bursts for a 
time superpolynomial in the size of the burst. 


O(1) throughput O(1/mc ) throughput
 (for a time superpolynomial in m)

packet arrivals

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]



Exponential backoff and bursts

Broadcast probability

• A packet in the system for d time units broadcasts 

with probability Θ(1/d).


Contention at time t

• The contention at time t is the sum of the broadcast 

probabilities of all packets currently in the system. 



Exponential backoff and bursts

Contention at time t

• The contention at time t is the sum of the access 

probabilities of all jobs currently in the system.


contention c = O(1)

• prob(slot t is successful) = O(1)


contention c = Ω(1) 
• prob(the slot is successful) = 2-Θ(c)


contention c = o(1) 
• prob(slot is not empty) = Θ(c)  

The success probability 
is exponentially small in 
the contention.



m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a 
time superpolynomial in the size of the burst. 


O(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]
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O(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)
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Morals for binary exponential backoff

Batch arrivals 
Exponential backoff backs off 

too quickly.  
Log log backoff is optimal.

Dynamic arrivals 
Exponential backoff doesn’t 

recover fast enough from bursts.

(Loglog backoff is worse.)

Exponential backoff does not 
scale well.



TBD  
(Three backoff dilemmas)

How to scale exponential 
backoff  

•Analyze batch arrivals (a single burst). 

• Analyze dynamic arrivals...  
   by reducing to series of batches.  

• Good makespan, good # broadcasts 

with jamming/failures:    [Bender, Fineman, Gilbert, Young,  SODA 16] 

without jamming:          [Bender, Kopelowitz, Pettie, Young, STOC 16]



Batch arrivals 

minimize makespan 
minimize effort 

achieve robustness to faults and jamming

# successful slots

throughput = 4/12

TBD



Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes 
w.h.p.. 
Upshot:  We can reduce W by a constant factor

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W



Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes 
w.h.p.. 
Upshot:  We can reduce W by a constant factor. 

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W



Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes 
w.h.p.. 
Upshot:  We can reduce W by a constant factor. 

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W



Sawtooth backoff
[Greenberg and Leiserson ‘89]  

[Gereb-Graus and Tsantilas ‘92]  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]
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Window Size

Guess a value of  W = n. 

Back on with window size  W/2, W/4, W/8, …

Back off with  W = 2n.
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Sawtooth backoff
[Greenberg and Leiserson ‘89]  

[Gereb-Graus and Tsantilas ‘92]  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"
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0" 50" 100" 150" 200" 250"

Window Size

Theorem:  For n packet that arrive at time 0, w.h.p., all packets 
transmit after


O(n) time ⇒ O(1) throughput


O(log2 n) attempts.


(If we know n, we obtain O(n) makespan with O(1) expected attempts.)



Some Results for Dynamic Arrivals

Theorem:  

n = # packets.

f = # slots blocked by adversary.


makespan: O(n+f ) in expectation

‣ Θ(1) throughput when f=O(n). 

# broadcasts: O(log2(n+f )) in expectation.


[Bender, Fineman, GIlbert, Young SODA16]
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Some Results for Dynamic Arrivals

Theorem:  

n = # packets.

no jamming of slots.


makespan: O(n) in expectation.


# channel accesses: O(log log*n ) in expectation.


[Bender, Kopelowitz, Pettie, Young, STOC16]

(Complicated algorithm and analysis.) 



Dynamic arrivals

maximize throughput 
minimize effort 

achieve robustness

# successful slots

throughput = 4/12

[Bender, Fineman, GIlbert, Young SODA16]



Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

packets arriving 
here stay silent 

until the 2nd batch

1st batch starts

... and ends

2nd batch starts

... and ends

3rd batch starts

... and ends

packets arriving 
here stay silent 

until the 3rd batch
...



Use two channels (simulate on one)

Assume two channels. 

We use the 2nd channel to synchronize into 
batches. 

control channel 
(“busy” signal)
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Data channel implements batches. 

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]
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Control channel implements a busy signal  


Data channel implements batches. 

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

... it joins the 
next batch 
protocol...

When it hears 
that the channel 

is free....

... and 
broadcasts a 
busy signal.

A packet arriving 
here stays silent 
while it hears a 

busy signal. 

data channel

.



Protocol on one channel

Wait until two consecutive “silent” rounds. 

Set round counter to 0: 
• In odd rounds: broadcast  
  (simulate control channel). 

• In even rounds: run Sawtooth backoff  
  (simulate data channel).

Theorem:  For n requests that arrive dynamically,  
                    Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

[Bender, Fineman, Gilbert, Young 16]



Protocol on one channel

Wait until two consecutive “silent” rounds. 

Set round counter to 0: 
• In odd rounds: broadcast  
  (simulate control channel). 

• In even rounds: run Sawtooth backoff  
  (simulate data channel).

Theorem:  For n requests that arrive dynamically,  
                    Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

Packets broadcast every 
other round.   

O(n) attempts is expensive!

[Bender, Fineman, GIlbert, Young 16]



Dynamic arrivals

maximize throughput 
minimize effort 
achieve robustness to jamming

throughput = 4/12

TBD 
[Bender, Fineman, GIlbert, Young SODA 16]



It’s all about contention

Goal: waste O(1) fraction of slots.


Goal: achieve Θ(1) contention on a constant 
fraction of all slots without doing too many 
broadcasts.


wasted slots  nonwasted slots 

collision  
(from high  

contention)  

empty slot 
(from low  
contention)  

failure  successful  
broadcast 

(Recall: contention = sum of broadcast probabilities.)



Dynamic Arrivals with Jamming

Theorem:  

n = # packets.

f = # slots blocked by adversary.


makespan: O(n+f ) in expectation

‣ Θ(1) throughput when f=O(n). 

# broadcasts: O(log2(n+f )) in expectation. 

[Bender, Fineman,  GIlbert, Young SODA16]



Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t )/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become 

inactive.


For an inactive request: 
• Wait until the first silent slot on the control channel. 
• Become active. 

(Not complicated algorithm. Complicated analysis.) 
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Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t )/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become 

inactive.


For an inactive request: 
• Wait until the first silent slot on the control channel. 
• Become active. 

Cheap probabilistic 
busy signal. 

Just like exponential 
backoff. 

Fault-tolerant 
measure of low 

contention.  
A batch ends when 

O(1) fraction of 
packets finished. 

Start a new batch. 
(There may still be older 
batches in the system.)

(Not complicated algorithm. Complicated analysis.) 
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packets arriving 
here stay silent 
until batch ends
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gets too low. 



Batches based upon contention

Group packets into synchronized batches.

packets arriving 
here stay silent 
until batch ends

Start a batch 
when there’s no 

busy signal. End a batch when 
the contention 
gets too low. 

Only now, we will be unable to 
avoid overlapping batches. 



Managing Contention depends on age structure of 
packets

How contention changes depends on the 
age structure of the packets. 

young packets:  
• create a lot of contention, 
• but their contention reduces quickly as they age. 

1 → 1/2 → 1/3 → 1/4 → 1/5 ... 

old packets:  
• create little contention, 
• but their contention reduces slowly as they age. 

1/1000 → 1/1001 → 1/1002 → 1/1003 → 1/1004 ...



What makes this analysis irritating fun irritating fun

Batches now overlap. 

• Many batches are running simultaneously with 

different start times.


We can’t use w.h.p. analysis on each batch. 

Contention is a slippery parameter. 

• How contention changes depends on the age 

structure of the packet. 




Idea of Structural Argument
If no new batch joins: 
• each time the contention halves, it takes 2X as long 

before it halves again. (There’s no guarantee on how 
long it takes to halve.)

...
contention=C contention=C/2 contention=C/4 contention=Θ(1)

With constant probability: 
• No new batch arrives until the contention is Θ(1).

• The contention stays Θ(1) for a long time.

• The contention doesn’t shrink to o(1) for too long before 

a new batch enters the system. 



Dynamic Arrivals without Jamming

Theorem:  

n = # packets.

no jamming of slots.


expected makespan: O(n).


expected # channel accesses: O(log log*n ).


[Bender, Kopelowitz, Pettie, Young,15]



Ideas: Backoff Without Jamming

Active packets collectively estimate n. 
Then they run sawtooth with the right Θ(n). 
The hardest part of estimating n, is 
estimating log*n.   



Morals for better backoff algorithms

Batches:  
Sawtooth is a robust algorithm  

(resolves TBD). 
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Morals for better backoff algorithms

Dynamic arrivals:  
Batched sawtooth is good for 

throughput. 
(It’s lousy for minimizing channel 

accesses and tolerating jamming.)

Dynamic arrivals: 
Two scalable backoff protocols


that resolve TBDs.

Batches:  
Sawtooth is a robust algorithm  

(resolves TBD). 
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Summery Slide

What about other models 
and metrics?

Asymptotically better 
algorithms have provably 
good guarantees.

Exponential backoff is broken (but ubiquitous) 
• batch--backs off too quickly

• dynamic arrivals--doesn’t deal well with bursts.

We should strive for 
protocols that scale.


