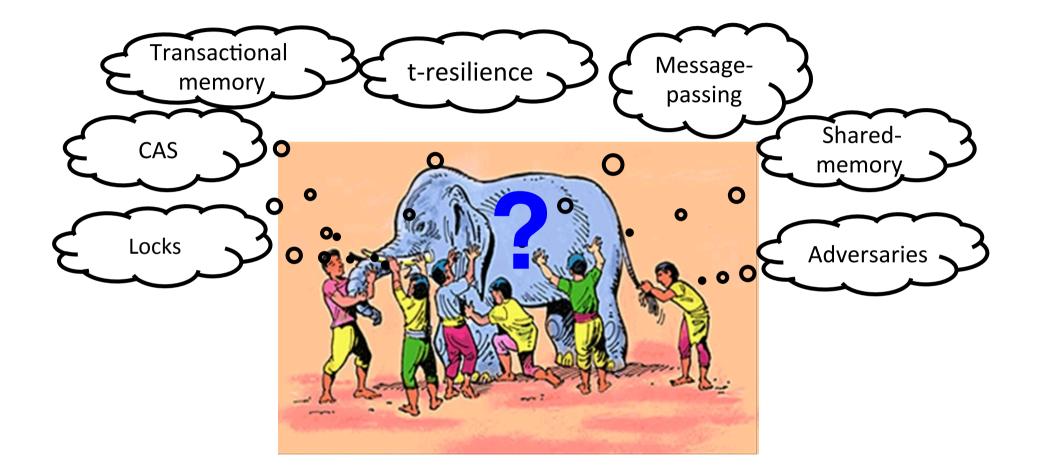
Concurrency as an Iterated Affine Task

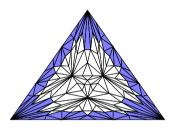
Eli Gafni

Yuan He


Petr Kuznetsov

Thibault Rieutord

Telecom ParisTech


UCLA

CMO/BIRS workshop, 2016

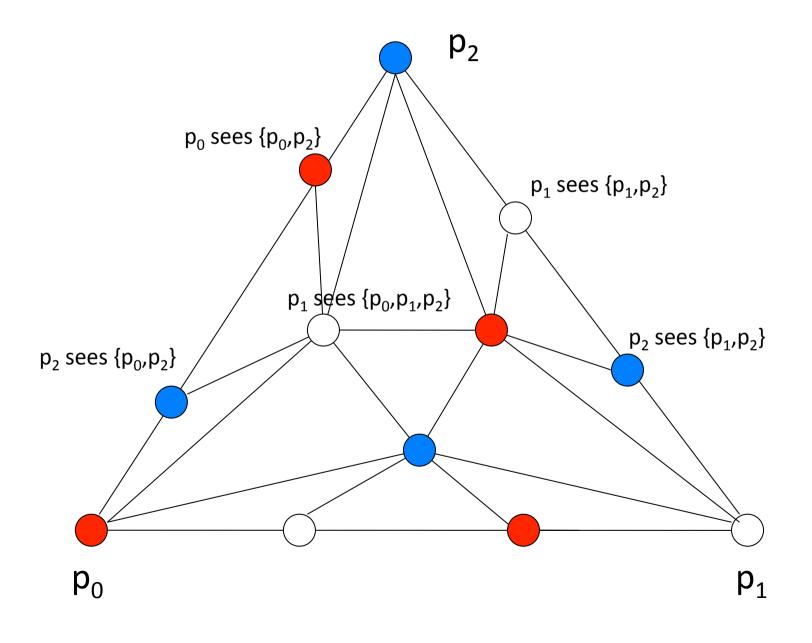
Takeaways

- A (long-lived, non-compact) model can be matched by a (one-shot, compact) task
- k-concurrency has a matching task
 ✓ also holds for adversaries
 ✓ "natural" models

BG simulation is great!
 ✓ Borowsky&Gafni, 1993
 ✓

Example: one-shot Immediate Snapshot

Processes are partitioned in batches P₁,...,P_m

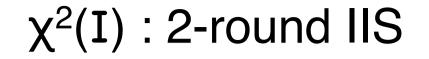

Each batch P_i:

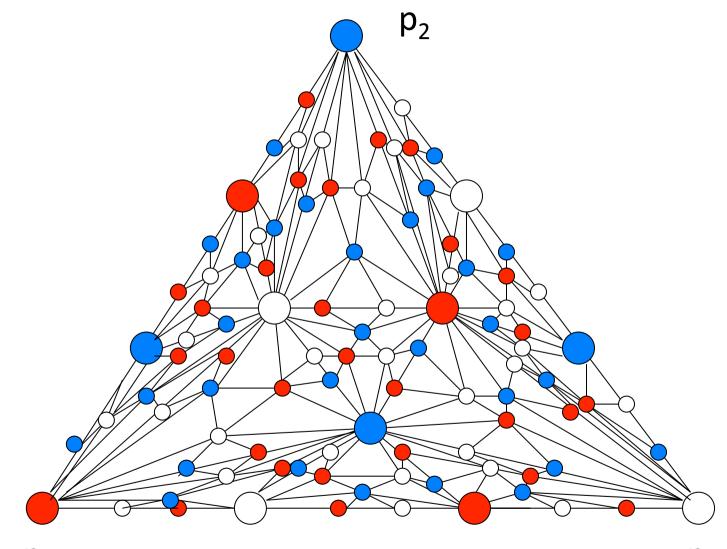
✓Write their input

✓ Get a snapshot of the memory

- Gives the standard chromatic subdivision $\chi(s^n)$
 - ✓[BG93]
 - ✓ [Koz14,Lin09]

X(s²) : one-shot IS for 3 processes

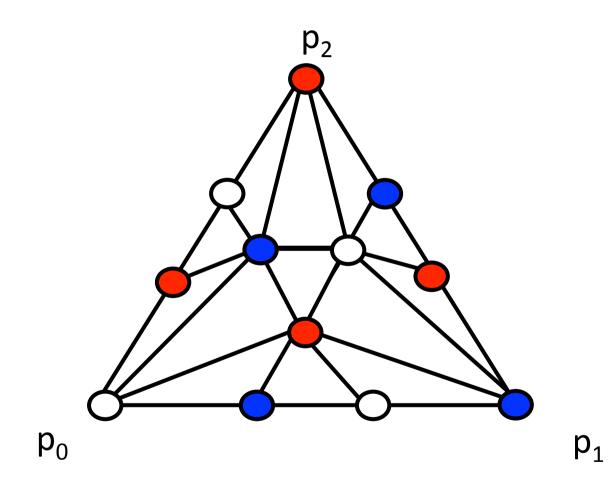



Iterated Immediate Snapshot (IIS)

Shared variables:

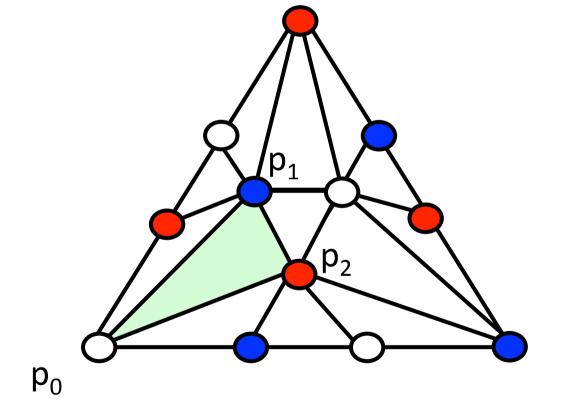
 IS_1 , IS_2 , IS_3 ,... // a series of one-shot IS

IS^k represented as $\chi^{k}(I)$: every run of IS^k \Leftrightarrow a simplex in $\chi^{k}(I)$



 \mathbf{p}_1

p₃


IS as a task $(s^N, \mathcal{X}(s^N), \mathcal{X})$

A process starts at its corner...

IS as a task $(s^N, \mathcal{X}(s^N), \mathcal{X})$

and outputs a vertex of it color (carrier-preserving)

Chromatic simplex agreement on $\chi(I)$

IS - the task for wait-freedom

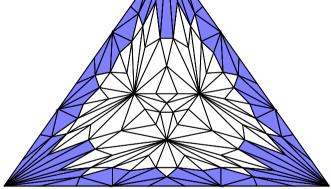
Read-write model (RW) and IIS are equivalent [BG93,BG97,GR10]

a task is solvable in IIS iff it is solvable in RW

Asynchronous computability theorem[HS93]:

A task (I,O, Δ) is wait-free read-write solvable if and only if there is a chromatic simplicial map from a subdivision $\chi^r(I)$ to O carried by Δ

Model as a task?


- M model, a set of (infinite) runs
 ✓ Alternating writes and snapshots
- T task, a one-shot distributed function (I,O,Δ):
 ✓ Set of input vectors I (input complex)
 ✓ Set of output vectors O (output complex)
 ✓ Task specification Δ: I → 2^o (carrier map)
- T*, iterations of T, have the same task computability as M

(Solving a task in M is equivalent to solving T)

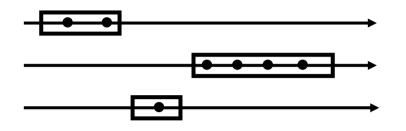
Affine tasks

(s^N,L,*∆*):

- s^N N-dimensional simplex
- $L \subseteq \mathcal{X}^{k}(s^{N})$
- $\Delta(\sigma) = \mathcal{X}^{k}(\sigma) \cap L$

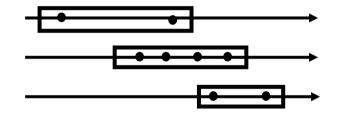
 $L = \mathcal{X}^{k}(s^{N})$: IS

Model as a task


 IS is the matching affine task for wait-free runs

✓What about restrictions of wait-free?

k-concurrency?


 ✓ a subset of RW runs where at most k process are concurrently active

Concurrency levels [Gaf09]

1-concurrent: at most one process makes progress at a time (global lock)

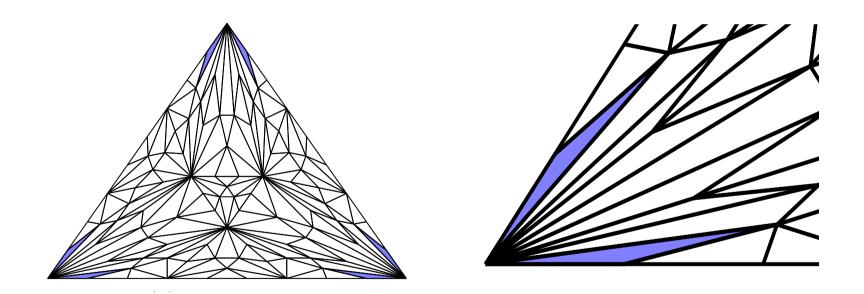
k-concurrent: at most k processes make progress concurrently (k-resource semaphore)

n-concurrency = wait-freedom ≅ IS

A matching affine task for k-concurrency (0<k<n)?

Defining *R*_k

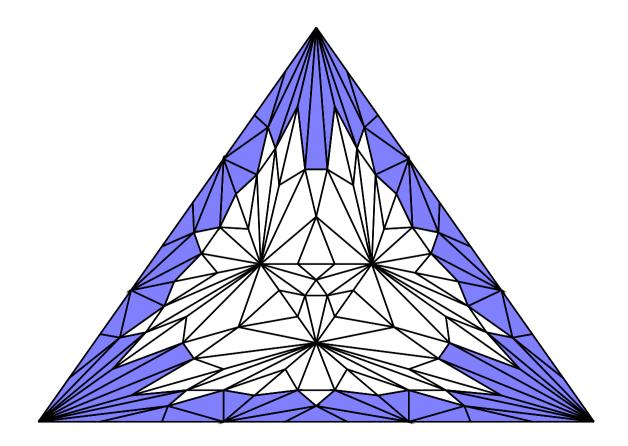
Contention sets: all the processes that share a carrier (\approx see each other):


 $Cont(\sigma) = \{ S \subseteq \Pi, \forall p, p' \in S, carrier(p, \sigma) = carrier(p', \sigma) \}$

Include all simplices in $\mathcal{X}^2(s^N)$ of contention k or less

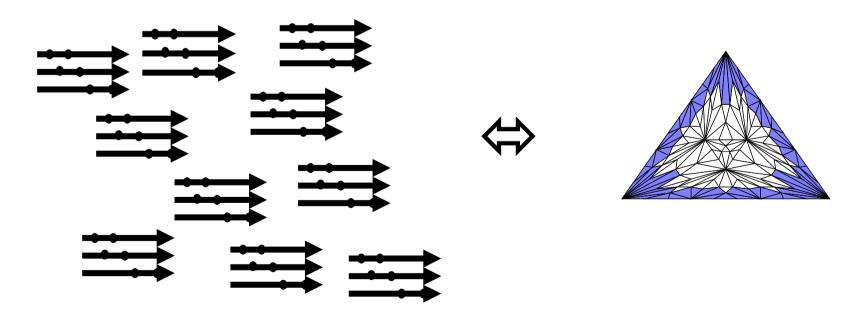
$$\mathcal{R}_k = \{ \sigma \in \operatorname{Chr}^2 \mathbf{s}, \forall S \in \operatorname{Cont}(\sigma), |S| \le k \}$$

R_1


Process proceed in the same total order in two IS rounds:

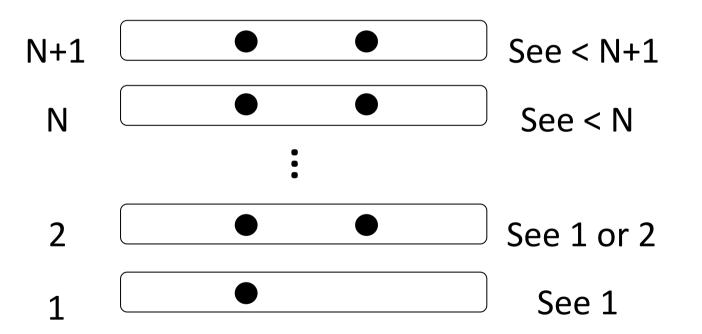
L_{ord}: total order task for s²

 R_2


All simplices that touch 1-dimenional faces

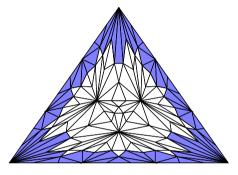
k-concurrency = R_k^*

T is solvable in R_k^* iff T is solvable k-concurrently:


- 1. k-concurrency simulates R_k^*
- 2. R_k^* simulates k-concurrency

1. From k-concurrency to R_k^*

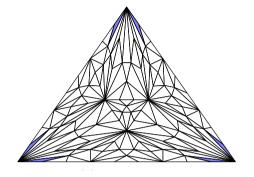
R_k can be solved k-concurrently:


k-concurrent chromatic simplex agreement on R_k

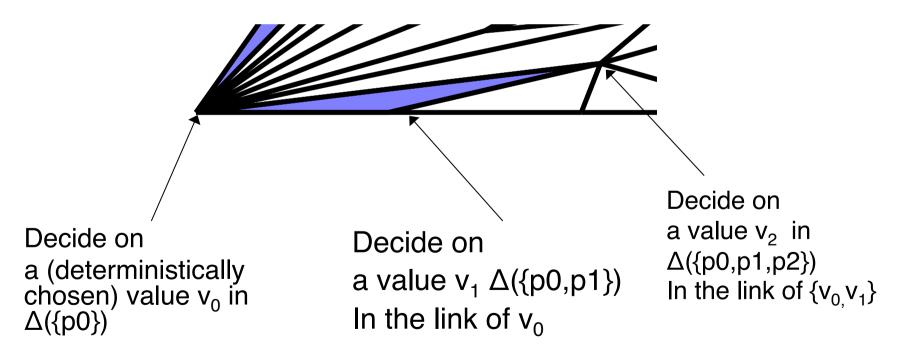
Two rounds of k-concurrent IS implementation [BG93] give Rk

2. From to R_k^* to k-concurrency

- *R^k* can be used to solve k-set agreement:
 - ✓ Decide on the value of (up to k) "leaders" processes (chosen by the size of IS¹ output)

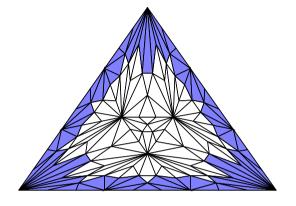

 IIS (and thus R_k*) can simulate RW [BG97,GR10]

Simulate a protocol that uses readwrite and k-set consensus objects?

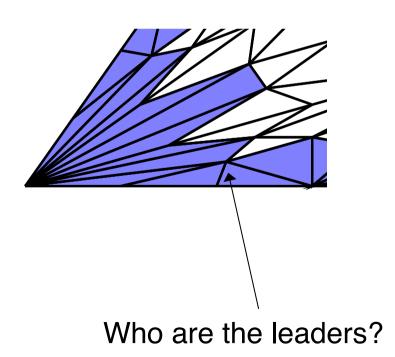

Not that simple: how to combine simulating RW with solving k-SA?

Example: total order (k=1)

Solution of any task (I,O,Δ) in just one iteration of L_{ord}



p0, p1, p2 | p0, p1, p2

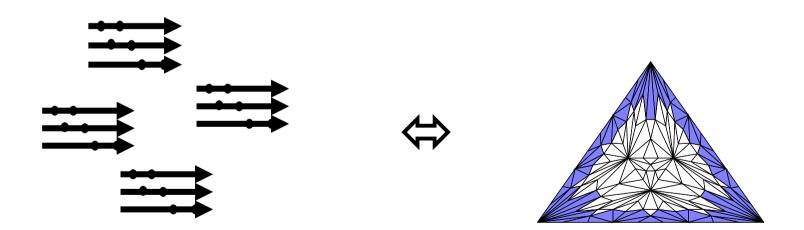


Example: R₂

More iterations might be needed

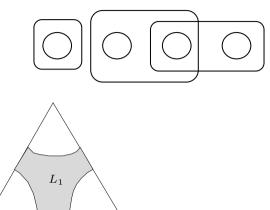
p0,p1,p2 I p0,p1,p2

Simulating k-concurrency

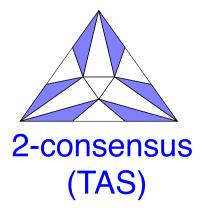

- Adaptive k-set consensus
 - k-commit-adopt: commit (decide) if among k "fastest" non-terminated processes, adopt otherwise
- RW + (adaptive) k-set consensus => k state machines
 - ✓ Generalized universality [GG11]
 - \checkmark m active simulators: machines 1..min(m,k) are active
 - Any RW protocol on up to k state machines can be simulated
- k processes simulate a k-concurrent system
 - ✓ Extended BG simulation [Gaf09]
 - \checkmark Let state machines be (EBG) simulators

RW + k-set agreement simulate k-concurrency

k-concurrency = R_k^*

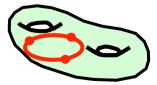

T is solvable in R_k^* iff T is solvable k-concurrently:

- 1. k-concurrency simulates R_k^*
- 2. R_k^* simulates k-concurrency



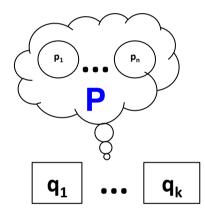
Other models?

Adversarial models [DFGT09]
 ✓Non-uniform/correlated faults
 ✓[SHG16]: t-resilience



- Set-consensus collections [DFGK16]
 ✓RW + set-consensus objects in {(s₁,t₁),...,(s_m,t_m)}
 ✓k-concurrency ≅ k-set consensus
- Affine tasks are in X²(s^N)
 ✓ Sometimes even in X¹(s^N)

What is good about it?


- Compact representation of non-compact models
- Conjecture: possible for all "natural models"
 Captured by computing artifacts
 Not 0-1-exclusion, WSB, Möbius etc.
- Conjecture: relations between models (affine tasks) are decidable
 - ✓ Reduces to maps between bounded sub-complexes of *X*²(s^N)
 - ✓ 3-process, read-write wait-free solvability of (colorless) tasks are undecidable [GK95,HR97]

Tunable BG simulation

- Simulated model
 - ✓ RW [BG93, Gaf09,...]
 - ✓ RW+{set-consensus objects} [CR93,GG11,RS13, DFGK16...]
 - ✓ Restricted concurrency [FGRR14,GHKR16,...]
 - ✓ Adversarial [GK10, DFGK16]
- Simulating model
 - ✓ Static RW [BG93,Gaf09,...]
 - ✓ RW+{set-consensus objects} [...,AEG16,DFGK15]
 - ✓ Adversarial [GK10,GK11,DFGK16]
 - ✓ Message-passing Byzantine [IRS16]
- Simulated protocols
 - ✓ Colorless [BG93,RS14,GK10]
 - ✓ Generic [Gaf09,...GHKR16]
- Agreement protocols
 - ✓ Safe agreement [BG93,...]
 - ✓ Extended agreement [Gaf09,...]
 - ✓ OF consensus [Kuz13]

Xtiuzu'u!

- E. Gafni, Y. He, P. Kuznetsov, T. Rieutord. Read-Write Memory and k-Set Consensus as an Affine Task. OPODIS 2016. Full version arxiv: 1610:01423
- C. Delporte, H. Fauconnier, E. Gafni, P. Kuznetsov. Set-consensus collections are decidable. OPODIS 2016. Full version arxiv:1607:05636