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Sturctured Convex Optimization

• Many regularized loss minimization problems in machine learning
take the form

min
x∈E

{
1

N

N∑
i=1

`([A(x)]i , bi ) + P(x)

}
, (RLM)

where
• E is a finite–dimensional Euclidean space,

• A : E → RN is a linear operator with [A(x)]i representing the i–th
prediction and bi ∈ R is the i–th response,

• ` : R→ R is a smooth convex loss function, and

• P : Rn → R+ is a non–smooth, structure–inducing convex regularizer.

• For simplicity, we define

f (x) =
1

N

N∑
i=1

`([A(x)]i , bi ).



Sturctured Convex Optimization

`(y , b) Domain of b

Linear Regression
1

2
(y − b)2 R

Logistic Regression log(1 + exp(−yb)) {−1, 1}
Poisson Regression −yb + exp(y) {0, 1, . . .}

(a) Loss Functions

E P(x)

LASSO Rn ‖x‖1

Grouped LASSO Rn

∑
J∈J

ωJ‖xJ‖2, ωJ ≥ 0,

J a partition of {1, . . . , n}
Nuclear Norm Rm×n ‖x‖∗

(b) Regularizers

Table: Some commonly used loss functions and regularizers.



How to Solve (RLM) Efficiently?

• Provided that the loss function ` and the regularizer P are efficiently
representable, Problem (RLM) can be solved to arbitrary accuracy in
polynomial time by interior point methods (IPMs)
[Nesterov-Nemirovski’94].

• Polynomial–time solvability used to be a big deal. However, it is no
longer a practical measure of efficiency.

• IPMs require solving a linear system in each iteration, which could be
costly in the big data era.

• Recent applications lead to a renewal of interest in first–order
methods (FOMs).



First–Order Methods for
Solving (RLM)

• As the name suggests, various FOMs solve Problem (RLM) by
finding a solution to its first–order necessary and sufficient
optimality condition:

0 ∈ ∇f (x) + ∂P(x).

• It is well–known that this is equivalent to solving the fixed–point
equation

x = proxP(x −∇f (x)), (FP)

where proxP : E → E is the proximity operator w.r.t. P defined by

proxP(x) = arg min
y∈E

{
P(y) +

1

2
‖x − y‖22

}
.



Examples of the Proximity Operator

• P(x) = IC(x): proxP(u) = ΠC(u), where
C ⊆ Rn is a non–empty closed convex set and

IC(x) =

{
0 if x ∈ C,
+∞ otherwise.

• P(x) = τ‖x‖1: proxP(u) = sτ (u), where
sτ : Rn → Rn is defined as

v = sτ (u), vi =

 ui − τ if ui ≥ τ,
0 if ui ∈ (−τ, τ),
ui + τ if ui ≤ −τ.

u

y

sτ (u)

−τ
τ



First–Order Methods for
Solving (RLM)

• Currently, FOMs for solving (RLM) are quite well developed.
• proximal gradient method [folklore]
• incremental proximal methods [Bertsekas’11]
• proximal stochastic dual coordinate ascent

[Shalev-Shwartz-Zhang’13]
• proximal stochastic gradient methods [Nitanda’14, Xiao-Zhang’14,

Lin-Lu-Xiao’15]
• ...



Analyzing First–Order Methods for
Solving (RLM)

• One of the difficulties in understanding the convergence rates of
these methods is the lack of strong convexity in Problem (RLM),
which potentially results in multiple optimal solutions.

• Example:

min
x∈Rn

{
1

2
‖Ax − b‖22 + ‖x‖1

}
.

• However, such difficulty can be circumvented by exploiting the nice
properties of these methods and using error bounds to obtain a good
estimate of an iterate’s distance to the optimal set.

• Various error bound–based analysis frameworks have been
developed; see, e.g., [Luo-Tseng’93, Attouch-Bolte-Svaiter’13,
Bolte-Nguyen-Peypouquet-Suter’16, Li-Pong’17, S.-Zhou’17].



Analyzing First–Order Methods for
Solving (RLM)

Let

• F = f + P be the objective function,

• Fmin be the optimal value of (RLM),

• X be the set of optimal solutions to (RLM), and

• R(x) = x − proxP(x −∇f (x)) be the residue (recall from (FP) that
R(x) = 0 iff x ∈ X ).



Analyzing First–Order Methods for
Solving (RLM)

• Suppose that Problem (RLM) possesses the following property:

• (Error Bound) There exist κ, ρ > 0 such that

dist(x ,X ) ≤ κ‖R(x)‖2 whenever dist(x ,X ) ≤ ρ. (EB)

• Suppose further that the FOM in question has the following
properties:

• (Sufficient Decrease) There exist c1 > 0 such that

F (xk)− F (xk+1) ≥ c1‖xk+1 − xk‖22. (A1)

• (Cost–to–Go Estimate) There exist c2 > 0 such that

F (xk+1)− Fmin ≤ c2
(
dist(xk ,X )2 + ‖xk+1 − xk‖22

)
. (A2)

• (Safeguard) There exist c3 > 0 such that

‖R(xk)‖2 ≤ c3‖xk+1 − xk‖2. (A3)

• Then, the FOM in question converges linearly; i.e.,
dist(xk+1,X ) ≤ c · dist(xk ,X ) for some c ∈ (0, 1) [Luo-Tseng’93].



Validity of Error Bounds

• Many FOMs are known to satisfy (variants) of (A1)–(A3).

• Thus, in this talk, we focus on the validity of (EB). Specifically, we
are interested in the following:

Question

• Under what kind of conditions on f and P would (EB) hold?



Existing Results

Consider a general convex optimization problem of the form

min
x∈E
{F (x) := f (x) + P(x)} . (NCP)

Then, Problem (NCP) possesses (EB) when

(a) f is strongly convex [Pang’87];

(b) f (x) = h(A(x)), P(x) is of polyhedral epigraph [Luo-Tseng’92];

(c) f (x) = h(A(x)), P(x) is the grouped LASSO or sparse grouped
LASSO regularizer [Tseng’09, Zhang-Jiang-Luo’13].

Here, h is a smooth, strongly convex function whose gradient ∇h is
Lipschitz continuous on any compact subset of RN .

Question

• Can these results be established in a unified manner?
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Setup

In the sequel, we focus on instances of Problem (NCP) that satisfy the
following:

Assumptions

(A1). f takes the form
f (x) = h(A(x)),

where A : E → RN is a linear operator, h : RN → R is strongly
convex and ∇h is Lipschitz continuous on any compact subset of
dom(h).

(A2). X is non-empty and bounded.

Examples:

• Least square loss: h(y) = 1
2‖y − b‖22

• Logistic loss: h(y) =
∑m

i=1 log(1 + eyi )− 〈b, y〉, b ∈ {0, 1}m



Properties on Optimality

Recall that
X = {x ∈ Rn | 0 ∈ ∇f (x) + ∂P(x)} .

Since h is strictly convex, we have

• Invariance of A(x) over X :

∃ȳ ∈ Rm such that A(x) = ȳ , ∀x ∈ X .

• Invariance of ∇f (x) over X :

∇f (x) = ḡ := A∗∇h(ȳ), ∀x ∈ X .

Proposition (Optimal Solution Set)

Suppose that Assumptions (A1) and (A2) are satisfied. There exists a
pair (ȳ , ḡ) ∈ Rm × Rn such that

X = {x ∈ E | A(x) = ȳ , −ḡ ∈ ∂P(x)} .



Error Bound with
Alternative Residual Function

The characterization of X motivates the following alternative residual
function, also known as the backward error:

r̃(x) := ‖A(x)− ȳ‖2 + dist(−ḡ , ∂P(x)).

Hence, we may consider the following error bound:

Error Bound with Alternative Residual Function

There exist constants κ, ρ > 0 such that

dist(x ,X ) ≤ κ · r̃(x) whenever dist(x ,X ) ≤ ρ. (EBR)



(EB) and (EBR) are Equivalent

At first sight, (EBR) looks quite different from (EB):

dist(x ,X ) ≤ κ‖R(x)‖2 whenever dist(x ,X ) ≤ ρ. (EB)

dist(x ,X ) ≤ κ · r̃(x) whenever dist(x ,X ) ≤ ρ. (EBR)

However, we can show that

Theorem

Suppose that Assumptions (A1) and (A2) are satisfied. Then, the error
bound (EB) holds if and only if the error bound (EBR) holds.

Hence, instead of dealing with (EB), it suffices to consider the validity
of (EBR).



Validity of (EBR)

• Recall that the optimal solution set can be expressed as

X = {x ∈ E | A(x) = ȳ , −ḡ ∈ ∂P(x)}

and the error bound (EBR) asks for the inequality

dist(x ,X ) ≤ κ(‖A(x)− ȳ‖2 + dist(−ḡ , ∂P(x))︸ ︷︷ ︸
r̃(x)

).

• Define

Γf (ȳ) := {x ∈ E | A(x) = ȳ}, ΓP(ḡ) := {x ∈ E | −ḡ ∈ ∂P(x)}.

Then, X = Γf (ȳ) ∩ ΓP(ḡ).

• Furthermore, define the residual functions for Γf (ȳ) and ΓP(ḡ) by

rf (x) := ‖A(x)− ȳ‖2, rP(x) := dist(−ḡ , ∂P(x)).

Obviously, it follows that r̃(x) = rf (x) + rP(x).



Validity of (EBR)

Assume the following inequalities hold:

• dist(x , Γf (ȳ) ∩ ΓP(ḡ)) ≤ κ1 [dist(x , Γf (ȳ)) + dist(x , ΓP(ḡ))];

• dist(x , Γf (ȳ)) ≤ κf · rf (x);

• dist(x , ΓP(ḡ)) ≤ κP · rP(x).

Then, the error bound (EBR) holds:

dist(x ,X ) = dist(x , Γf (ȳ) ∩ ΓP(ḡ))

≤ κ1 [dist(x , Γf (ȳ)) + dist(x , ΓP(ḡ))]

≤ κ1 [κf · rf (x) + κP · rP(x)]

≤ κ1(κf + κP)(rf (x) + rP(x))

= κ · r̃(x),

where we let κ := κ1(κf + κP).

However, the first and third inequalities does not come for free!



Sufficient Conditions for (EB)

Theorem

Suppose that Assumptions (A1) and (A2) are satisfied. If in addition the
following two conditions are satisfied, then the error bound (EBR) holds:

(C1). The collection of convex sets {Γf (ȳ), ΓP(ḡ)} is boundedly
linearly regular (BLR); i.e., there exists a constant κ > 0 along
with a neighbourhood U of Γf (ȳ) ∩ ΓP(ḡ) such that for all x ∈ U ,

dist (x , Γf (ȳ) ∩ ΓP(ḡ)) ≤ κ [dist (x , Γf (ȳ)) + dist (x , ΓP(ḡ))] .

(C2). For any x̄ ∈ X , the subdifferential mapping ∂P is metrically
sub–regular at x̄ for −ḡ ; i.e., there exists a constant κ > 0 along
with a neighorbood U of x̄ such that for all x ∈ U ,

dist
(
x , (∂P)−1(−ḡ)

)
≤ κ · dist(−ḡ , ∂P(x)).

In other words, (∂P)−1 is calm.

Consequently, if conditions (C1) and (C2) are satisfied, then the error
bound (EB) also holds.



Remarks

• Note that

(∂P)−1(−ḡ) = {x ∈ E | −ḡ ∈ ∂P(x)} = ΓP(ḡ).

• Summary of the proof logic: Under Assumptions (A1) and (A2),

(EB) ⇐⇒ (EBR) ⇐=

{
(C1)
(C2)

• In addition, we have

Fact [Bauschke-Borwein-Li’99, Corollary 3]

The collection {Γf (ȳ), ΓP(ḡ)} is BLR if

Γf (ȳ) ∩ ri (ΓP(ḡ)) 6= ∅.



A Unified Framework for
Establishing (EB)

• Our framework allows us to establish a number of existing error
bound results in a unified manner.

• More interestingly, it leads to new error bound results.

• The validity of (EB) implies that F = f + P is a so–called
Kurdyka– Lojasiewicz (KL) function with exponent 1/2.
[Li-Pong’17]
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`1,p–Regularization

We explore the error bound for

min
x∈Rn
{F (x) := f (x) + P(x)} ,

where P : Rn → R is the so-called `1,p–norm regularizer with p ∈ [1,∞]:

P(x) =
∑
J∈J

ωJ‖xJ‖p.

Here, ‖ · ‖p is the vector p-norm:

‖x‖p =


(∑l

i=1 |xi |p
)1/p

if p ∈ [1,∞);

maxi{|xi |} if p =∞
, ∀x ∈ Rl .



`1,p–Regularization: Applications

Applications of `1,p–regularization include:

• LASSO [Tibshirani’96]:

min
x∈Rn

{
1

2
‖Ax − b‖2 + λ‖x‖1

}
• Grouped LASSO [Yuan-Lin’06, Meier-van der

Geer-Bühlmann’08]: e.g., with logistic loss

min
x∈Rn

{
m∑
i=1

log(1 + ea
T
i x)− 〈bi , aTi x〉+

∑
J∈J

ωJ‖xJ‖2

}
, b ∈ {0, 1}m

• Multi–task feature learning [Zhang et al.’10]

• Multiple Kernel Learning [Tomioka-Suzuki’10]



Conditions (C1) and (C2)

Lemma 1 [Bounded Linear Regularity]

Let P be the `1,p–norm regularizer. For any ḡ ∈ Rn, the set ΓP(ḡ) is
polyhedral. Consequently, the collection {Γf (ȳ), ΓP(ḡ)} is BLR for any
(ȳ , ḡ) ∈ Rm × Rn.

Lemma 2 [Metric Sub–Regularity]

Let P be the `1,p–norm regularizer. Suppose that p ∈ [1, 2] ∪ {∞}.
Then, for any (x̄ , ḡ) ∈ Rn × Rn satisfying −ḡ ∈ ∂P(x̄), ∂P is metrically
sub–regular at x̄ for −ḡ .

Summary: For `1,p–norm regularization,

• Condition (C1) is always valid;

• Condition (C2) is valid if p ∈ [1, 2] ∪ {∞}.



Validity of (EB)

Error Bound for `1,p–Regularization

Suppose that Assumptions (A1) and (A2) are satisfied and P is the
`1,p–norm regularizer. Then,

• (EB) always holds when p ∈ [1, 2] and p =∞;

• (EB) fails in general when p ∈ (2,∞).

Remarks: “Fails in general” means that for any p ∈ (2,∞), we can
construct an instance of `1,p–regularization that satisfies Assumptions
(A1) and (A2) but does not satisfy (EB).



Failure of Error Bound: An Example

Consider the following problem:

min
x∈R2

{
1

2
‖Ax − b‖2 + ‖x‖p

}
(Q)

with A = (1, 0) and b = 2.

Proposition

Let Fmin be the optimal value of Problem (Q) and X be its optimal
solution set. Then, we have Fmin = 1.5 and

X =

{
{(1, 0)T} when p ∈ [1,∞),
{(1, s)T | −1 ≤ s ≤ 1} when p =∞.

• We will focus on p ∈ (2,∞) in the sequel.



Failure of Error Bound: An Example

• Let {δk}k≥0 be a sequence converging to zero; i.e., δk = o(1). For
simplicity, we assume that δk > 0 for all k ≥ 0.

• Consider the sequence {xk}k≥0 with

xk1 := 2− (1− δk)
1
q , xk2 :=

2− (1− δk)
1
q

(1− δk)
1
p

· δ
1
p

k + δ
1
q

k ,

where q is the Hölder conjugate of p. The sequence {xk}k≥0
converges to X .

• For this particular sequence, one can prove that

xk − proxP(xk −∇f (xk)) = (0,−δ1/qk )T .

Hence, ‖R(xk)‖2 = ‖xk − proxP(xk −∇f (xk))‖2 = δ
1/q
k .



Failure of Error Bound: An Example

• Simple calculation leads to

dist(xk ,X ) = ‖xk − (1, 0)T‖2 = Θ(δ
1/p
k ).

• The rate ‖R(xk)‖2 approaches to 0 is Θ(δ
1/q
k ).

• When p ∈ (2,∞), 1/p < 1/q and hence δ
1/q
k = o(δ

1/p
k ).

• Therefore, there is no constant κ > 0 such that

dist(xk ,X ) ≤ κ‖R(xk)‖2.

Result

Error bound for Problem (Q) fails for any p ∈ (2,∞) !



Failure of Error Bound: An Example
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Trace Norm Regularization

We explore the error bound for

min
X∈Rm×n

{F (X ) := f (X ) + P(X )} ,

where P(X ) is the trace norm regularizer; i.e.,

P(X ) =
m∑
i=1

σi (X ).

• WLOG, we assume that m ≤ n.

• σi (X ) is the i–th singular value of X .



Conditions (C1) and (C2)

Lemma 1 [Bounded Linear Regularity]

Suppose that Assumptions (A1) and (A2) are satisfied and P is the trace
norm regularizer. If there exists an X ∗ ∈ X such that

0 ∈ ∇f (X ∗) + ri(∂P(X ∗)),

then the collection {Γf (ȳ), ΓP(−ḡ)} is BLR.

Lemma 2: Metric Sub–Regularity of ∂P

Let P be the trace norm regularizer. For any two matrices X̄ and ḡ
satisfying −ḡ ∈ ∂P(X̄ ), the set-valued mapping ∂P is metrically
sub–regular at X̄ for −ḡ .



Validity of (EB)

Summary: For trace norm regularization:

• Condition (C1) is not always satisfied;

• Condition (C2) is always valid.

Error Bound for Trace Norm Regularization

Suppose that Assumptions (A1) and (A2) are satisfied. If there exists an
X ∗ ∈ X such that

0 ∈ ∇f (X ∗) + ri(∂P(X ∗)),

then the error bound for trace norm regularization holds.

Remarks on the condition:

• It can be viewed as a strict complementarity condition.

• Without such condition, examples for which the error bound fails
can be constructed.



Failure of Error Bound: An Example

Consider the following problem:

min
X∈R2×2

{f (X ) + ‖X‖∗} , (R)

where f (X ) = h(A(X )). Moreover, we specify A, h as follows:

• Linear operator A : R2×2 → R2 is given by A(X ) = (X11, X22).

• Strongly convex function h : R2 → R is given by

h(y) =
1

2
(y − B−1d)TB(y − B−1d)

with

B =

[
3/2 −2
−2 3

]
and d =

[
5/2
−1

]
.

It is easy to prove that the optimal solution set X =

{[
1 0
0 0

]}
.



Failure of Error Bound: An Example

Suppose that {δk} = o(1). Consider a sequence {X k}k≥0 given by

X k =

[
1 + 2δ2k δk
δk δ2k

]
.

• The rate at which {X k}k≥0 approaches X :

dist(X k ,X ) = ‖X k − X̄‖F = Θ(δk).

• The rate at which {‖R(X k)‖F}k≥0 approaches 0:

‖R(X k)‖F = Θ(δ2k).

Therefore, ‖R(X k)‖F = o(dist(X k ,X )); i.e., error bound fails.



Failure of Error Bound: An Example

Reason of failure: The optimal solution set is {X̄}, where X̄ =

[
1 0
0 0

]
.

• ∇f (X̄ ) =

[
−1 0
0 −1

]
.

• ∂‖X̄‖∗ = {Z ∈ R2×2 | Z11 = 1, Z12 = Z21 = 0, Z22 ∈ [−1, 1]}.

• 0 ∈ ∇f (X̄ ) + ∂‖X̄‖∗. However, 0 /∈ ∇f (X̄ ) + ri(∂‖X̄‖∗).



Failure of Error Bound: An Example

Figure: Proximal gradient method for solving (R).
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Take–Away

Key points of this talk:

• Error bounds provide a useful handle for analyzing the convergence
rates of first–order methods, especially when the problems in
question do not have a strongly convex objective.

• We establish sufficient conditions for error bound, which reduces the
validity of (EB) to considering the conditions (C1) and (C2).

• Our framework provides a unified treatment of a number of existing
error bound results.

• For `1,p–regularization, we show that error bound holds when
p ∈ [1, 2] ∪ {∞} while it fails in general when p ∈ (2,∞).

• For trace norm regularization, we prove that the error bound holds
as long as a strict complementarity condition is satisfied.



Discussion

• The error bounds discussed in this talk can also be used to establish
the superlinear convergence of a certain Newton–type method for
solving (RLM) [Yue-Zhou-S.’16].

• The error bound-based convergence analysis framework is applicable
to the non–convex setting as well, though error bounds for
non–convex optimization problems are generally very difficult to
establish. Some recent results include:

• Matrix completion [Keshavan-Montanari-Oh’10]

• Phase retrieval [Candès-Li-Soltanolkotabi’15]

• Phase synchronization [Liu-Yue-S.’16]

• Quadratic optimization with orthogonality constraint [Liu-Wu-S.’16]



This talk is based on

• Z. Zhou, A. M.–C. So. A Unified Approach to Error Bounds for
Structured Convex Optimization Problems. Mathematical
Programming, Series A, to appear, 2016.

Thank You!
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