A parameterized Douglas-Rachford algorithm

Xianfu Wang
University of British Columbia
shawn.wang@ubc.ca
Tuesday 17:05-17:40
Splitting Algorithms, Modern Operator Theory, and Applications
Oaxaca, Mexico

September 19, 2017

Outline

(9) Setup

(2) Properties of α-Douglas-Rachford algorithm.
(3) A numerical experiment of solving $0 \in A x+B x$.

4 Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
(5) A numerical experiment of solving primal-dual problem.

Setup

The Euclidean space \mathbb{R}^{m} has an inner product $\langle\cdot, \cdot\rangle$, and norm $\|\cdot\|$. Assume that
A, B are maximally monotone operator on \mathbb{R}^{m}
and
$f, g: \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$ are proper, lower semicontinuous and convex.

Goal: Find $x \in \operatorname{zer}(A+B)$, i.e.,

$$
0 \in A x+B x
$$

[^0]
The connection to the optimization problem

If we assume $\operatorname{dom} f \cap \operatorname{intdom} g \neq \emptyset$, and $A=\partial f, B=\partial g$.
Solving the problem: Find $x \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
x \in \operatorname{zer}(A+B) \tag{1}
\end{equation*}
$$

means solving the optimization problem: Find $x \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
x \in \operatorname{Argmin}\{f+g\} \tag{2}
\end{equation*}
$$

${ }^{1} \partial f(x):=\left\{v \in \mathbb{R}^{m}: f(y) \geq f(x)+\langle v, y-x\rangle\right.$ for all $\left.y \in \mathbb{R}^{m}\right\}$.

The Douglas-Rachford splitting operator

The Douglas-Rachford splitting operator, introduced by Lions and Mercier, associated with the maximally monotone operators A, B is

$$
D_{A, B}=\frac{\mathrm{Id}-R_{B}+2 J_{A} R_{B}}{2}=\frac{1}{2} \mathrm{Id}+\frac{1}{2} R_{A} R_{B},
$$

where J_{A} and R_{A} denote the resolvent and the reflected resolvent of A, defined by

$$
J_{A}:=(\mathrm{Id}+A)^{-1}, \quad R_{A}:=2 J_{A}-\mathrm{Id}
$$

respectively. We recall that J_{A} is firmly nonexpansive and R_{A} is nonexpansive.

[^1]
The Douglas-Rachford algorithm

Fact 1 (Lions-Mercier, 1979)

Suppose $\operatorname{zer}(A+B) \neq \emptyset$. Let $x_{0} \in \mathbb{R}^{m}$ be the starting point. Set

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \tag{DR}\\
z_{n}=J_{A}\left(2 y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right) .
\end{array}\right.
$$

Then there exists $x \in$ Fix $R_{A} R_{B}$ such that the following hold:
(1) $J_{B} x \in \operatorname{zer}(A+B)$.
(1) $\left(y_{n}-z_{n}\right)_{n=1}^{+\infty}$ converges to 0 .
(1) $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x.
(0) $\left(y_{n}\right)_{n=1}^{+\infty}$ converges to $J_{B} x$.
(0) $\left(z_{n}\right)_{n=1}^{+\infty}$ converges to $J_{B} X$.
${ }^{1}$ The fixed points set is Fix $T=\left\{x \in \mathbb{R}^{m}: T x=x\right\}$.

Question: What happens if we change the parameter 2 into α, where $\alpha \in[1,2)$?

Outline

(1) Setup
(2) Properties of α-Douglas-Rachford algorithm.
(3) A numerical experiment of solving $0 \in A x+B x$.
4. Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
(5) A numerical experiment of solving primal-dual problem.

Theorem 2

Let

$$
R_{A}^{\alpha}=\alpha J_{A}-\mathrm{Id}, \quad R_{B}^{\alpha}=\alpha J_{B}-\mathrm{Id}
$$

Then R_{A}^{α} and R_{B}^{α} are nonexpansive if $\alpha \in[1,2)$.

Theorem 3

If $0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B)$, then $\operatorname{zer}(A+B+\gamma$ Id $) \neq \emptyset$ when $\gamma \in \mathbb{R}_{++}$.

Theorem 4

Let $\alpha \in[1,2)$, and $0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B)$. Let $T=R_{A}^{\alpha} R_{B}^{\alpha}$. Then
(1) T is nonexpansive.
(1) $J_{B}($ Fix $T)=\operatorname{zer}(A+B+(2-\alpha) \mathrm{Id})$.
(T) Consequently, Fix $T \neq \emptyset$.

[^2]
The α-Douglas-Rachford splitting operator

Changing the parameter 2 of the algorithm (DR) into α, where $\alpha \in[1,2)$, we propose the α-DR algorithm

$$
\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \\
z_{n}=J_{A}\left(\alpha y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right) .
\end{array}\right.
$$

We call it α-Douglas-Rachford splitting operator:

$$
D_{A, B}^{\alpha}=\left(1-\frac{1}{\alpha}\right) \operatorname{Id}+\frac{1}{\alpha} R_{A}^{\alpha} R_{B}^{\alpha} .
$$

$D_{A, B}^{\alpha}$ is an averaged operator.
Remark
Let $D \subseteq \mathbb{R}^{m}, T: D \rightarrow \mathbb{R}^{m}$, and $\gamma \in[0,1]$. T is called γ - averaged, if there exists a nonexpansive operator $N: D \rightarrow \mathbb{R}^{m}$ such that
$T=(1-\gamma) \mathrm{ld}+\gamma N$.

α-Douglas-Rachford algorithm

Theorem 5

Let $\alpha \in(1,2)$ and $0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B)$. Let $x_{0} \in \mathbb{R}^{m}$ be the starting point. Set

$$
\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \\
z_{n}=J_{A}\left(\alpha y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right) .
\end{array}\right.
$$

Then there exists $x \in \operatorname{Fix} R_{A}^{\alpha} R_{B}^{\alpha}$ such that the following hold:
(0) $J_{B} X=\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}+(2-\alpha) \mathrm{Id})$.
(1) $\left(y_{n}-z_{n}\right)_{n=1}^{+\infty}$ converges to 0 .
(1) $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x.
(a) $\left(y_{n}\right)_{n=1}^{+\infty}$ converges to $J_{B} x$.
(2) $\left(z_{n}\right)_{n=1}^{+\infty}$ converges to $J_{B} x$.

The Krasnosel'ski í-Mann algorithm plays an important role.

Fact 6

Let D be a nonempty closed convex subset of \mathbb{R}^{m}, let $T: D \rightarrow D$ be a nonexpansive operator such that Fix $T \neq \emptyset$, where the fixed points set

$$
\operatorname{Fix} T=\left\{x \in \mathbb{R}^{m}: T x=x\right\}
$$

Let $\left(\lambda_{n}\right)_{n=1}^{+\infty}$ be a sequence in $[0,1]$ such that $\sum_{n=1}^{+\infty} \lambda_{n}\left(1-\lambda_{n}\right)=+\infty$, and let $x_{0} \in D$. Set

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}+\lambda_{n}\left(T x_{n}-x_{n}\right) .
$$

Then the following hold:
(1) $\left(T x_{n}-x_{n}\right)_{n=1}^{+\infty}$ converges to 0 .
(2) $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to a point in Fix T.

Proof of Theorem 4

(1) Let $T=R_{A}^{\alpha} R_{B}^{\alpha}$, we proved that Fix $T \neq \emptyset$ and $J_{B}($ Fix $T)=\operatorname{zer}(A+B+(2-\alpha)$ Id $)$. Therefore, there exists $x=R_{A}^{\alpha} R_{B}^{\alpha} x$ such that

$$
J_{B} X=\operatorname{zer}(A+B+(2-\alpha) \operatorname{ld}) .
$$

(1) From

$$
\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \\
z_{n}=J_{A}\left(\alpha y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right),
\end{array}\right.
$$

it follows that

$$
z_{n}-y_{n}=\frac{1}{\alpha}\left(T x_{n}-x_{n}\right)
$$

Therefore, $z_{n}-y_{n} \rightarrow 0$.

Proof continued

(1) Since $1<\alpha<2,\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x.

- In \mathbb{R}^{m}, by using that J_{B} is Lipschitz continuous, we get

$$
\lim _{n \rightarrow+\infty} y_{n}=\lim _{n \rightarrow+\infty} J_{B}\left(x_{n}\right)=J_{B}\left(\lim _{n \rightarrow+\infty} x_{n}\right)=J_{B} X
$$

(-. Combining result (ii) and result (iv), we have

$$
z_{n}=\left(z_{n}-y_{n}\right)+y_{n} \rightarrow 0+J_{B} x, \text { i.e., } z_{n} \rightarrow J_{B} x
$$

The α-Douglas-Rachford algorithm with $\alpha \rightarrow \mathbf{2}$

Theorem 7

Let $0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B)$ and $\operatorname{zer}(A+B) \neq \emptyset$. Let $\left(\alpha_{k}\right)_{k=1}^{+\infty}$ be an increasing sequence in $[1,2)$ such that $\lim _{k \rightarrow+\infty} \alpha_{k}=2$. Set

$$
\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \\
z_{n}=J_{A}\left(\alpha_{k} y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right) .
\end{array}\right.
$$

Then for any fixed α_{k}, there exists a corresponding $x_{k}^{*} \in \operatorname{Fix} R_{A}^{\alpha_{k}} R_{B}^{\alpha_{k}}$ such that $J_{B} x_{k}^{*}=\operatorname{zer}\left(A+B+\left(2-\alpha_{k}\right) \mathrm{Id}\right)$, and the following hold:
(a) $\lim _{\alpha_{k} \rightarrow 2} J_{B} x_{k}^{*}=\mathrm{P}_{\mathrm{zer}(A+B)}(0)$.
(0) For any fixed $\alpha_{k},\left(x_{n}\right)_{n=1}^{+\infty}$ converges to its corresponding x_{k}^{*}.
(c) Suppose $\left(x_{k}^{*}\right)_{k=1}^{+\infty}$ is a convergent sequence with limit x^{*}. Then $J_{B} X^{*} \in \operatorname{zer}(A+B)$, and $\left\|J_{B} X^{*}\right\| \leq\|y\|$ for any $y \in \operatorname{zer}(A+B)$.

Proof

(a) $J_{B} x_{k}^{*}=\operatorname{zer}\left(A+B+\left(2-\alpha_{k}\right)\right.$ Id $)$ implies

$$
0 \in(A+B) J_{B} x_{k}^{*}+\left(2-\alpha_{k}\right)\left(J_{B} x_{k}^{*}-0\right)
$$

Because A, B are maximally monotone and
$0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B), A+B$ is maximally monotone. As $\operatorname{zer}(A+B) \neq \emptyset$, we have

$$
J_{B} x_{k}^{*} \rightarrow \mathrm{P}_{\operatorname{zer}(A+B)}(0) \text { as }\left(2-\alpha_{k}\right) \downarrow 0
$$

That is,

$$
\lim _{\alpha_{k} \rightarrow 2} J_{B} x_{k}^{*}=\mathrm{P}_{\mathrm{zer}(A+B)}(0)
$$

[^3]${ }^{1}$ Fact Let $x \in \mathbb{R}^{m}$. Then the inclusions $(\forall \gamma \in(0,1)) \quad 0 \in A x_{\gamma}+\gamma\left(x_{\gamma}-x\right)$ define a unique curve $\left(x_{\gamma}\right)_{\gamma \in(0,1)}$. Moreover, exactly one of the following holds:

Proof continued

(b) Once α_{k} is fixed, we have $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x_{k}^{*} by Theorem 4(iii).
(c) In \mathbb{R}^{m}, by using that J_{B} is Lipschitz continuous, we get

$$
\lim _{k \rightarrow+\infty} J_{B}\left(x_{k}^{*}\right)=J_{B}\left(\lim _{k \rightarrow+\infty} x_{k}^{*}\right)=J_{B}\left(x^{*}\right)
$$

As we already proved $\lim _{k \rightarrow+\infty} J_{B}\left(x_{k}^{*}\right)=\mathrm{P}_{\mathrm{zer}(A+B)}(0)$, we have

$$
J_{B}\left(x^{*}\right)=\mathrm{P}_{\operatorname{zer}(A+B)}(0) .
$$

Therefore, $J_{B} X^{*} \in \operatorname{zer}(A+B)$, and $\left\|J_{B} X^{*}\right\| \leq\|y\|$ for any $y \in \operatorname{zer}(A+B)$.

Least norm solution of convex feasibility

Theorem 8

Let $C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ be two closed convex suets such that $C_{1} \cap$ ri $C_{2} \neq \emptyset$ or ri $C_{1} \cap C_{2} \neq \emptyset$. Then for every $1<\alpha_{k}<2$, the α_{k}-DR algorithm

$$
\left\{\begin{array}{l}
y_{n}=\mathrm{P}_{c_{2}}\left(x_{n}\right) \tag{3}\\
z_{n}=\mathrm{P}_{c_{1}}\left(\alpha_{k} y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right)
\end{array}\right.
$$

generates a sequence $\left(x_{n}\right)_{n=1}^{+\infty}$ such that:
(1) $x_{n} \rightarrow x^{*}$.
(2) $P_{C_{2}} x^{*}$ is the least norm point of $C_{1} \cap C_{2}$.

Remark 2.1

The scheme is different from Dykstra's alternating projection algorithm.

Outline

(1) Setup
(2) Properties of α-Douglas-Rachford algorithm.
(3) A numerical experiment of solving $0 \in A x+B x$.
4. Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
(5) A numerical experiment of solving primal-dual problem.

Example 1

Let $f=I_{C_{1}}, g=I_{C_{2}}$, where C_{1} is a circle centred at $(5,0)$ with radius 2 , and C_{2} is a box centred at $(3,1.5)$ with radius 1 . Let $A=\partial f, B=\partial g$, the problem we want to solve is:

$$
\begin{equation*}
0 \in N_{C_{1}}(x)+N_{C_{2}}(x) . \tag{4}
\end{equation*}
$$

Figure: The plot of Example 1
${ }^{1}$ Let C be a set in \mathbb{R}^{m}. The indicator function is

$$
I_{C}: \mathbb{R}^{m} \rightarrow[-\infty,+\infty]: x \mapsto \begin{cases}0, & \text { if } x \in C ; \\ +\infty & \text { otherwise } .\end{cases}
$$

${ }^{2}$ Let C be a nonempty convex set in \mathbb{R}^{m} and $x \in \mathbb{R}^{m}$. Then

$$
N_{C}(x)= \begin{cases}\left\{u \in \mathbb{R}^{m} \mid \sup \langle C-x, u\rangle \leq 0\right\}, & \text { if } x \in C ; \\ \emptyset & \text { otherwise. }\end{cases}
$$

Theoretical results

Let α_{k} be a increasing convergent sequence in $[1,2)$ such that $\lim _{k \rightarrow+\infty} \alpha_{k}=2$. Then the following holds:
(1) The inclusion problem: For any fixed α_{k}, find $x \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
0 \in N_{C_{1}}(x)+N_{C_{2}}(x)+\left(2-\alpha_{k}\right)(x) \tag{5}
\end{equation*}
$$

is reduced to (4) as $\alpha_{k} \rightarrow 2$.
(2) The problem (5) can be solved by the α-Douglas-Rachford algorithm.

Numerical result

With $x_{0}=(5,1)$ and the stopping criteria being $\left\|x_{n+1}-x_{n}\right\|<\epsilon=10^{-5}$, we obtain:

Table: α_{k}-DR: optimization point $y^{*},\left\|y^{*}\right\|$.

α_{k}	y^{*}	$\left\\|y^{*}\right\\|$
1	$(3.0635,0.5)$	3.104
$2-\frac{1}{10}$	$(3.0635,0.5)$	3.104
$2-\frac{1}{50}$	$(3.0635,0.5)$	3.104
$2-\frac{1}{100}$	$(3.0635,0.5)$	3.104
$2-\frac{1}{1000}$	$(3.0635,0.5)$	3.104
$2-\frac{1}{10000}$	$(3.0635,0.5)$	3.104

Numerical result

However, when we use the classic Douglas-Rachford algorithm to solve (4), the answer changes if we choose different starting point.

Table: DR: starting point x_{0}, optimization point $y^{*},\left\|y^{*}\right\|$.

x_{0}	y^{*}	$\left\\|y^{*}\right\\|$
$(5,1)$	$(4,0.8944)$	4.0988
$(-3,1)$	$(3.0785,0.5548)$	3.1281
$(-4,-6)$	$(4,0.5)$	4.0311
$(10,-20)$	$(4,0.5)$	4.0311

(As $\alpha_{k} \rightarrow 2$, the optimization result which is gotten by the α-Douglas-Rachford algorithm converges to the smallest norm solution of (4).
(2) When using Douglas-Rachford algorithm to solve (4), the answer changes if we choose different starting point. However, the selection of starting points has no influence on the result when we use the α-Douglas-Rachford algorithm.

Outline

(1) SetupProperties of α-Douglas-Rachford algorithm.A numerical experiment of solving $0 \in A x+B x$.

4 Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
(5) A numerical experiment of solving primal-dual problem.

Combettes', Bot-Hendrich's primal-dual framework

Assume that
$L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a nonzero bounded linear invertible operator, and

$$
r \in \mathbb{R}^{m}
$$

The primal problem: find a point $\bar{x} \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
0 \in A \bar{x}+L^{\star}(B \square D)(L \bar{x}-r) \tag{P}
\end{equation*}
$$

One can solve the primal-dual problem instead: find a point $(x, v) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ such that

$$
\left\{\begin{array}{l}
-L^{\star} v \in A x \tag{PD}\\
v \in(B \square D)(L x-r) .
\end{array}\right.
$$

${ }^{1}$ The parallel sum of B, D is defined as $B \square D: \mathbb{R}^{m} \rightarrow 2^{\mathbb{R}^{m}}$, and

$$
B \square D=\left(B^{-1}+D^{-1}\right)^{-1} .
$$

Fact 9 (Bot and Hendrich' 2013, Combettes' 2013)

Define three set-valued operators M, Q and S as follows:

$$
\begin{aligned}
& M: \mathcal{K} \rightarrow 2^{\mathcal{K}}:(x, v) \mapsto\left(A x, r+B^{-1} v\right) \\
& Q: \mathcal{K} \rightarrow 2^{\mathcal{K}}:(x, v) \mapsto\left(0, D^{-1} v\right) \\
& S: \mathcal{K} \rightarrow \mathcal{K}:(x, v) \mapsto\left(L^{\star} v,-L x\right)
\end{aligned}
$$

Moreover, define an bounded linear operator

$$
V: \mathcal{K} \rightarrow \mathcal{K}:(x, v) \mapsto\left(\frac{x}{\tau}-\frac{1}{2} L^{\star} v, \frac{v}{\sigma}-\frac{1}{2} L x\right),
$$

where $\tau, \sigma \in \mathbb{R}_{++}$, and $\tau \sigma\|L\|^{2}<4$.

Fact continued

Finally, define two operators on $\mathcal{K} V$:

$$
\begin{aligned}
\boldsymbol{A} & :=V^{-1}\left(\frac{1}{2} S+Q\right) \\
\boldsymbol{B} & :=V^{-1}\left(\frac{1}{2} S+M\right)
\end{aligned}
$$

Here, the space $\mathcal{K} V$ is an inner product space with $\langle x, y\rangle_{\mathcal{K} V}=\langle x, V y\rangle_{\mathcal{K}}$. Then any

$$
(\bar{x}, \bar{v}) \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})
$$

is a pair of primal-dual solution to problem(PD) and vice versa.
${ }^{1}$ Bot and Hendrich also showed:

- V^{-1} exists.
- \boldsymbol{A} and \boldsymbol{B} are maximally monotone on $\mathcal{K} V$, and $\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{zer}(M+S+Q)$.

When $\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}) \neq \emptyset$, they used the Douglas-Rachford algorithm to get the solution of the problem with primal inclusion (P) together with dual inclusion (PD) :
Let $x_{0} \in \mathbb{R}^{m}$ be the starting point. Set

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
y_{n}=J_{B} x_{n} \\
z_{n}=J_{A}\left(2 y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right)
\end{array}\right.
$$

Then there exists $x \in \operatorname{Fix} R_{A} R_{B}$ such that $J_{\boldsymbol{B}} x \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$, and $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x .

The α-version primal-dual problem

Recall the construction of $M, Q, S, V, \boldsymbol{A}$ and \boldsymbol{B}. Let $\alpha \in[1,2)$, and for any $\beta \in \mathbb{R}$, define $B \stackrel{\beta}{\square} D=\left(B^{-1}+D^{-1}+\beta \text { Id }\right)^{-1}$. Then the following two inclusion problems are equivalent:
(1) Find $(x, v) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ such that $(x, v) \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}+(2-\alpha) \mathrm{Id})$.
(2) Solve the problem with primal inclusion: find $x \in \mathbb{R}^{m}$ such that

$$
0 \in \boldsymbol{A} \boldsymbol{x}+\frac{2-\alpha}{\tau} \boldsymbol{x}+\frac{\alpha}{4-\alpha} \boldsymbol{L}^{\star} \circ\left(B \stackrel{\frac{2-\alpha}{\sigma}}{\square} \boldsymbol{D}\right) \circ(\boldsymbol{L} x-r)
$$

where $\boldsymbol{L}=\frac{4-\alpha}{2} L, \tau \in \mathbb{R}_{++}$and $\sigma \in \mathbb{R}_{++}$, together with the dual inclusion: find (x, v) such that

$$
\left\{\begin{array}{l}
-\frac{\alpha}{4-\alpha} \boldsymbol{L}^{\star} \boldsymbol{V} \in A x+\frac{(2-\alpha)}{\tau} x \\
\boldsymbol{v} \in\left(B \underset{\frac{2-\alpha}{\square}}{\square} D\right)(\boldsymbol{L} x-r) .
\end{array}\right.
$$

When $0 \in \operatorname{int}(\operatorname{dom} \boldsymbol{A}-\operatorname{dom} \boldsymbol{B})$,

$$
\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}+(2-\alpha) \operatorname{ld})
$$

can be solved by using the α-Douglas-Rachford algorithm:
Let $x_{0} \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ be the starting point. Set

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
y_{n}=J_{\boldsymbol{B}} x_{n} \\
z_{n}=J_{\boldsymbol{A}}\left(\alpha y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right) .
\end{array}\right.
$$

Then there exists $x \in$ Fix $R_{A}^{\alpha} R_{B}^{\alpha}$ such that $J_{\boldsymbol{B}} \boldsymbol{X} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}+(2-\alpha) \mathrm{ld})$, and $\left(x_{n}\right)_{n=1}^{+\infty}$ converges to x .

The α-Douglas-Rachford algorithm can be used to solve the α-primal-dual problem with primal inclusion: find $x \in \mathbb{R}^{m}$ such that

$$
0 \in \boldsymbol{A} \boldsymbol{x}+\frac{2-\alpha}{\tau} x+\frac{\alpha}{4-\alpha} \boldsymbol{L}^{\star} \circ\left(B \stackrel{\frac{2-\alpha}{\sigma}}{\square} D\right) \circ(\boldsymbol{L} x-r)
$$

where $L=\frac{4-\alpha}{2} L, \tau \in \mathbb{R}_{++}$and $\sigma \in \mathbb{R}_{++}$, together with the primal-dual inclusion: find (x, v) such that

$$
\left\{\begin{array}{l}
-\frac{\alpha}{4-\alpha} \boldsymbol{L}^{\star} \boldsymbol{V} \in A x+\frac{(2-\alpha)}{\tau} x \\
\boldsymbol{v} \in\left(B \stackrel{\frac{2-\alpha}{\square}}{\square} D\right) \circ(\boldsymbol{L} x-r) .
\end{array}\right.
$$

Theorem 10

Recall that $M: \mathcal{K} \rightarrow 2^{\mathcal{K}}:(x, v) \mapsto\left(A x, r+B^{-1} v\right)$;

$$
\begin{aligned}
& Q: \mathcal{K} \rightarrow 2^{\mathcal{K}}:(x, v) \mapsto\left(0, D^{-1} v\right) ; \\
& S: \mathcal{K} \rightarrow \mathcal{K}:(x, v) \mapsto\left(L^{\star} v,-L x\right) ; \\
& V: \mathcal{K} \rightarrow \mathcal{K}:(x, v) \mapsto\left(\frac{x}{\tau}-\frac{1}{2} L^{\star} v, \frac{v}{\sigma}-\frac{1}{2} L x\right),
\end{aligned}
$$

where $\tau, \sigma \in \mathbb{R}_{++}$, and $\tau \sigma\|L\|^{2}<4$. And

$$
\begin{aligned}
\boldsymbol{A} & :=V^{-1}\left(\frac{1}{2} S+Q\right) . \\
\boldsymbol{B} & :=V^{-1}\left(\frac{1}{2} S+M\right) .
\end{aligned}
$$

Then $\operatorname{dom} D^{-1}=\mathbb{R}^{m}$ implies

$$
0 \in \operatorname{int}(\operatorname{dom} \boldsymbol{A}-\operatorname{dom} \boldsymbol{B}) .
$$

In particular, dom $D^{-1}=\mathbb{R}^{m}$ if $D=N_{\{0\}}$, or $D=\operatorname{ld}$.

The least norm primal-dual solution

We can use α-Douglas-Rachford algorithm

$$
\left\{\begin{array}{l}
y_{n}=J_{\mathbf{B}} x_{n} \tag{6}\\
z_{n}=J_{\mathbf{A}}\left(\alpha_{k} y_{n}-x_{n}\right) \\
x_{n+1}=x_{n}+\left(z_{n}-y_{n}\right)
\end{array}\right.
$$

to find the solution of $\operatorname{zer}\left(\boldsymbol{A}+\boldsymbol{B}+\left(2-\alpha_{k}\right) \mathrm{Id}\right)$.
The smallest norm solution of $\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$ gives the smallest norm primal-dual solution:

$$
\left\{\begin{array}{l}
-L^{\star} v \in A x \tag{PD}\\
v \in(B \square D)(L x-r) .
\end{array}\right.
$$

The algorithm

The algorithm (6) can be rewritten as

$$
\left\{\begin{array}{l}
y_{1 n}=J_{\tau A}\left(x_{1 n}-\frac{\tau}{2} L^{\star} x_{2 n}\right) \\
y_{2 n}=J_{\sigma B-1}\left(x_{2 n}-\frac{\sigma}{2} L x_{1 n}+\sigma L y_{1 n}\right) \\
w_{1 n}=\alpha_{k} y_{1 n}-x_{1 n} \\
w_{2 n}=\alpha_{k} y_{2 n}-x_{2 n} \tag{7}\\
z_{1 n}=w_{1 n}-\frac{\tau}{2} L^{\star} w_{2 n} \\
z_{2 n}=J_{\sigma D-1}\left(w_{2 n}-\frac{\sigma}{2} L w_{1 n}+\sigma L z_{1 n}\right) \\
x_{1 n+1}=x_{1 n}+\left(z_{1 n}-y_{1 n}\right) \\
x_{2 n+1}=x_{2 n}+\left(z_{2 n}-y_{2 n}\right),
\end{array}\right.
$$

where $x_{n}=\left(x_{1 n}, x_{2 n}\right), y_{n}=\left(y_{1 n}, y_{2 n}\right)$.

Outline

(1) Setup
(2) Properties of α-Douglas-Rachford algorithm.
(3) A numerical experiment of solving $0 \in A x+B x$.
4. Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
(5) A numerical experiment of solving primal-dual problem.

Example 2

Let $f=I_{C_{1}}, g=I_{C_{2}}$, where C_{1} is a circle centred at $(5,0)$ with radius 2 , and C_{2} is a box centred at $(3,1.5)$ with radius 1 . Let $A=\partial f, B=\partial g$, We aim to find the least norm primal-dual solution:

$$
\left\{\begin{array}{l}
-v \in N_{C_{1}}(x) \tag{8}\\
v \in N_{C_{2}}(x)
\end{array}\right.
$$

Figure: The plot of Example 2

We can solve (8) by the α-Douglas-Rachford method.

$$
{ }^{1} 0 \in N_{C_{1}}(x)+\left(N_{C_{2}} \square N_{\{0\}}\right)(x) \text { is equivalent to } 0 \in N_{C_{1}}(x)+N_{C_{2}}(x) .
$$

Theoretical results

Let α_{k} be a increasing convergent sequence in $[1,2)$ such that $\lim _{k \rightarrow+\infty} \alpha_{k}=2$. For each α_{k}, let $\boldsymbol{L}=\frac{4-\alpha_{k}}{2}$ Id. Then the following holds:
(1) The problem with primal inclusion: find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
0 \in N_{C_{1}}(x)+\frac{2-\alpha_{k}}{\tau} x+\frac{\alpha_{k}}{4-\alpha_{k}} \boldsymbol{L}^{\star}\left(N_{C_{2}} \square \frac{\sigma}{2-\alpha_{k}} \operatorname{Id}\right)(\boldsymbol{L} x), \tag{9}
\end{equation*}
$$

where $\tau \in \mathbb{R}_{++}, \sigma \in \mathbb{R}_{++}$, and $\tau \sigma<4$, together with the primal-dual inclusion: find (x, v) such that

$$
\left\{\begin{array}{l}
-\frac{\alpha_{k}}{4-\alpha_{k}} \boldsymbol{L}^{\star} v \in N_{C_{1}}(x)+\frac{2-\alpha_{k}}{\tau} x \tag{10}\\
v \in\left(N_{C_{2}} \square \frac{\sigma}{2-\alpha_{k}} \operatorname{Id}\right)(\boldsymbol{L} x)
\end{array}\right.
$$

reduces to (8) as $\alpha_{k} \rightarrow 2$.
(2) The problem with primal-dual inclusion (10) can be solved by the α-Douglas-Rachford algorithm.

[^4]
Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with $\sigma=2, \tau=3 / 2$, and starting point $x_{0}=(5,1), v_{0}=(0,0)$.

Table: Six fixed $\alpha_{k}=2-1 / k$, optimal point y_{1}^{*} and y_{2}^{*}, and the case $\alpha=2$.

α_{k}	y_{1}^{*}	y_{2}^{*}	$\sqrt{\left\\|y_{1}\right\\|^{2}+\left\\|y_{2}\right\\|^{2}}$
1	$(3.0053,0.1460)$	$(1.0160,-0.5621)$	3.2251
$2-\frac{1}{10}$	$(3.0565,0.4721)$	$(0,-0.0852)$	3.0939
$2-\frac{1}{50}$	$(3.0622,0.4949)$	$(0,-0.0172)$	3.1020
$2-\frac{1}{100}$	$(3.0629,0.4975)$	$(0,-0.0086)$	3.1030
$2-\frac{1}{1000}$	$(3.0634,0.4997)$	$1.0 \mathrm{e}-03^{*}(0,-0.8606)$	3.1039
$2-\frac{10000}{1000}$	$(3.0635,0.5000)$	$1.0 \mathrm{e}-04^{*}(0,-0.8607)$	3.1040
$\alpha=2$	$(3.6259,0.6339)$	$(0,0)$	3.6809

Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with $\sigma=1, \tau=1$, and the same starting point $x_{0}=(5,1), v_{0}=(0,0)$.

Table: Six fixed $\alpha_{k}=2-1 / k$, optimal point y_{1}^{*} and y_{2}^{*}, and the case $\alpha=2$.

α_{k}	y_{1}^{*}	y_{2}^{*}	$\sqrt{\left\\|y_{1}\right\\|^{2}+\left\\|y_{2}\right\\|^{2}}$
1	$(3.0014,0.0740)$	$(0.5021,-0.3890)$	3.0687
$2-\frac{1}{10}$	$(3.0546,0.4642)$	$(0,-0.1256)$	3.0922
$2-\frac{1}{500}$	$(3.0621,0.4945)$	$(0,-0.0258)$	3.1019
$2-\frac{1}{100}$	$(3.0628,0.4974)$	$(0,-0.0129)$	3.1030
$2-\frac{1}{1000}$	$(3.0634,0.4997)$	$(0,-0.0013)$	3.1039
$2-\frac{1}{10000}$	$(3.0635,0.5000)$	$1.0 \mathrm{e}-03^{*}(0,-0.1291)$	3.1040
$\alpha=2$	$(3.7500,0.7500)$	$(0,0)$	3.8243

Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with $\sigma=1, \tau=1$, and with another starting point $x_{0}=(-4,-6), v_{0}=(0,0)$.

Table: Six fixed $\alpha_{k}=2-1 / k$, optimal point y_{1}^{*} and y_{2}^{*}, and the case $\alpha=2$.

α_{k}	y_{1}^{*}	y_{2}^{*}	$\sqrt{\left\\|y_{1}\right\\|^{2}+\left\\|y_{2}\right\\|^{2}}$
1	$(3.0014,0.0740)$	$(0.5021,-0.3890)$	3.0687
$2-\frac{1}{10}$	$(3.0546,0.4642)$	$(0,-0.1256)$	3.0922
$2-\frac{1}{50}$	$(3.0621,0.4945)$	$(0,-0.0258)$	3.1019
$2-\frac{1}{100}$	$(3.0628,0.4974)$	$(0,-0.0129)$	3.1030
$2-\frac{1}{1000}$	$(3.0634,0.4997)$	$(0,-0.0013)$	3.1039
$2-\frac{10000}{10000}$	$(3.0635,0.5000)$	$1.0 \mathrm{e}-03 *(0,-0.1291)$	3.1040
$\alpha=2$	$(3.3945,0.6448)$	$(0,0)$	3.4552

(1) If we let $y^{*}=(3.0635,0.5000)$ and $w^{*}=(0,0)$, tables 3,4 , and 5 all shows that when $\alpha_{k} \rightarrow 2$, we have the smallest norm primal-dual solution $\left(y^{*}, w^{*}\right)$, where y^{*} solves the primal and w^{*} solves the dual.
(2) Once we fix the value of k with fixed τ and σ, the result we get by using α-Douglas-Rachford algorithm does not change if we change its starting point.
(3) In three tables 3,4 , and $5, \alpha=2$ gives different y_{1}^{*} is because

$$
\left\{\begin{array}{l}
-v \in N_{C_{1}}(x) \tag{11}\\
v \in N_{C_{2}}(x),
\end{array}\right.
$$

has multiple solutions.

Possible future works

(1) If we change the space from \mathbb{R}^{n} to a more general space, like \mathcal{H}, a general Hilbert space, does the α-Douglas-Rachford algorithm have the same results and properties?
(2) More numerical experiments on the α-Douglas-Rachford algorithm for higher dimensions and practical applications are required.
(3) Consider $T_{\alpha, \beta, \gamma}=(1-\gamma) \mathrm{Id}+\gamma \boldsymbol{R}_{A}^{\beta} \boldsymbol{R}_{B}^{\alpha}$?
(9) A comparison to Aragón Artacho's recent work?

References

ATTOUCH, H., AND THÉRA, M. A general duality principle for the sum of two operators. Journal of Convex Analysis 3, (1996), 1-24.

BAUSCHKE, H. H., AND COMBETTES, P. L. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.

BAUSCHKE, H. H., AND BORWEIN, J. M. Dykstra's alternating projection algorithm for two sets, Journal of Approximation Theory 79 (1994), 418-443.

E-BOT, R. I., AND HENDRICH, C. A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM Journal on Optimization 23, 4 (2013), 2541-2565.

目 COMBETTES, P. L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 5-6 (2004), 475-504.
(COMBETTES, P. L. Iterative construction of the resolvent of a sum of maximal monotone operators. Journal of Convex Analysis 16, 4 (2009), 727-748.

DOUGLAS, J., AND RACHFORD, H. H. On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society 82, 2 (1956), 421-439.

DUCHI, J. Introductory lectures on stochastic optimization. Manuscript, Stanford University, (2016).

固 ECKSTEIN, J., AND BERTSEKAS, D. P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 1 (1992), 293-318.

KREYSZIG, E. Introductory functional analysis with applications (Vol. 1). Wiley New York, 1989.

LIEUTAUD, J. Approximations d'opérateurs monotones par des méthodes de splitting. Doctoral thesis, University of Paris, 1969.
(LIONS, P. L., AND MERCIER, B. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16, 6 (1979), 964-979.

MORDUKHOVICH, B. S., AND NAM, N. M. An easy path to convex analysis and applications. Synthesis Lectures on Mathematics and Statistics, 6:1-218, 2013.

SVAITER, B. F. On weak convergence of the Douglas-Rachford method. SIAM Journal on Control and Optimization 49, 1 (2011), 280-287.

EWANG, X. Self-dual regularization of monotone operators via the resolvent average. SIAM Journal on Optimization 21, 2 (2011), 438-462.

Thank you!

[^0]: ${ }^{1} A$ is monotone if $\langle x-y, u-v\rangle \geq 0$ for all $(x, u),(y, v) \in \operatorname{gra} A$. A is maximally monotone if there is no monotone operator that properly contains it.
 ${ }^{2}$ The set of zeros of M is: zer $M:=\left\{x \in \mathbb{R}^{m}: 0 \in M x\right\}$.

[^1]: ${ }^{1}$ An operator T is nonexpansive if $\|T x-T y\| \leq\|x-y\|$.
 ${ }^{2} T$ is firmly nonexpansive if $\|T x-T y\|^{2}+\|(\operatorname{Id}-T) x-(\operatorname{ld}-T) y\|^{2} \leq\|x-y\|^{2}$.

[^2]: ${ }^{1} 0 \in \operatorname{int}(\operatorname{dom} A-\operatorname{dom} B)$ implies $A+B$ is maximally monotone.

[^3]: (1) zer $A \neq \emptyset$ and $x_{\gamma} \rightarrow P_{\text {zer } A} x$ as $\gamma \downarrow 0$.
 (2) zer $A=\emptyset$ and $\left\|x_{\gamma}\right\| \rightarrow+\infty$ as $\gamma \downarrow 0$.

[^4]: ${ }^{1}\left(N_{C_{2}}{ }^{\frac{2-\alpha_{k}}{\sigma}}{ }^{\square} N_{\{0\}}\right)$ is equivalent to $\left(N_{C_{2}} \square \frac{\sigma}{2-\alpha_{k}} I d\right)$

