
A parameterized Douglas-Rachford algorithm

Xianfu Wang

University of British Columbia

shawn.wang@ubc.ca

Tuesday 17:05-17:40
Splitting Algorithms, Modern Operator Theory, and Applications

Oaxaca, Mexico

September 19, 2017

Xianfu Wang (UBC) parmeterized DR method September 19, 2017 1 / 46



Outline

1 Setup

2 Properties of α-Douglas-Rachford algorithm.

3 A numerical experiment of solving 0 ∈ Ax + Bx .

4 Solving a primal-dual problem with mixtures composite and
parallel-sum type monotone operators.

5 A numerical experiment of solving primal-dual problem.

Xianfu Wang (UBC) parmeterized DR method September 19, 2017 2 / 46



Setup

The Euclidean space Rm has an inner product 〈·, ·〉, and norm ‖ · ‖.

Assume that

A,B are maximally monotone operator on Rm

and

f ,g : Rm → (−∞,+∞] are proper, lower semicontinuous and convex.

Goal: Find x ∈ zer(A + B), i.e.,

0 ∈ Ax + Bx .

1A is monotone if 〈x − y , u − v〉 ≥ 0 for all (x , u), (y , v) ∈ graA. A is maximally
monotone if there is no monotone operator that properly contains it.

2The set of zeros of M is: zerM := {x ∈ Rm : 0 ∈ Mx}.
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The connection to the optimization problem

If we assume dom f ∩ intdom g 6= ∅, and A = ∂f ,B = ∂g.

Solving the problem: Find x ∈ Rm such that

x ∈ zer(A + B), (1)

means solving the optimization problem: Find x ∈ Rm such that

x ∈ Argmin{f + g}. (2)

1∂f (x) := {v ∈ Rm : f (y) ≥ f (x) + 〈v , y − x〉 for all y ∈ Rm}.
Xianfu Wang (UBC) parmeterized DR method September 19, 2017 4 / 46



The Douglas-Rachford splitting operator

The Douglas-Rachford splitting operator, introduced by Lions and
Mercier, associated with the maximally monotone operators A,B is

DA,B =
Id−RB + 2JARB

2
=

1
2

Id +
1
2

RARB,

where JA and RA denote the resolvent and the reflected resolvent of A,
defined by

JA := (Id +A)−1, RA := 2JA − Id,

respectively. We recall that JA is firmly nonexpansive and RA is
nonexpansive.

1An operator T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖.
2T is firmly nonexpansive if ‖Tx − Ty‖2 + ‖(Id−T )x − (Id−T )y‖2 ≤ ‖x − y‖2.
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The Douglas-Rachford algorithm

Fact 1 (Lions-Mercier, 1979)

Suppose zer(A + B) 6= ∅. Let x0 ∈ Rm be the starting point. Set

(∀n ∈ N)

 yn = JBxn
zn = JA(2yn − xn)
xn+1 = xn + (zn − yn).

(DR)

Then there exists x ∈ Fix RARB such that the following hold:
(i) JBx ∈ zer(A + B).
(ii) (yn − zn)+∞n=1 converges to 0.
(iii) (xn)+∞n=1 converges to x.
(iv) (yn)+∞n=1 converges to JBx .
(v) (zn)+∞n=1 converges to JBx .

1The fixed points set is FixT = {x ∈ Rm : Tx = x}.
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Question: What happens if we change the parameter 2 into α, where
α ∈ [1,2)?
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Theorem 2
Let

Rα
A = αJA − Id, Rα

B = αJB − Id .

Then Rα
A and Rα

B are nonexpansive if α ∈ [1,2).

Theorem 3
If 0 ∈ int(dom A− dom B), then zer(A + B + γ Id) 6= ∅ when γ ∈ R++.

Theorem 4
Let α ∈ [1,2), and 0 ∈ int(dom A− dom B). Let T = Rα

A Rα
B . Then

(i) T is nonexpansive.
(ii) JB(Fix T ) = zer(A + B + (2− α) Id).
(iii) Consequently, Fix T 6= ∅.

10 ∈ int(domA− domB) implies A + B is maximally monotone.
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The α-Douglas-Rachford splitting operator

Changing the parameter 2 of the algorithm (DR) into α, where
α ∈ [1,2), we propose the α-DR algorithm yn = JBxn

zn = JA(αyn − xn)
xn+1 = xn + (zn − yn).

(α-DR)

We call it α-Douglas-Rachford splitting operator:

Dα
A,B = (1− 1

α
) Id +

1
α

Rα
A Rα

B .

Dα
A,B is an averaged operator.

Remark
Let D ⊆ Rm, T : D → Rm, and γ ∈ [0,1]. T is called γ − averaged , if
there exists a nonexpansive operator N : D → Rm such that
T = (1− γ) Id +γN.
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α-Douglas-Rachford algorithm

Theorem 5

Let α ∈ (1,2) and 0 ∈ int(dom A− dom B). Let x0 ∈ Rm be the starting
point. Set  yn = JBxn

zn = JA(αyn − xn)
xn+1 = xn + (zn − yn).

(α-DR)

Then there exists x ∈ Fix Rα
A Rα

B such that the following hold:
(i) JBx = zer(A + B + (2− α) Id).
(ii) (yn − zn)+∞n=1 converges to 0.
(iii) (xn)+∞n=1 converges to x.
(iv) (yn)+∞n=1 converges to JBx .
(v) (zn)+∞n=1 converges to JBx .
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The Krasnosel’skĭi–Mann algorithm plays an important role.

Fact 6

Let D be a nonempty closed convex subset of Rm, let T : D → D be a
nonexpansive operator such that Fix T 6= ∅, where the fixed points set

Fix T = {x ∈ Rm : Tx = x}.

Let (λn)+∞n=1 be a sequence in [0,1] such that
∑+∞

n=1 λn(1− λn) = +∞,
and let x0 ∈ D. Set

(∀n ∈ N) xn+1 = xn + λn(Txn − xn).

Then the following hold:
1 (Txn − xn)+∞n=1 converges to 0.
2 (xn)+∞n=1 converges to a point in Fix T .
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Proof of Theorem 4

(i) Let T = Rα
A Rα

B , we proved that Fix T 6= ∅ and
JB(Fix T ) = zer(A + B + (2− α) Id). Therefore, there exists
x = Rα

A Rα
B x such that

JBx = zer(A + B + (2− α) Id).

(ii) From  yn = JBxn
zn = JA(αyn − xn)
xn+1 = xn + (zn − yn),

it follows that
zn − yn =

1
α

(Txn − xn).

Therefore, zn − yn → 0.
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Proof continued

(iii) Since 1 < α < 2, (xn)+∞n=1 converges to x .

(iiiiii) In Rm, by using that JB is Lipschitz continuous, we get

lim
n→+∞

yn = lim
n→+∞

JB(xn) = JB( lim
n→+∞

xn) = JBx .

(iiiiiiiii) Combining result (ii) and result (iv), we have
zn = (zn − yn) + yn → 0 + JBx , i.e., zn → JBx .
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The α-Douglas-Rachford algorithm with α→ 2

Theorem 7
Let 0 ∈ int(dom A− dom B) and zer(A + B) 6= ∅. Let (αk )+∞k=1 be an
increasing sequence in [1,2) such that lim

k→+∞
αk = 2. Set

 yn = JBxn
zn = JA(αk yn − xn)
xn+1 = xn + (zn − yn).

(α-DR)

Then for any fixed αk , there exists a corresponding x∗k ∈ Fix Rαk
A Rαk

B
such that JBx∗k = zer(A + B + (2− αk ) Id), and the following hold:
(a) lim

αk→2
JBx∗k = Pzer(A+B)(0).

(b) For any fixed αk , (xn)+∞n=1 converges to its corresponding x∗k .

(c) Suppose (x∗k )+∞k=1 is a convergent sequence with limit x∗. Then
JBx∗ ∈ zer(A + B), and ‖JBx∗‖ ≤ ‖y‖ for any y ∈ zer(A + B).
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Proof

(a) JBx∗k = zer(A + B + (2− αk ) Id) implies

0 ∈ (A + B)JBx∗k + (2− αk )(JBx∗k − 0).

Because A,B are maximally monotone and
0 ∈ int(dom A− dom B), A + B is maximally monotone. As
zer(A + B) 6= ∅, we have

JBx∗k → Pzer(A+B)(0) as (2− αk ) ↓ 0.

That is,
lim
αk→2

JBx∗k = Pzer(A+B)(0).

1Fact Let x ∈ Rm. Then the inclusions (∀γ ∈ (0, 1)) 0 ∈ Axγ + γ(xγ − x) define a
unique curve (xγ)γ∈(0,1). Moreover, exactly one of the following holds:

1 zerA 6= ∅ and xγ → Pzer Ax as γ ↓ 0.
2 zerA = ∅ and ‖xγ‖ → +∞ as γ ↓ 0.
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Proof continued

(b) Once αk is fixed, we have (xn)+∞n=1 converges to x∗k by
Theorem 4(iii).

(c) In Rm, by using that JB is Lipschitz continuous, we get

lim
k→+∞

JB(x∗k ) = JB( lim
k→+∞

x∗k ) = JB(x∗).

As we already proved lim
k→+∞

JB(x∗k ) = Pzer(A+B)(0), we have

JB(x∗) = Pzer(A+B)(0).

Therefore, JBx∗ ∈ zer(A + B), and ‖JBx∗‖ ≤ ‖y‖ for any
y ∈ zer(A + B).
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Least norm solution of convex feasibility

Theorem 8
Let C1,C2 ⊆ Rm be two closed convex suets such that C1 ∩ ri C2 6= ∅ or
ri C1 ∩ C2 6= ∅. Then for every 1 < αk < 2, the αk -DR algorithm yn = PC2 (xn)

zn = PC1 (αk yn − xn)
xn+1 = xn + (zn − yn).

(3)

generates a sequence (xn)+∞n=1 such that:
1 xn → x∗.
2 PC2x

∗ is the least norm point of C1 ∩ C2.

Remark 2.1
The scheme is different from Dykstra’s alternating projection algorithm.
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Example 1
Let f = lC1 ,g = lC2 , where C1 is a circle centred at (5,0) with radius 2,
and C2 is a box centred at (3,1.5) with radius 1. Let A = ∂f ,B = ∂g,
the problem we want to solve is:

0 ∈ NC1 (x) + NC2 (x). (4)

Figure: The plot of Example 1

1Let C be a set in Rm. The indicator function is

lC : Rm → [−∞,+∞] : x 7→
{

0, if x ∈ C;
+∞ otherwise.

2Let C be a nonempty convex set in Rm and x ∈ Rm. Then

NC(x) =
{
{u ∈ Rm| sup〈C − x , u〉 ≤ 0}, if x ∈ C;
∅ otherwise.

3C3 = (3.0635, 0.5)
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Theoretical results

Let αk be a increasing convergent sequence in [1,2) such that
lim

k→+∞
αk = 2. Then the following holds:

1 The inclusion problem: For any fixed αk , find x ∈ R2 such that

0 ∈ NC1 (x) + NC2 (x) + (2− αk )(x) (5)

is reduced to (4) as αk → 2.

2 The problem (5) can be solved by the α-Douglas-Rachford
algorithm.
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Numerical result

With x0 = (5,1) and the stopping criteria being ‖xn+1 − xn‖ < ε = 10−5,
we obtain:

Table: αk -DR: optimization point y∗, ‖y∗‖.

αk y∗ ‖y∗‖
1 (3.0635,0.5) 3.104

2− 1
10 (3.0635,0.5) 3.104

2− 1
50 (3.0635,0.5) 3.104

2− 1
100 (3.0635,0.5) 3.104

2− 1
1000 (3.0635,0.5) 3.104

2− 1
10000 (3.0635,0.5) 3.104
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Numerical result
However, when we use the classic Douglas-Rachford algorithm to
solve (4), the answer changes if we choose different starting point.

Table: DR: starting point x0, optimization point y∗, ‖y∗‖.

x0 y∗ ‖y∗‖
(5,1) (4,0.8944) 4.0988
(-3,1) (3.0785,0.5548) 3.1281
(-4,-6) (4,0.5) 4.0311

(10,-20) (4,0.5) 4.0311

1 As αk → 2, the optimization result which is gotten by the
α-Douglas-Rachford algorithm converges to the smallest norm
solution of (4).

2 When using Douglas-Rachford algorithm to solve (4), the answer
changes if we choose different starting point. However, the
selection of starting points has no influence on the result when we
use the α-Douglas-Rachford algorithm.
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Combettes’, Bot-Hendrich’s primal-dual framework

Assume that

L : Rm → Rm is a nonzero bounded linear invertible operator,

and
r ∈ Rm.

The primal problem: find a point x̄ ∈ Rm such that

0 ∈ Ax̄ + L?(B�D)(Lx̄ − r) (P)

One can solve the primal-dual problem instead: find a point
(x , v) ∈ Rm × Rm such that{

−L?v ∈ Ax
v ∈ (B�D)(Lx − r).

(PD)

1The parallel sum of B,D is defined as B�D : Rm → 2Rm
, and

B�D = (B−1 + D−1)−1.
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Fact 9 (Bot and Hendrich’ 2013, Combettes’ 2013 )

Define three set-valued operators M,Q and S as follows:

M : K → 2K : (x , v) 7→ (Ax , r + B−1v);

Q : K → 2K : (x , v) 7→ (0,D−1v);

S : K → K : (x , v) 7→ (L?v ,−Lx).

Moreover, define an bounded linear operator

V : K → K : (x , v) 7→ (
x
τ
− 1

2
L?v ,

v
σ
− 1

2
Lx),

where τ, σ ∈ R++, and τσ‖L‖2 < 4.
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Fact continued

Finally, define two operators on KV :

A := V−1(
1
2

S + Q),

B := V−1(
1
2

S + M).

Here, the space KV is an inner product space with
〈x , y〉KV = 〈x ,Vy〉K. Then any

(x̄ , v̄) ∈ zer(A + B)

is a pair of primal-dual solution to problem(PD) and vice versa.

1Bot and Hendrich also showed:

V−1 exists.

A and B are maximally monotone on KV , and zer(A + B) = zer(M + S + Q).
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When zer(A + B) 6= ∅, they used the Douglas-Rachford algorithm to get
the solution of the problem with primal inclusion (P) together with dual
inclusion (PD) :
Let x0 ∈ Rm be the starting point. Set

(∀n ∈ N)

 yn = JBxn
zn = JA(2yn − xn)
xn+1 = xn + (zn − yn).

Then there exists x ∈ Fix RARB such that JBx ∈ zer(A + B), and
(xn)+∞n=1 converges to x.
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The α-version primal-dual problem

Recall the construction of M,Q,S,V ,A and B. Let α ∈ [1,2), and for

any β ∈ R, define B
β

� D = (B−1 + D−1 + β Id)−1. Then the following
two inclusion problems are equivalent:

1 Find (x , v) ∈ Rm × Rm such that (x , v) ∈ zer(A + B + (2− α) Id).

2 Solve the problem with primal inclusion: find x ∈ Rm such that

0 ∈ Ax +
2− α
τ

x +
α

4− α
L? ◦ (B

2−α
σ

� D) ◦ (Lx − r) (α P)

where L = 4−α
2 L, τ ∈ R++ and σ ∈ R++, together with the dual

inclusion: find (x , v) such that −
α

4−αL?v ∈ Ax + (2−α)
τ x

v ∈ (B
2−α
σ

� D)(Lx − r).
(α PD)
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When 0 ∈ int(dom A− dom B),

zer(A + B + (2− α) Id)

can be solved by using the α-Douglas-Rachford algorithm:

Let x0 ∈ Rm × Rm be the starting point. Set

(∀n ∈ N)

 yn = JBxn
zn = JA(αyn − xn)
xn+1 = xn + (zn − yn).

Then there exists x ∈ Fix Rα
ARα

B such that
JBx ∈ zer(A + B + (2− α) Id), and (xn)+∞n=1 converges to x.
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The α-Douglas-Rachford algorithm can be used to solve the
α-primal-dual problem with primal inclusion: find x ∈ Rm such that

0 ∈ Ax +
2− α
τ

x +
α

4− α
L? ◦ (B

2−α
σ

� D) ◦ (Lx − r) (α P)

where L = 4−α
2 L, τ ∈ R++ and σ ∈ R++, together with the primal-dual

inclusion: find (x , v) such that

 −
α

4−αL?v ∈ Ax + (2−α)
τ x

v ∈ (B
2−α
σ

� D) ◦ (Lx − r).
(α D)
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Theorem 10

Recall that M : K → 2K : (x , v) 7→ (Ax , r + B−1v);

Q : K → 2K : (x , v) 7→ (0,D−1v);

S : K → K : (x , v) 7→ (L?v ,−Lx);

V : K → K : (x , v) 7→ (
x
τ
− 1

2
L?v ,

v
σ
− 1

2
Lx),

where τ, σ ∈ R++, and τσ‖L‖2 < 4. And

A := V−1(
1
2

S + Q).

B := V−1(
1
2

S + M).

Then dom D−1 = Rm implies

0 ∈ int(dom A− dom B).

In particular, dom D−1 = Rm if D = N{0}, or D = Id .
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The least norm primal-dual solution

We can use α-Douglas-Rachford algorithm yn = JBxn
zn = JA(αk yn − xn)
xn+1 = xn + (zn − yn).

(6)

to find the solution of zer(A + B + (2− αk ) Id).

The smallest norm solution of zer(A + B) gives the smallest norm
primal-dual solution: {

−L?v ∈ Ax
v ∈ (B�D)(Lx − r).

(PD)
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The algorithm

The algorithm (6) can be rewritten as

y1n = JτA(x1n − τ
2 L?x2n)

y2n = JσB−1 (x2n − σ
2 Lx1n + σLy1n)

w1n = αk y1n − x1n
w2n = αk y2n − x2n
z1n = w1n − τ

2 L?w2n
z2n = JσD−1 (w2n − σ

2 Lw1n + σLz1n)
x1n+1 = x1n + (z1n − y1n)
x2n+1 = x2n + (z2n − y2n),

(7)

where xn = (x1n, x2n), yn = (y1n, y2n).
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Example 2

Let f = lC1 ,g = lC2 , where C1 is a circle centred at (5,0) with radius 2,
and C2 is a box centred at (3,1.5) with radius 1. Let A = ∂f ,B = ∂g,
We aim to find the least norm primal-dual solution:{

−v ∈ NC1 (x)
v ∈ NC2 (x),

(8)

Figure: The plot of Example 2

We can solve (8) by the α-Douglas-Rachford method.

10 ∈ NC1
(x) + (NC2

�N{0})(x) is equivalent to 0 ∈ NC1
(x) + NC2

(x).
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Theoretical results

Let αk be a increasing convergent sequence in [1,2) such that
lim

k→+∞
αk = 2. For each αk , let L = 4−αk

2 Id . Then the following holds:

1 The problem with primal inclusion: find x ∈ Rn such that

0 ∈ NC1 (x) +
2− αk

τ
x +

αk

4− αk
L?(NC2�

σ

2− αk
Id)(Lx), (9)

where τ ∈ R++, σ ∈ R++, and τσ < 4, together with the
primal-dual inclusion: find (x , v) such that{

− αk
4−αk

L?v ∈ NC1 (x) + 2−αk
τ x

v ∈ (NC2�
σ

2−αk
Id)(Lx)

(10)

reduces to (8) as αk → 2.
2 The problem with primal-dual inclusion (10) can be solved by the
α-Douglas-Rachford algorithm.

1(NC2

2−αk
σ

� N{0}) is equivalent to (NC2
� σ

2−αk
Id)
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Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with
σ = 2, τ = 3/2, and starting point x0 = (5,1), v0 = (0,0).

Table: Six fixed αk = 2− 1/k , optimal point y∗1 and y∗2 , and the case α = 2.

αk y∗1 y∗2
√
‖y1‖2 + ‖y2‖2

1 (3.0053,0.1460) (1.0160,-0.5621) 3.2251
2− 1

10 (3.0565,0.4721) (0,-0.0852) 3.0939
2− 1

50 (3.0622,0.4949) (0,-0.0172) 3.1020
2− 1

100 (3.0629,0.4975) (0,-0.0086) 3.1030
2− 1

1000 (3.0634,0.4997) 1.0e-03 *(0,-0.8606) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-04 *(0,-0.8607) 3.1040
α = 2 (3.6259,0.6339) (0,0) 3.6809
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Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with
σ = 1, τ = 1, and the same starting point x0 = (5,1), v0 = (0,0).

Table: Six fixed αk = 2− 1/k , optimal point y∗1 and y∗2 , and the case α = 2.

αk y∗1 y∗2
√
‖y1‖2 + ‖y2‖2

1 (3.0014,0.0740) (0.5021,-0.3890) 3.0687
2− 1

10 (3.0546,0.4642) (0,-0.1256) 3.0922
2− 1

50 (3.0621,0.4945) (0,-0.0258) 3.1019
2− 1

100 (3.0628,0.4974) (0,-0.0129) 3.1030
2− 1

1000 (3.0634,0.4997) (0,-0.0013) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-03 *(0,-0.1291) 3.1040
α = 2 (3.7500,0.7500) (0,0) 3.8243
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Numerical result

Numerical result of (10) by using α-Douglas-Rachford algorithm with
σ = 1, τ = 1, and with another starting point x0 = (−4,−6), v0 = (0,0).

Table: Six fixed αk = 2− 1/k , optimal point y∗1 and y∗2 , and the case α = 2.

αk y∗1 y∗2
√
‖y1‖2 + ‖y2‖2

1 (3.0014,0.0740) (0.5021,-0.3890) 3.0687
2− 1

10 (3.0546,0.4642) (0,-0.1256) 3.0922
2− 1

50 (3.0621,0.4945) (0,-0.0258) 3.1019
2− 1

100 (3.0628,0.4974) (0,-0.0129) 3.1030
2− 1

1000 (3.0634,0.4997) (0,-0.0013) 3.1039
2− 1

10000 (3.0635,0.5000) 1.0e-03 *(0,-0.1291) 3.1040
α = 2 (3.3945,0.6448) (0,0) 3.4552
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1 If we let y∗ = (3.0635,0.5000) and w∗ = (0,0), tables 3, 4, and 5
all shows that when αk → 2, we have the smallest norm
primal-dual solution (y∗,w∗), where y∗ solves the primal and w∗

solves the dual.

2 Once we fix the value of k with fixed τ and σ, the result we get by
using α-Douglas-Rachford algorithm does not change if we
change its starting point.

3 In three tables 3, 4, and 5, α = 2 gives different y∗1 is because{
−v ∈ NC1 (x)
v ∈ NC2 (x),

(11)

has multiple solutions.
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Possible future works

1 If we change the space from Rn to a more general space, like H, a
general Hilbert space, does the α-Douglas-Rachford algorithm
have the same results and properties?

2 More numerical experiments on the α-Douglas-Rachford algorithm
for higher dimensions and practical applications are required.

3 Consider Tα,β,γ = (1− γ) Id +γRβ
A Rα

B ?

4 A comparison to Aragón Artacho’s recent work?
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Thank you!
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