A parameterized Douglas-Rachford algorithm

Xianfu Wang

University of British Columbia

shawn.wang@ubc.ca

Tuesday 17:05-17:40 Splitting Algorithms, Modern Operator Theory, and Applications Oaxaca, Mexico

September 19, 2017

Setup

- 2 Properties of α -Douglas-Rachford algorithm.
- 3 A numerical experiment of solving $0 \in Ax + Bx$.
- Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
- 5 A numerical experiment of solving primal-dual problem.

The Euclidean space \mathbb{R}^m has an inner product $\langle \cdot, \cdot \rangle$, and norm $\| \cdot \|$. Assume that

A, B are maximally monotone operator on \mathbb{R}^m

and

 $f, g: \mathbb{R}^m \to (-\infty, +\infty]$ are proper, lower semicontinuous and convex.

Goal: Find $x \in \operatorname{zer}(A + B)$, i.e.,

 $0 \in Ax + Bx$.

¹*A* is monotone if $\langle x - y, u - v \rangle \ge 0$ for all $(x, u), (y, v) \in \text{gra } A$. *A* is maximally monotone if there is no monotone operator that properly contains it.

²The set of zeros of *M* is: zer $M := \{x \in \mathbb{R}^m : 0 \in Mx\}$.

Xianfu Wang (UBC)

If we assume dom $f \cap$ intdom $g \neq \emptyset$, and $A = \partial f, B = \partial g$.

Solving the problem: Find $x \in \mathbb{R}^m$ such that

$$x \in \operatorname{zer}(A+B),$$
 (1)

means solving the optimization problem: Find $x \in \mathbb{R}^m$ such that

$$x \in \operatorname{Argmin}\{f + g\}.$$
 (2)

 ${}^{1}\partial f(x):=\{v\in\mathbb{R}^{m}:f(y)\geq f(x)+\langle v,y-x\rangle \text{ for all }y\in\mathbb{R}^{m}\}. < \texttt{P} \land \texttt{P}$

The Douglas-Rachford splitting operator, introduced by Lions and Mercier, associated with the maximally monotone operators *A*, *B* is

$$D_{A,B} = \frac{\mathsf{Id} - R_B + 2J_A R_B}{2} = \frac{1}{2} \mathsf{Id} + \frac{1}{2} R_A R_B,$$

where J_A and R_A denote the resolvent and the reflected resolvent of A, defined by

$$J_A := (\operatorname{Id} + A)^{-1}, \quad R_A := 2J_A - \operatorname{Id},$$

respectively. We recall that J_A is firmly nonexpansive and R_A is nonexpansive.

¹An operator *T* is nonexpansive if $||Tx - Ty|| \le ||x - y||$. ²*T* is firmly nonexpansive if $||Tx - Ty||^2 + ||(Id - T)x - (Id = T)y||^2 \le ||x| - |y||^2$. $\Rightarrow \circ \circ \circ$ Xiantu Wang (UBC) parmeterized DR method September 19, 2017 5746

Fact 1 (Lions-Mercier, 1979)

Suppose $\operatorname{zer}(A + B) \neq \emptyset$. Let $x_0 \in \mathbb{R}^m$ be the starting point. Set

$$(\forall n \in \mathbb{N}) \quad \begin{cases} y_n = J_B x_n \\ z_n = J_A (2y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
 (DR)

Then there exists $x \in Fix R_A R_B$ such that the following hold:

¹The fixed points set is Fix $T = \{x \in \mathbb{R}^m : Tx = x\}$.

Question: What happens if we change the parameter 2 into α , where $\alpha \in [1, 2)$?

Setup

2 Properties of α -Douglas-Rachford algorithm.

3 A numerical experiment of solving $0 \in Ax + Bx$.

- Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
- 5 A numerical experiment of solving primal-dual problem.

Theorem 2

Let

$$R^{\alpha}_{A} = \alpha J_{A} - \operatorname{Id}, \qquad R^{\alpha}_{B} = \alpha J_{B} - \operatorname{Id}.$$

Then R^{α}_{A} and R^{α}_{B} are nonexpansive if $\alpha \in [1, 2)$.

Theorem 3

If $0 \in int(\operatorname{dom} A - \operatorname{dom} B)$, then $\operatorname{zer}(A + B + \gamma \operatorname{Id}) \neq \emptyset$ when $\gamma \in \mathbb{R}_{++}$.

Theorem 4

Let $\alpha \in [1, 2)$, and $0 \in int(dom A - dom B)$. Let $T = R_A^{\alpha} R_B^{\alpha}$. Then

T is nonexpansive.

$$I_{B}(\operatorname{Fix} T) = \operatorname{zer}(A + B + (2 - \alpha) \operatorname{Id}).$$

Original Sequently, Fix $T \neq \emptyset$.

 $^{1}0 \in int(dom A - dom B)$ implies A + B is maximally monotone.

The α -Douglas-Rachford splitting operator

Changing the parameter 2 of the algorithm (DR) into α , where $\alpha \in [1, 2)$, we propose the α -DR algorithm

$$\begin{cases} y_n = J_B x_n \\ z_n = J_A (\alpha y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
 (\$\alpha\$-DR)

We call it α -Douglas-Rachford splitting operator:

$$D^{lpha}_{A,B} = (1 - rac{1}{lpha}) \operatorname{Id} + rac{1}{lpha} R^{lpha}_A R^{lpha}_B.$$

 $D_{A,B}^{\alpha}$ is an averaged operator.

Remark

Let $D \subseteq \mathbb{R}^m$, $T : D \to \mathbb{R}^m$, and $\gamma \in [0, 1]$. *T* is called γ – *averaged*, if there exists a nonexpansive operator $N : D \to \mathbb{R}^m$ such that $T = (1 - \gamma) \operatorname{Id} + \gamma N$.

Theorem 5

Let $\alpha \in (1, 2)$ and $0 \in int(dom A - dom B)$. Let $x_0 \in \mathbb{R}^m$ be the starting point. Set

$$\begin{cases} y_n = J_B x_n \\ z_n = J_A (\alpha y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
 (\$\alpha\$-DR)

Then there exists $x \in Fix R^{\alpha}_A R^{\alpha}_B$ such that the following hold:

$$I_B x = \operatorname{zer}(A + B + (2 - \alpha) \operatorname{Id}).$$

(y_n –
$$z_n$$
)^{+ ∞} _{n=1} converges to 0.

(
$$x_n$$
) $_{n=1}^{+\infty}$ converges to x.

$$(y_n)_{n=1}^{+\infty}$$
 converges to $J_B x$.

$$(z_n)_{n=1}^{+\infty}$$
 converges to $J_B x$.

The Krasnosel'skii-Mann algorithm plays an important role.

Fact 6

Let D be a nonempty closed convex subset of \mathbb{R}^m , let $T : D \to D$ be a nonexpansive operator such that Fix $T \neq \emptyset$, where the fixed points set

Fix
$$T = \{x \in \mathbb{R}^m : Tx = x\}.$$

Let $(\lambda_n)_{n=1}^{+\infty}$ be a sequence in [0, 1] such that $\sum_{n=1}^{+\infty} \lambda_n (1 - \lambda_n) = +\infty$, and let $x_0 \in D$. Set

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n + \lambda_n (Tx_n - x_n).$$

Then the following hold:

(*Tx_n* − *x_n*)^{+∞}_{n=1} converges to 0.
 (*x_n*)^{+∞}_{n=1} converges to a point in Fix *T*.

Proof of Theorem 4

• Let $T = R_A^{\alpha} R_B^{\alpha}$, we proved that Fix $T \neq \emptyset$ and $J_B(\text{Fix } T) = \text{zer}(A + B + (2 - \alpha) \text{ Id})$. Therefore, there exists $x = R_A^{\alpha} R_B^{\alpha} x$ such that

$$J_B x = \operatorname{zer}(A + B + (2 - \alpha) \operatorname{Id}).$$

🔘 From

$$\begin{cases} y_n = J_B x_n \\ z_n = J_A (\alpha y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n), \end{cases}$$

it follows that

$$z_n-y_n=\frac{1}{\alpha}(Tx_n-x_n).$$

Therefore, $z_n - y_n \rightarrow 0$.

Since $1 < \alpha < 2$, $(x_n)_{n=1}^{+\infty}$ converges to x.

In \mathbb{R}^m , by using that J_B is Lipschitz continuous, we get

$$\lim_{n\to+\infty} y_n = \lim_{n\to+\infty} J_B(x_n) = J_B(\lim_{n\to+\infty} x_n) = J_B x.$$

Combining result (ii) and result (iv), we have
$$z_n = (z_n - y_n) + y_n \rightarrow 0 + J_B x$$
, i.e., $z_n \rightarrow J_B x$.

Theorem 7

Let $0 \in \operatorname{int}(\operatorname{dom} A - \operatorname{dom} B)$ and $\operatorname{zer}(A + B) \neq \emptyset$. Let $(\alpha_k)_{k=1}^{+\infty}$ be an increasing sequence in [1,2) such that $\lim_{k \to +\infty} \alpha_k = 2$. Set

$$\begin{cases} y_n = J_B x_n \\ z_n = J_A(\alpha_k y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
 (\$\alpha\$-DR)

Then for any fixed α_k , there exists a corresponding $x_k^* \in \operatorname{Fix} R_A^{\alpha_k} R_B^{\alpha_k}$ such that $J_B x_k^* = \operatorname{zer}(A + B + (2 - \alpha_k) \operatorname{Id})$, and the following hold:

$$Iim_{\alpha_k \to 2} J_B x_k^* = \mathsf{P}_{\mathsf{zer}(A+B)}(0).$$

- Solution For any fixed α_k , $(x_n)_{n=1}^{+\infty}$ converges to its corresponding x_k^* .
- Suppose $(x_k^*)_{k=1}^{+\infty}$ is a convergent sequence with limit x^* . Then $J_B x^* \in \operatorname{zer}(A + B)$, and $\|J_B x^*\| \le \|y\|$ for any $y \in \operatorname{zer}(A + B)$.

Proof

(a)
$$J_B x_k^* = \operatorname{zer}(A + B + (2 - \alpha_k) \operatorname{Id})$$
 implies

$$0 \in (A + B)J_B x_k^* + (2 - \alpha_k)(J_B x_k^* - 0).$$

Because *A*, *B* are maximally monotone and $0 \in int(dom A - dom B)$, A + B is maximally monotone. As $zer(A + B) \neq \emptyset$, we have

$$J_B x_k^* \to \mathsf{P}_{\mathsf{zer}(A+B)}(0) \text{ as } (2 - \alpha_k) \downarrow 0.$$

That is,

$$\lim_{\alpha_k\to 2} J_B x_k^* = \mathsf{P}_{\mathsf{zer}(A+B)}(0).$$

¹Fact Let $x \in \mathbb{R}^m$. Then the inclusions $(\forall \gamma \in (0, 1))$ $0 \in Ax_{\gamma} + \gamma(x_{\gamma} - x)$ define a unique curve $(x_{\gamma})_{\gamma \in (0, 1)}$. Moreover, exactly one of the following holds:

2) zer
$$A = \emptyset$$
 and $||x_{\gamma}|| \to +\infty$ as $\gamma \downarrow 0$.

- (b) Once α_k is fixed, we have $(x_n)_{n=1}^{+\infty}$ converges to x_k^* by Theorem 4(iii).
- (c) In \mathbb{R}^m , by using that J_B is Lipschitz continuous, we get

$$\lim_{k\to+\infty} J_B(x_k^*) = J_B(\lim_{k\to+\infty} x_k^*) = J_B(x^*).$$

As we already proved $\lim_{k \to +\infty} J_B(x_k^*) = \mathsf{P}_{\mathsf{zer}(\mathcal{A}+\mathcal{B})}(0),$ we have

$$J_B(x^*) = \mathsf{P}_{\mathsf{zer}(A+B)}(0).$$

Therefore, $J_B x^* \in \text{zer}(A + B)$, and $||J_B x^*|| \le ||y||$ for any $y \in \text{zer}(A + B)$.

Theorem 8

Let $C_1, C_2 \subseteq \mathbb{R}^m$ be two closed convex suets such that $C_1 \cap \text{ri} C_2 \neq \emptyset$ or ri $C_1 \cap C_2 \neq \emptyset$. Then for every $1 < \alpha_k < 2$, the α_k -DR algorithm

$$\begin{cases} y_n = P_{C_2}(x_n) \\ z_n = P_{C_1}(\alpha_k y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
(3)

generates a sequence $(x_n)_{n=1}^{+\infty}$ such that:

$$I x_n \to x^*.$$

2 $P_{C_2}x^*$ is the least norm point of $C_1 \cap C_2$.

Remark 2.1

The scheme is different from Dykstra's alternating projection algorithm.

Setup

- 2 Properties of α -Douglas-Rachford algorithm.
- 3 A numerical experiment of solving $0 \in Ax + Bx$.
- Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
- 5 A numerical experiment of solving primal-dual problem.

Example 1

Let $f = I_{C_1}$, $g = I_{C_2}$, where C_1 is a circle centred at (5,0) with radius 2, and C_2 is a box centred at (3, 1.5) with radius 1. Let $A = \partial f, B = \partial g$, the problem we want to solve is:

$$0 \in N_{C_1}(x) + N_{C_2}(x).$$
 (4)

otherwise.

Figure: The plot of Example 1

¹Let *C* be a set in
$$\mathbb{R}^m$$
. The indicator function is
 $I_C : \mathbb{R}^m \to [-\infty, +\infty] : x \mapsto \begin{cases} 0, & \text{if } x \in C; \\ +\infty & \text{otherwise.} \end{cases}$
²Let *C* be a nonempty convex set in \mathbb{R}^m and $x \in \mathbb{R}^m$. Then
 $N_C(x) = \begin{cases} \{u \in \mathbb{R}^m | \sup \langle C - x, u \rangle \leq 0\}, & \text{if } x \in C; \\ a & \text{otherwise.} \end{cases}$

Xianfu Wang (UBC)

parmeterized DR method

Let α_k be a increasing convergent sequence in [1,2) such that $\lim_{k \to +\infty} \alpha_k = 2$. Then the following holds:

() The inclusion problem: For any fixed α_k , find $x \in \mathbb{R}^2$ such that

$$0 \in N_{C_1}(x) + N_{C_2}(x) + (2 - \alpha_k)(x)$$
(5)

is reduced to (4) as $\alpha_k \rightarrow 2$.

3 The problem (5) can be solved by the α -Douglas-Rachford algorithm.

With $x_0 = (5, 1)$ and the stopping criteria being $||x_{n+1} - x_n|| < \epsilon = 10^{-5}$, we obtain:

Table: α_k -DR: optimization	point	у *,	$\ y$	* .
-------------------------------------	-------	-------------	-------	------

α_{k}	У*	y *
1	(3.0635,0.5)	3.104
$2 - \frac{1}{10}$	(3.0635,0.5)	3.104
$2 - \frac{1}{50}$	(3.0635,0.5)	3.104
$2 - \frac{1}{100}$	(3.0635,0.5)	3.104
$2 - \frac{1}{1000}$	(3.0635,0.5)	3.104
$2 - \frac{1}{10000}$	(3.0635,0.5)	3.104

However, when we use the classic Douglas-Rachford algorithm to solve (4), the answer changes if we choose different starting point.

Table: DR: starting point x_0 , optimization point y^* , $||y^*||$.

<i>x</i> ₀	У*	y *
(5,1)	(4,0.8944)	4.0988
(-3,1)	(3.0785,0.5548)	3.1281
(-4,-6)	(4,0.5)	4.0311
(10,-20)	(4,0.5)	4.0311

- As α_k → 2, the optimization result which is gotten by the α-Douglas-Rachford algorithm converges to the smallest norm solution of (4).
- When using Douglas-Rachford algorithm to solve (4), the answer changes if we choose different starting point. However, the selection of starting points has no influence on the result when we use the α-Douglas-Rachford algorithm.

Setup

- 2 Properties of α -Douglas-Rachford algorithm.
- 3 A numerical experiment of solving $0 \in Ax + Bx$.
- Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
- 5 A numerical experiment of solving primal-dual problem.

Combettes', Bot-Hendrich's primal-dual framework

Assume that

 $L: \mathbb{R}^m \to \mathbb{R}^m$ is a nonzero bounded linear invertible operator,

and

$$r \in \mathbb{R}^m$$
.

The primal problem: find a point $\bar{x} \in \mathbb{R}^m$ such that

$$0 \in A\bar{x} + L^{\star}(B \Box D)(L\bar{x} - r) \tag{P}$$

One can solve the primal-dual problem instead: find a point $(x, v) \in \mathbb{R}^m \times \mathbb{R}^m$ such that

$$\begin{cases} -L^* v \in Ax \\ v \in (B \Box D)(Lx - r). \end{cases}$$
(PD)

¹The parallel sum of *B*, *D* is defined as $B \Box D : \mathbb{R}^m \to 2^{\mathbb{R}^m}$, and

<

$$B\Box D = (B^{-1} + D^{-1})^{-1}.$$

Fact 9 (Bot and Hendrich' 2013, Combettes' 2013)

Define three set-valued operators *M*, *Q* and *S* as follows:

$$\begin{split} M &: \mathcal{K} \to 2^{\mathcal{K}} : (x, v) \mapsto (Ax, r + B^{-1}v); \\ Q &: \mathcal{K} \to 2^{\mathcal{K}} : (x, v) \mapsto (0, D^{-1}v); \\ S &: \mathcal{K} \to \mathcal{K} : (x, v) \mapsto (L^*v, -Lx). \end{split}$$

Moreover, define an bounded linear operator

$$V: \mathcal{K} \to \mathcal{K}: (x, v) \mapsto (\frac{x}{\tau} - \frac{1}{2}L^*v, \frac{v}{\sigma} - \frac{1}{2}Lx),$$

where $\tau, \sigma \in \mathbb{R}_{++}$, and $\tau \sigma \|L\|^2 < 4$.

Finally, define two operators on $\mathcal{K}V$:

$$A := V^{-1}(\frac{1}{2}S + Q),$$

 $B := V^{-1}(\frac{1}{2}S + M).$

Here, the space $\mathcal{K}V$ is an inner product space with $\langle x, y \rangle_{\mathcal{K}V} = \langle x, Vy \rangle_{\mathcal{K}}$. Then any

$$(\bar{x}, \bar{v}) \in \operatorname{zer}(\boldsymbol{A} + \boldsymbol{B})$$

is a pair of primal-dual solution to problem(PD) and vice versa.

¹Bot and Hendrich also showed:

• V^{-1} exists.

• **A** and **B** are maximally monotone on $\mathcal{K}V$, and $\operatorname{zer}(\mathbf{A} + \mathbf{B}) = \operatorname{zer}(M + S + Q)$.

Xianfu Wang (UBC)

When $\operatorname{zer}(\boldsymbol{A} + \boldsymbol{B}) \neq \emptyset$, they used the Douglas-Rachford algorithm to get the solution of the problem with primal inclusion (P) together with dual inclusion (PD) :

Let $x_0 \in \mathbb{R}^m$ be the starting point. Set

$$(\forall n \in \mathbb{N}) \quad \begin{cases} y_n = J_{\mathbf{B}} x_n \\ z_n = J_{\mathbf{A}} (2y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$

Then there exists $x \in Fix R_A R_B$ such that $J_B x \in zer(A + B)$, and $(x_n)_{n=1}^{+\infty}$ converges to x.

Recall the construction of M, Q, S, V, A and B. Let $\alpha \in [1, 2)$, and for any $\beta \in \mathbb{R}$, define $B \stackrel{\beta}{\Box} D = (B^{-1} + D^{-1} + \beta \operatorname{Id})^{-1}$. Then the following two inclusion problems are equivalent:

• Find $(x, v) \in \mathbb{R}^m \times \mathbb{R}^m$ such that $(x, v) \in \operatorname{zer}(\mathbf{A} + \mathbf{B} + (2 - \alpha) \operatorname{Id})$.

2 Solve the problem with primal inclusion: find $x \in \mathbb{R}^m$ such that

$$\mathbf{0} \in \mathbf{A}\mathbf{x} + \frac{\mathbf{2} - \alpha}{\tau}\mathbf{x} + \frac{\alpha}{\mathbf{4} - \alpha}\mathbf{L}^{\star} \circ (\mathbf{B} \stackrel{\frac{\mathbf{2} - \alpha}{\Box}}{\Box} \mathbf{D}) \circ (\mathbf{L}\mathbf{x} - \mathbf{r}) \qquad (\alpha \ \mathsf{P})$$

where $L = \frac{4-\alpha}{2}L$, $\tau \in \mathbb{R}_{++}$ and $\sigma \in \mathbb{R}_{++}$, together with the dual inclusion: find (x, v) such that

$$\begin{cases} -\frac{\alpha}{4-\alpha} \boldsymbol{L}^* \boldsymbol{v} \in \boldsymbol{A}\boldsymbol{x} + \frac{(2-\alpha)}{\tau} \boldsymbol{x} \\ \boldsymbol{v} \in (\boldsymbol{B} \stackrel{\frac{2-\alpha}{\Box}}{\Box} \boldsymbol{D})(\boldsymbol{L}\boldsymbol{x} - \boldsymbol{r}). \end{cases} \quad (\alpha \text{ PD})$$

When $0 \in int(dom \boldsymbol{A} - dom \boldsymbol{B})$,

$$\mathsf{zer}(oldsymbol{A}+oldsymbol{B}+(\mathbf{2}-lpha)\,\mathsf{Id})$$

can be solved by using the α -Douglas-Rachford algorithm: Let $x_0 \in \mathbb{R}^m \times \mathbb{R}^m$ be the starting point. Set

$$(\forall n \in \mathbb{N}) \quad \begin{cases} y_n = J_{\mathbf{B}} x_n \\ z_n = J_{\mathbf{A}} (\alpha y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$

Then there exists $x \in Fix R^{\alpha}_{A}R^{\alpha}_{B}$ such that $J_{B}x \in \operatorname{zer}(A + B + (2 - \alpha) \operatorname{Id})$, and $(x_{n})_{n=1}^{+\infty}$ converges to x.

The α -Douglas-Rachford algorithm can be used to solve the α -primal-dual problem with primal inclusion: find $x \in \mathbb{R}^m$ such that

$$0 \in Ax + \frac{2-\alpha}{\tau}x + \frac{\alpha}{4-\alpha}L^{\star} \circ (B \stackrel{\frac{2-\alpha}{\sigma}}{\Box} D) \circ (Lx - r) \qquad (\alpha \mathsf{P})$$

where $L = \frac{4-\alpha}{2}L$, $\tau \in \mathbb{R}_{++}$ and $\sigma \in \mathbb{R}_{++}$, together with the primal-dual inclusion: find (x, v) such that

$$\begin{cases} -\frac{\alpha}{4-\alpha} \mathbf{L}^* \mathbf{v} \in A\mathbf{x} + \frac{(2-\alpha)}{\tau} \mathbf{x} \\ \mathbf{v} \in (\mathbf{B} \stackrel{\frac{2-\alpha}{\sigma}}{\Box} \mathbf{D}) \circ (\mathbf{L}\mathbf{x} - \mathbf{r}). \end{cases} (\alpha \mathsf{D})$$

Theorem 10

$$\begin{array}{ll} \textit{Recall that} & \textit{M}: \mathcal{K} \to 2^{\mathcal{K}}: (x,v) \mapsto (\textit{A}x,r+\textit{B}^{-1}v); \\ & \textit{Q}: \mathcal{K} \to 2^{\mathcal{K}}: (x,v) \mapsto (0,\textit{D}^{-1}v); \\ & \textit{S}: \mathcal{K} \to \mathcal{K}: (x,v) \mapsto (\textit{L}^{\star}v,-\textit{L}x); \\ & \textit{V}: \mathcal{K} \to \mathcal{K}: (x,v) \mapsto (\frac{x}{\tau}-\frac{1}{2}\textit{L}^{\star}v,\frac{v}{\sigma}-\frac{1}{2}\textit{L}x), \end{array}$$

where $\tau, \sigma \in \mathbb{R}_{++}$, and $\tau \sigma \|L\|^2 < 4$. And

$$A := V^{-1}(\frac{1}{2}S + Q).$$

 $B := V^{-1}(\frac{1}{2}S + M).$

Then dom $D^{-1} = \mathbb{R}^m$ implies

$$0 \in int(dom \mathbf{A} - dom \mathbf{B}).$$

In particular, dom $D^{-1} = \mathbb{R}^m$ if $D = N_{\{0\}}$, or D = Id.

Xianfu Wang (UBC)

We can use α -Douglas-Rachford algorithm

$$\begin{cases} y_n = J_B x_n \\ z_n = J_A (\alpha_k y_n - x_n) \\ x_{n+1} = x_n + (z_n - y_n). \end{cases}$$
(6)

to find the solution of $zer(\mathbf{A} + \mathbf{B} + (2 - \alpha_k) Id)$.

The smallest norm solution of $zer(\mathbf{A} + \mathbf{B})$ gives the smallest norm primal-dual solution:

$$\begin{cases} -L^* v \in Ax \\ v \in (B \Box D)(Lx - r). \end{cases}$$
(PD)

The algorithm (6) can be rewritten as

$$\begin{cases} y_{1n} = J_{\tau A}(x_{1n} - \frac{\tau}{2}L^{*}x_{2n}) \\ y_{2n} = J_{\sigma B^{-1}}(x_{2n} - \frac{\sigma}{2}Lx_{1n} + \sigma Ly_{1n}) \\ w_{1n} = \alpha_{k}y_{1n} - x_{1n} \\ w_{2n} = \alpha_{k}y_{2n} - x_{2n} \\ z_{1n} = w_{1n} - \frac{\tau}{2}L^{*}w_{2n} \\ z_{2n} = J_{\sigma D^{-1}}(w_{2n} - \frac{\sigma}{2}Lw_{1n} + \sigma Lz_{1n}) \\ x_{1n+1} = x_{1n} + (z_{1n} - y_{1n}) \\ x_{2n+1} = x_{2n} + (z_{2n} - y_{2n}), \end{cases}$$

$$(7)$$

where $x_n = (x_{1n}, x_{2n}), y_n = (y_{1n}, y_{2n}).$

Setup

- 2 Properties of α -Douglas-Rachford algorithm.
- 3 A numerical experiment of solving $0 \in Ax + Bx$.
- Solving a primal-dual problem with mixtures composite and parallel-sum type monotone operators.
- 5 A numerical experiment of solving primal-dual problem.

Example 2

Let $f = I_{C_1}$, $g = I_{C_2}$, where C_1 is a circle centred at (5,0) with radius 2, and C_2 is a box centred at (3, 1.5) with radius 1. Let $A = \partial f$, $B = \partial g$, We aim to find the least norm primal-dual solution:

$$\begin{cases} -v \in N_{C_1}(x) \\ v \in N_{C_2}(x), \end{cases}$$
(8)

Figure: The plot of Example 2

We can solve (8) by the α -Douglas-Rachford method.

 ${}^{1}0 \in N_{C_{1}}(x) + (N_{C_{2}} \Box N_{\{0\}})(x)$ is equivalent to $0 \in N_{C_{1}}(x) + N_{C_{2}}(x)$.

Xianfu Wang (UBC)

parmeterized DR method

Theoretical results

Let α_k be a increasing convergent sequence in [1,2) such that $\lim_{k \to +\infty} \alpha_k = 2$. For each α_k , let $\boldsymbol{L} = \frac{4 - \alpha_k}{2} \operatorname{Id}$. Then the following holds:

) The problem with primal inclusion: find $x \in \mathbb{R}^n$ such that

$$0 \in N_{C_1}(x) + \frac{2 - \alpha_k}{\tau} x + \frac{\alpha_k}{4 - \alpha_k} \mathcal{L}^*(N_{C_2} \Box \frac{\sigma}{2 - \alpha_k} \operatorname{Id})(\mathcal{L}x), \quad (9)$$

where $\tau \in \mathbb{R}_{++}$, $\sigma \in \mathbb{R}_{++}$, and $\tau \sigma < 4$, together with the primal-dual inclusion: find (x, v) such that

$$\begin{cases} -\frac{\alpha_k}{4-\alpha_k} \boldsymbol{L}^* \boldsymbol{v} \in N_{C_1}(\boldsymbol{x}) + \frac{2-\alpha_k}{\tau} \boldsymbol{x} \\ \boldsymbol{v} \in (N_{C_2} \Box \frac{\sigma}{2-\alpha_k} \operatorname{Id})(\boldsymbol{L} \boldsymbol{x}) \end{cases}$$
(10)

reduces to (8) as $\alpha_k \rightarrow 2$.

The problem with primal-dual inclusion (10) can be solved by the α -Douglas-Rachford algorithm.

$$\frac{2-\alpha_k}{(N_{C_2} \buildrel DR \buildrel D$$

Numerical result of (10) by using α -Douglas-Rachford algorithm with $\sigma = 2$, $\tau = 3/2$, and starting point $x_0 = (5, 1)$, $v_0 = (0, 0)$.

Table: Six fixed $\alpha_k = 2 - 1/k$, optimal point y_1^* and y_2^* , and the case $\alpha = 2$.

α_{k}	<i>Y</i> ₁ *	<i>y</i> ₂ *	$\sqrt{\ y_1\ ^2 + \ y_2\ ^2}$
1	(3.0053,0.1460)	(1.0160,-0.5621)	3.2251
$2 - \frac{1}{10}$	(3.0565,0.4721)	(0,-0.0852)	3.0939
$2 - \frac{1}{50}$	(3.0622,0.4949)	(0,-0.0172)	3.1020
$2 - \frac{1}{100}$	(3.0629,0.4975)	(0,-0.0086)	3.1030
$2 - \frac{1}{1000}$	(3.0634,0.4997)	1.0e-03 *(0,-0.8606)	3.1039
$2 - \frac{1}{10000}$	(3.0635,0.5000)	1.0e-04 *(0,-0.8607)	3.1040
$\alpha = 2$	(3.6259,0.6339)	(0,0)	3.6809

Numerical result of (10) by using α -Douglas-Rachford algorithm with $\sigma = 1, \tau = 1$, and the same starting point $x_0 = (5, 1), v_0 = (0, 0)$.

Table: Six fixed $\alpha_k = 2 - 1/k$, optimal point y_1^* and y_2^* , and the case $\alpha = 2$.

α_{k}	<i>Y</i> ₁ *	<i>y</i> ₂ *	$\sqrt{\ y_1\ ^2 + \ y_2\ ^2}$
1	(3.0014,0.0740)	(0.5021,-0.3890)	3.0687
$2 - \frac{1}{10}$	(3.0546,0.4642)	(0,-0.1256)	3.0922
$2 - \frac{1}{50}$	(3.0621,0.4945)	(0,-0.0258)	3.1019
$2 - \frac{1}{100}$	(3.0628,0.4974)	(0,-0.0129)	3.1030
$2 - \frac{1}{1000}$	(3.0634,0.4997)	(0,-0.0013)	3.1039
$2 - \frac{1}{10000}$	(3.0635,0.5000)	1.0e-03 *(0,-0.1291)	3.1040
$\alpha = 2$	(3.7500,0.7500)	(0,0)	3.8243

Numerical result of (10) by using α -Douglas-Rachford algorithm with $\sigma = 1, \tau = 1$, and with another starting point $x_0 = (-4, -6), v_0 = (0, 0)$.

Table: Six fixed $\alpha_k = 2 - 1/k$, optimal point y_1^* and y_2^* , and the case $\alpha = 2$.

α_{k}	<i>Y</i> ₁ *	<i>y</i> ₂ *	$\sqrt{\ y_1\ ^2 + \ y_2\ ^2}$
1	(3.0014,0.0740)	(0.5021,-0.3890)	3.0687
$2 - \frac{1}{10}$	(3.0546,0.4642)	(0,-0.1256)	3.0922
$2 - \frac{1}{50}$	(3.0621,0.4945)	(0,-0.0258)	3.1019
$2 - \frac{1}{100}$	(3.0628,0.4974)	(0,-0.0129)	3.1030
$2 - \frac{1}{1000}$	(3.0634,0.4997)	(0,-0.0013)	3.1039
$2 - \frac{1}{10000}$	(3.0635,0.5000)	1.0e-03 *(0,-0.1291)	3.1040
$\alpha = 2$	(3.3945,0.6448)	(0,0)	3.4552

- If we let y* = (3.0635, 0.5000) and w* = (0,0), tables 3, 4, and 5 all shows that when α_k → 2, we have the smallest norm primal-dual solution (y*, w*), where y* solves the primal and w* solves the dual.
- Once we fix the value of k with fixed τ and σ, the result we get by using α-Douglas-Rachford algorithm does not change if we change its starting point.
- In three tables 3, 4, and 5, $\alpha = 2$ gives different y_1^* is because

$$\begin{cases} -v \in N_{C_1}(x) \\ v \in N_{C_2}(x), \end{cases}$$
(11)

has multiple solutions.

- If we change the space from Rⁿ to a more general space, like H, a general Hilbert space, does the α-Douglas-Rachford algorithm have the same results and properties?
- **②** More numerical experiments on the α -Douglas-Rachford algorithm for higher dimensions and practical applications are required.

3 Consider
$$T_{\alpha,\beta,\gamma} = (1 - \gamma) \operatorname{Id} + \gamma R_A^{\beta} R_B^{\alpha}$$
?

A comparison to Aragón Artacho's recent work?

- ATTOUCH, H., AND THÉRA, M. A general duality principle for the sum of two operators. *Journal of Convex Analysis* 3, (1996), 1-24.
- BAUSCHKE, H. H., AND COMBETTES, P. L. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.
 - BAUSCHKE, H. H., AND BORWEIN, J. M. Dykstra's alternating projection algorithm for two sets, *Journal of Approximation Theory* 79 (1994), 418–443.
- BOT, R. I., AND HENDRICH, C. A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. *SIAM Journal on Optimization* 23, 4 (2013), 2541–2565.
- COMBETTES, P. L. Solving monotone inclusions via compositions of nonexpansive averaged operators. *Optimization* 53, 5-6 (2004), 475–504.

COMBETTES, P. L. Iterative construction of the resolvent of a sum of maximal monotone operators. *Journal of Convex Analysis* 16, 4 (2009), 727-748.

DOUGLAS, J., AND RACHFORD, H. H. On the numerical solution of heat conduction problems in two and three space variables. *Transactions of the American Mathematical Society* 82, 2 (1956), 421-439.

DUCHI, J. Introductory lectures on stochastic optimization. *Manuscript, Stanford University*, (2016).

ECKSTEIN, J., AND BERTSEKAS, D. P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. *Mathematical Programming* 55, 1 (1992), 293-318.

KREYSZIG, E. Introductory functional analysis with applications (Vol. 1). Wiley New York, 1989.

- LIEUTAUD, J. Approximations d'opérateurs monotones par des méthodes de splitting. *Doctoral thesis, University of Paris*, 1969.
- LIONS, P. L., AND MERCIER, B. Splitting algorithms for the sum of two nonlinear operators. *SIAM Journal on Numerical Analysis* 16, 6 (1979), 964-979.
- MORDUKHOVICH, B. S., AND NAM, N. M. *An easy path to convex analysis and applications*. Synthesis Lectures on Mathematics and Statistics, 6:1-218, 2013.
- SVAITER, B. F. On weak convergence of the Douglas-Rachford method. *SIAM Journal on Control and Optimization* 49, 1 (2011), 280-287.
- WANG, X. Self-dual regularization of monotone operators via the resolvent average. *SIAM Journal on Optimization* 21, 2 (2011), 438-462.

Thank you!