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The goal

@ Assumption Let 7 - du be a probability distribution on X C RP
assumed to be highly metastable and (possibly) known up to a
normalizing constant.

@ Question 1: How to design a MC sampler for an approximation of

/Xfﬂdu

@ Question 2: How to compute the free energy

—ln/ mdu X; X
Xi

In this talk,
@ an approach by Free Energy-based Adaptive Importance Sampling
technique
@ which is a generalization of Wang Landau, Self Healing Umbrella
Sampling, Well tempered metadynamics.



The intuition (1/3) - a family of auxiliary distributions

n(x) = - exp(~V (@)

» The auxiliary distribution
@ Choose a partition Xy, -+, X4 of X




The intuition (1/3) - a family of auxiliary distributions

1
n() = - exp(~V (2))
» The auxiliary distribution

@ Choose a partition Xq,-- -,
e and for positive weights* 8 = (61, - -

Xd of X
-, 04) set

d
Z ) exp (=V(z) —Inb;)

» Property 1:

Vie{l,---,d}, / o dp o - . déf/ wdu
X; 91 X

» Property 2:
) 1
Vie{l,---,d}, /7T9 dyu = -.

Xi d

*6; € (0,1), 5% ,6; =1




Intuition (2/3) - How to choose 6 7

d
Z ) exp (=V(z) — Inb;) 0. déf/ mdu
i=1 Xi
> 1f0=10,
e Efficient exploration under 7y : each subset X; has the same weight
under mp_

@ Poor ESS: The IS approximation gets into
g d
X —
» Choose p € (0,1) and set 07

d 1 N d

i1=1

—

9517” efd).

» But 8, is unknown



Intuition (3/3) -Estimation of the free energy

def  Chi . .
0. = / mdp =0, = #”Normahzed count of the visits to X;”
Xi

j=1 Ch.j

» Exact sampling If X;,41 ~mdp: Cpg1,i = Ch i + Ix, (Xpt1)

This yields foralli =1,--- ,d

n+1 d
Criri= Y Ix,(Xx)  Sui1 €D Cupri=(n+1)=0(n)
=1

i=1
and
n+1 1
+1, 1Zx +1) i + +1(X,( +1) i)
i.e. Stochastic Apprimation scheme with learning rate 1/S,,+1, and limiting
point 6. ;



Intuition (3/3) -Estimation of the free energy

C. .
0. def / mdp =0, def %”Normalized count of the visits to X;”
Xi Zj:l Ch.j
» Exact sampling If X1 ~mdp: Cpg1,i = Ch i + Ix, (Xpt1)
» IS sampling If Xn+1 ~ 7TE d,u Cn+1,i = On,i + 0; ]I)(i (Xn+1)

This yields for all ¢ =1,--- ,d

n+1 d
-~ ef

Cry1, =7 06; Z Ix, (Xn+1) Snt1 E=. ch+l,i = Ouwp1(n)

k=1 i=1
and L
——H;(0,,Xn O(—

G HiB, X)) £ O()

i.e. Stochastic Apprimation scheme with learning rate 1/5,,+1, and limiting
point 6, ;

Ont1,i = Oni +



Intuition (3/3) -Estimation of the free energy

C. .
0. def / mdp =0, def %”Normalized count of the visits to X;”
Xi Zj:l Chn,;
» Exact sampling If X1 ~mdp: Cpg1,i = Ch i + Ix, (Xpt1)
» IS sampling If Xn+1 ~ 7TE d,u Cn+1,i = On,i + 0; ]I)(i (Xn+1)
» IS sampling with a leverage effect If X, 1 ~ m5du:
S ~
Cn+17i = Cn,i + v Wnn)el ]Ixi (Xn+1) Lrlgg = +o0, limsinf s/g(s) >0
This yields
Sn+1 — Sn ~
Sn+1 T +00 +;n = g(gn) H’L]qu (X"+1)

and

2
Y Y
Ont1,i =0ni + —5~Hi(0,,,Xn + 0 (7)
+ g(5,) il Xnt) + 0 | 3753

i.e. S.A. scheme with learning rate v/g(S»), and limiting point 6. ;.



Intuition (3/3) -Estimation of the free energy

def

Cni
0.0 = ’

def . ..
mdu 0, = ™' "Normalized count of the visits to X;”
x SRS

j=1%n,j

» Exact sampling If X;,41 ~mdp: Cpg1, = Chyi + Ix, (Xpt1)
» IS sampling If X, 11 ~ m5dpu: Cry1,i=Chni+ 70 Ix,(Xpn11)
» IS sampling with a leverage effect If X, ;1 ~ mp dp

S, ~
CTL-‘rl,i = Cn,i + @91 ]Ixi (Xn+1) _légg = 400, limsinf s/g(s) >0

If g(s) = In(1 + 5)®/(1+2) the learning rate is O(t~)
» Key property: if X,, 11 € X;, then for any j # i

WQn+1(Xj) > mp (Xj)  the probability of stratum #j increases



The algorithm: Adaptive IS with partial biasing
> Fix: pe (0,1) and a € (1/2,1). Set g(s) & (In(1 + s))a/(lfa).
» Initialisation: X € X, a positive weight vector 6,

» Repeat, forn=0,--- ,N — 1
o sample X, 41 ~ Pyr (X, ), a Markov kernel invariant wrt mg» du

@ compute
Criri = Cri 4+ —2 8, 68, Tx (Xp41)
9(Shn) ’
C .
n+1 Z CnJrl i 9n+1,i - S’:;J;ll’l

» Return (6,,)n sequ. of estimates of #,; and the IS estimator

/ frdp~ + (Zon L) (Z]Ix 0" “> F(Xn)
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@ The limiting behavior of the estimates (6,,),
@ The limiting distribution of X,
© The limiting behavior of the IS estimator

Convergence results



Assumptions

@ On the target density and the strata X;:
< in 6,(7) >0
st;pw 00, [min, (7)

@ On the kernels Py: Hastings-Metropolis kernel, with symmetric
proposal ¢(x,y)du(y) such that infyz ¢ > 0.

for any compact subset K, there exists C and X € (0, 1) s.t.

sup [Py (z,-) — mollTv < CA™
beK -

@ pe(0,1)

Q g(s) = (In(1 +5))*/0=) with a € (1/2,1).



Convergence results: on the sequence 0,

» Recall

i1 =0+ Ynt1 H(Xni1,0,) +vig1 Ana

where

Yn is a positive random learning rate
sup,, |[An+1]| is bounded a.s.

JH(0)mpr du=0iff 0 =0,.

» Result 1

d
hyrln'yn n® = (1—a)* '~ E 0,
=1

» Result 2:
a.s.

def
Ynt1 = V/9(Sn)

a.s.



Convergence results - on the samples X,

» Recall
Xnt1 ~ Pae (X, -) mg Py = g

» Result 1 For any bounded function f

hranE[f(Xn)} = /f Tge dpt
» Result 2 For any bounded function f

N
!
1%nN7;f(Xn)_/fw9§ du  as.
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Convergence results - on the IS estimator

» Result 1 For any bounded function f

N d

. 1 _

lim NE (X E:an I (5 | (D067 :/fﬂdu
n=1

i=1 j=1

» Result 1 For any bounded function f, a.s.:

N
h]IVn;[;f( (Z_:an 11X, Xn) ('_

[NgE
)
S
g
.
N———
I
—
\
3
o
=
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Is it new ?

» Theoretical contribution
@ Self Healing Umbrella Sampling
e p =1 (no biasing intensity)
e g(s) = s (also covered by the theory; not detailed here)

o Well-tempered metadynamics
e p € (0,1) (biasing intensity)
o g(s) = "7 (also covered by the theory; not detailed here)

» Methodological contribution: the introduction of a function g(s) in the
updating scheme of the estimator 6, allowing a random learning rate

Yn ~ prl(nia)
for a € (1/2,1).



Is there a gain in such a self-tuned and partially biasing algorithm ?

i
i

i
i

beta- beta-s

Make the metastability larger by increasing 5.



Case p 6 [0, 1) (p = a on the plot) and (8% G (1/27 1) = Yn = Owp1(n™ %)
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Figure: Left: Exit times for &« = 0.8. Right: Exit times for a = 0.6.

Start from the left mode, compute the exit time 7" i.e. time to reach
Xn,l >1
e T 1 when g1
o fixed B and p: T | when « | - a slowly | learning rate is better
o fixed 8 and a: T | when p 1 - a small (or no) bias is better
o Linear fit with a slope indep of p: nT' =¢, + (1 —a) 'Inf

14 /17



Case p € (0,1) (p=aonthepoy and & =1 =, =0, (case
well tempered metadynamics)
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Figure: Left: Exit times for many values of p. Right: Associated slopes, fitted
by z — 2.43(1 — z).

Exit time T
o For fixed B8: T | when p 1 - a small bias is better
o Linear fit: InT = c¢+2.43(1 — p)B
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Normalized Effective Sample Size (EF)

Case v, = O(1/n®) for o € (1/2,1), p€1[0,1)
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Figure: Efficiency factors p — EF(p) for various values of 3.

(v 5 wxa)
(N1 w?(Xa)

@ By definition, when constant weights, EF = 1.
e For fixed 8, EF 1 when p | - a strong bias is better

EF =

€ [0,1]
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Conclusion

A new algorithm

which estimates the free energy of 7 by a Stochastic Approximation
algorithm, where the stepsize sequence {7y,,n > 0} is tuned on the

fly
which provides an approximation of 7 by a set of weighted points
with a controlled discrepancy of the weights.

which requires two design parameters (a, p) to be fixed by the user

- Transient phase: p close to 1 and « close to 1/2.
- At convergence: p close to 0 and « close to 1.

In the transient phase: far more efficient than Well-Tempered
Metadynamics, SHUS and WL.
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