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Institut de Mathématiques de Toulouse
CNRS
France

Joint work with B. Jourdain, T. Lelièvre and G. Stoltz
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The goal

Assumption Let π · dµ be a probability distribution on X ⊆ Rp
assumed to be highly metastable and (possibly) known up to a
normalizing constant.

Question 1: How to design a MC sampler for an approximation of∫
X

f π dµ

Question 2: How to compute the free energy

− ln

∫
Xi

π dµ Xi ⊂ X

In this talk,

an approach by Free Energy-based Adaptive Importance Sampling
technique

which is a generalization of Wang Landau, Self Healing Umbrella
Sampling, Well tempered metadynamics.
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The intuition (1/3) - a family of auxiliary distributions

π(x) =
1

Z
exp(−V (x))

I The auxiliary distribution
Choose a partition X1, · · · ,Xd of X
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θ∗,i
def
=

∫
Xi

π dµ

and for positive weights∗ θ = (θ1, · · · , θd) set

πθ(x) ∝
d∑
i=1

1IXi(x) exp (−V (x)− ln θi)

I Property 1:

∀i ∈ {1, · · · , d},
∫

Xi

πθ dµ ∝ θ∗,i
θi

θ∗,i
def
=

∫
Xi

π dµ

I Property 2:

∀i ∈ {1, · · · , d},
∫

Xi

πθ∗ dµ =
1

d
.

∗θi ∈ (0, 1),
∑d
i=1 θi = 1
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Intuition (2/3) - How to choose θ ?

πθ(x) ∝
d∑
i=1

1IXi(x) exp (−V (x)− ln θi) θ∗,i
def
=

∫
Xi

π dµ

I If θ = θ∗
Efficient exploration under πθ∗ : each subset Xi has the same weight
under πθ∗
Poor ESS: The IS approximation gets into∫

X

f πdµ ≈ d

N

N∑
n=1

(
d∑
i=1

1IXi(Xn) θ∗,i

)
f(Xn)

I Choose ρ ∈ (0, 1) and set θρ∗ ∝ (θρ∗,1, · · · , θ
ρ
∗,d):∫

X

f πdµ ≈

(
d∑
i=1

θ1−ρ∗,i

)
1

N

N∑
n=1

(
d∑
i=1

1IXi(Xn) θρ∗,i

)
f(Xn)

I But θ∗ is unknown
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Intuition (3/3) -Estimation of the free energy

θ∗,i
def
=

∫
Xi

π dµ ≈ θn,i
def
=

Cn,i∑d
j=1 Cn,j

”Normalized count of the visits to Xi”

I Exact sampling If Xn+1 ∼ π dµ: Cn+1,i = Cn,i + 1IXi(Xn+1)

This yields for all i = 1, · · · , d

Cn+1,i =

n+1∑
k=1

1IXi(Xk) Sn+1
def
=

d∑
i=1

Cn+1,i = (n+ 1) = O(n)

and

θn+1,i =
1

n+ 1

n+1∑
k=1

1IXi(Xn+1) = θn,i +
1

n+ 1
(1IXi(Xn+1)− θn,i)

i.e. Stochastic Apprimation scheme with learning rate 1/Sn+1, and limiting

point θ∗,i

I IS sampling If Xn+1 ∼ πθ̂ dµ: Cn+1,i = Cn,i + γ θ̂i 1IXi(Xn+1)

I IS sampling with a leverage effect If Xn+1 ∼ πθ̂ dµ:

Cn+1,i = Cn,i + γ
Sn

g(Sn)
θ̂i 1IXi(Xn+1) lim

+∞
g = +∞, lim inf

s
s/g(s) > 0

If g(s) = ln(1 + s)α/(1+α), the learning rate is O(t−α)

I Key property: if Xn+1 ∈ Xi, then for any j 6= i

πθn+1
(Xj) > πθn(Xj) the probability of stratum #j increases
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The algorithm: Adaptive IS with partial biasing

I Fix: ρ ∈ (0, 1) and α ∈ (1/2, 1). Set g(s)
def
= (ln(1 + s))

α/(1−α).

I Initialisation: X0 ∈ X, a positive weight vector θ0,

I Repeat, for n = 0, · · · , N − 1

sample Xn+1 ∼ Pθρn(Xn, ·), a Markov kernel invariant wrt πθρn dµ

compute

Cn+1,i = Cn,i +
γ

g(Sn)
Sn θ

ρ
n,i 1IXi(Xn+1)

Sn+1 =

d∑
i=1

Cn+1,i θn+1,i =
Cn+1,i

Sn+1

I Return (θn)n sequ. of estimates of θ∗; and the IS estimator∫
f πdµ ≈ 1

N

N∑
n=1

(
d∑
i=1

θ1−ρn−1,i

) (
d∑
i=1

1IXi(Xn) θρn−1,i

)
f(Xn)
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Convergence results

1 The limiting behavior of the estimates (θn)n
2 The limiting distribution of Xn

3 The limiting behavior of the IS estimator
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Assumptions

1 On the target density and the strata Xi:

sup
X
π <∞, min

1≤i≤d
θ∗(i) > 0

2 On the kernels Pθ: Hastings-Metropolis kernel, with symmetric
proposal q(x, y)dµ(y) such that infX2 q > 0.

for any compact subset K, there exists C and λ ∈ (0, 1) s.t.

sup
θ∈K

‖Pnθ (x, ·)− πθ‖TV ≤ Cλn

3 ρ ∈ (0, 1)

4 g(s) = (ln(1 + s))α/(1−α) with α ∈ (1/2, 1).
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Convergence results: on the sequence θn

I Recall

θn+1 = θn + γn+1 H(Xn+1, θn) + γ2n+1 Λn+1 γn+1
def
= γ/g(Sn)

where

γn is a positive random learning rate
supn ‖Λn+1‖ is bounded a.s.∫
H(·, θ)πθρ dµ = 0 iff θ = θ∗.

I Result 1

lim
n
γn n

α = (1− α)α γ1−α

 d∑
j=1

θ1−ρ∗,j

 a.s.

I Result 2:
lim
n
θn = θ∗ a.s.
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Convergence results - on the samples Xn

I Recall
Xn+1 ∼ Pθρn(Xn, ·) πθPθ = πθ

I Result 1 For any bounded function f

lim
n

E [f(Xn)] =

∫
f πθρ∗ dµ

I Result 2 For any bounded function f

lim
N

1

N

N∑
n=1

f(Xn) =

∫
f πθρ∗ dµ a.s.
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Convergence results - on the IS estimator

I Result 1 For any bounded function f

lim
N

E

 1

N

N∑
n=1

f(Xn)

 d∑
j=1

θρn−1,j1IXj (Xn)

 d∑
j=1

θ1−ρn−1,j

 =

∫
f π dµ

I Result 1 For any bounded function f , a.s.:

lim
N

1

N

N∑
n=1

f(Xn)

 d∑
j=1

θρn−1,j1IXj (Xn)

 d∑
j=1

θ1−ρn−1,j

 =

∫
f π dµ
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Is it new ?

I Theoretical contribution

Self Healing Umbrella Sampling

ρ = 1 (no biasing intensity)
g(s) = s (also covered by the theory; not detailed here)

Well-tempered metadynamics

ρ ∈ (0, 1) (biasing intensity)
g(s) = s1−ρ (also covered by the theory; not detailed here)

I Methodological contribution: the introduction of a function g(s) in the
updating scheme of the estimator θn, allowing a random learning rate

γn ∼ Owp1(n−α)

for α ∈ (1/2, 1).
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Is there a gain in such a self-tuned and partially biasing algorithm ?
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Case ρ ∈ [0, 1) (ρ = a on the plot) and α ∈ (1/2, 1) ⇒ γn = Owp1(n
−α)
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Figure: Left: Exit times for α = 0.8. Right: Exit times for α = 0.6.

Start from the left mode, compute the exit time T i.e. time to reach
Xn,1 > 1

T ↑ when β ↑
fixed β and ρ: T ↓ when α ↓ - a slowly ↓ learning rate is better

fixed β and α: T ↓ when ρ ↑ - a small (or no) bias is better

Linear fit with a slope indep of ρ: lnT = cρ + (1− α)−1 lnβ
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Case ρ ∈ (0, 1) (ρ = a on the plot) and α = 1 ⇒ γn = Owp1(n
−1) (case

well tempered metadynamics)
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Figure: Left: Exit times for many values of ρ. Right: Associated slopes, fitted
by x 7→ 2.43(1− x).

Exit time T

For fixed β: T ↓ when ρ ↑ - a small bias is better

Linear fit: lnT = c+ 2.43(1− ρ)β

15 / 17



Normalized Effective Sample Size (EF)
Case γn = O(1/nα) for α ∈ (1/2, 1), ρ ∈ [0, 1)
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Figure: Efficiency factors ρ 7→ EF(ρ) for various values of β.

EF =

(
N−1

∑N
n=1 w(Xn)

)2
(
N−1

∑N
n=1 w

2(Xn)
) ∈ [0, 1]

By definition, when constant weights, EF = 1.
For fixed β, EF ↑ when ρ ↓ - a strong bias is better

16 / 17



Conclusion

A new algorithm

which estimates the free energy of π by a Stochastic Approximation
algorithm, where the stepsize sequence {γn, n ≥ 0} is tuned on the
fly

which provides an approximation of π by a set of weighted points
with a controlled discrepancy of the weights.

which requires two design parameters (α, ρ) to be fixed by the user

· Transient phase: ρ close to 1 and α close to 1/2.
· At convergence: ρ close to 0 and α close to 1.

In the transient phase: far more efficient than Well-Tempered
Metadynamics, SHUS and WL.
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