Bayesian inference and convex geometry: theory, methods, and algorithms.

Dr. Marcelo Pereyra http://www.macs.hw.ac.uk/~mp71/

Maxwell Institute for Mathematical Sciences, Heriot-Watt University

November 2018, Oaxaca.

D Bayesian inference in imaging inverse problems

- 2 Proximal Markov chain Monte Carlo
- 3 Uncertainty quantification in astronomical and medical imaging
- 4 Empirical Bayes estimation with unknown regularisation parameters
- 5 Conclusion

- We are interested in an unknown image $x \in \mathbb{R}^d$.
- We measure y, related to x by a statistical model p(y|x).
- The recovery of x from y is ill-posed or ill-conditioned, resulting in significant uncertainty about x.
- For example, in many imaging problems

$$y = Ax + w$$
,

for some operator A that is rank-deficient, and additive noise w.

- We use priors to reduce uncertainty and deliver accurate results.
- Given the prior p(x), the posterior distribution of x given y

$$p(x|y) = p(y|x)p(x)/p(y)$$

models our knowledge about x after observing y.

• In this talk we consider that p(x|y) is log-concave; i.e.,

$$p(x|y) = \exp\left\{-\phi(x)\right\}/Z,$$

where $\phi(x)$ is a convex function and $Z = \int \exp \{-\phi(x)\} dx$.

The predominant Bayesian approach in imaging is MAP estimation

$$\hat{x}_{MAP} = \underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} p(x|y),$$

$$= \underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \phi(x),$$
(1)

computed efficiently, even in very high dimensions, by (proximal) convex optimisation (Green et al., 2015; Chambolle and Pock, 2016).

Illustrative example: astronomical image reconstruction

Recover $x \in \mathbb{R}^d$ from low-dimensional degraded observation

 $y = M\mathcal{F}x + w,$

where \mathcal{F} is the continuous Fourier transform, $M \in \mathbb{C}^{m \times d}$ is a measurement operator and w is Gaussian noise. We use the model

 $p(x|y) \propto \exp\left(-\|y - M\mathcal{F}x\|^2/2\sigma^2 - \theta\|\Psi x\|_1\right) \mathbf{1}_{\mathbb{R}^n_+}(x).$ (2)

Figure : Radio-interferometric image reconstruction of the W28 supernova.

M. Pereyra (MI — HWU)

MAP estimation by proximal optimisation

To compute \hat{x}_{MAP} we use a proximal splitting algorithm. Let

$$f(x) = \|y - M\mathcal{F}x\|^2/2\sigma^2, \quad \text{and} \quad g(x) = \theta \|\Psi x\|_1 + -\log \mathbf{1}_{\mathbb{R}^n_+}(x),$$

where f and g are l.s.c. convex on \mathbb{R}^d , and f is L_f -Lipschitz differentiable.

For example, we could use a proximal gradient iteration

$$x^{m+1} = \operatorname{prox}_{g}^{L_{f}^{-1}} \{ x^{m} + L_{f}^{-1} \nabla f(x^{m}) \},$$

converges to \hat{x}_{MAP} at rate O(1/m), with poss. acceleration to $O(1/m^2)$.

Definition Proximity mappings of a convex function g: For $\lambda > 0$, the λ -proximity mapping of g is defined as (Moreau, 1962)

$$\operatorname{prox}_{g}^{\lambda}(x) \triangleq \operatorname{argmin}_{u \in \mathbb{R}^{\mathbb{N}}} g(u) + \frac{1}{2\lambda} ||u - x||^{2}.$$

The alternating direction method of multipliers (ADMM) algorithm

$$\begin{split} x^{m+1} &= \mathrm{prox}_{f}^{\lambda} \{ z^{m} - u^{m} \}, \\ z^{m+1} &= \mathrm{prox}_{g}^{\lambda} \{ x^{m+1} + u^{m} \}, \\ u^{m+1} &= u^{m} + x^{m+1} - z^{m+1}, \end{split}$$

also converges to \hat{x}_{MAP} very quickly, and does not require f to be smooth.

However, MAP estimation has some limitations, e.g.,

- it provides little information about p(x|y),
- It struggles with unknown/partially unknown models,
- it is not theoretically well understood (yet).

Bayesian inference in imaging inverse problems

2 Proximal Markov chain Monte Carlo

3 Uncertainty quantification in astronomical and medical imaging

4 Empirical Bayes estimation with unknown regularisation parameters

5 Conclusion

Monte Carlo integration

Given a set of samples X_1, \ldots, X_M distributed according to p(x|y), we approximate posterior expectations and probabilities

$$\frac{1}{M}\sum_{m=1}^M h(X_m) \to \mathrm{E}\{h(x)|y\}, \quad \text{as } M \to \infty$$

Markov chain Monte Carlo:

Construct a Markov kernel $X_{m+1}|X_m \sim K(\cdot|X_m)$ such that the Markov chain X_1, \ldots, X_M has p(x|y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.

Suppose for now that $p(x|y) \in C^1$. Then, we can generate samples by mimicking a Langevin diffusion process that converges to p(x|y) as $t \to \infty$,

$$\mathbf{X}: \quad \mathrm{d}\mathbf{X}_t = \frac{1}{2}\nabla \log p\left(\mathbf{X}_t | y\right) \mathrm{d}t + \mathrm{d}W_t, \quad 0 \leq t \leq T, \quad \mathbf{X}(0) = x_0.$$

where W is the *n*-dimensional Brownian motion.

Because solving X_t exactly is generally not possible, we use an Euler Maruyama approximation and obtain the "unadjusted Langevin algorithm"

ULA:
$$X_{m+1} = X_m + \delta \nabla \log p(X_m | y) + \sqrt{2\delta} Z_{m+1}, \quad Z_{m+1} \sim \mathcal{N}(0, \mathbb{I}_n)$$

ULA is remarkably efficient when p(x|y) is sufficiently regular.

Suppose that

$$p(x|y) \propto \exp\left\{-f(x) - g(x)\right\}$$
(3)

where f(x) and g(x) are l.s.c. convex functions from $\mathbb{R}^d \to (-\infty, +\infty]$, f is L_f -Lipschitz differentiable, and $g \notin C^1$.

For example,

$$f(x) = \frac{1}{2\sigma^2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_2^2, \quad \boldsymbol{g}(x) = \alpha \| \boldsymbol{B} \boldsymbol{x} \|_{\dagger} + \mathbf{1}_{\mathcal{S}}(x),$$

for some linear operators A, B, norm $\|\cdot\|_{\dagger}$, and convex set S.

Unfortunately, such non-models are beyond the scope of ULA.

Idea: Regularise p(x|y) to enable efficiently Langevin sampling.

Moreau-Yoshida approximation of p(x|y) (Pereyra, 2015):

Let $\lambda > 0$. We propose to approximate p(x|y) with the density

$$p_{\lambda}(x|y) = \frac{\exp[-f(x) - g_{\lambda}(x)]}{\int_{\mathbb{R}^d} \exp[-f(x) - g_{\lambda}(x)] dx},$$

where g_{λ} is the Moreau-Yoshida envelope of g given by

$$g_{\lambda}(x) = \inf_{u \in \mathbb{R}^d} \{g(u) + (2\lambda)^{-1} \|u - x\|_2^2\},\$$

and where λ controls the approximation error involved.

Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2018):

- $\forall \lambda > 0$, p_{λ} defines a proper density of a probability measure on \mathbb{R}^d .
- Onvexity and differentiability:
 - p_{λ} is log-concave on \mathbb{R}^d .
 - $p_{\lambda} \in \mathcal{C}^1$ even if p not differentiable, with

 $\nabla \log p_{\lambda}(x|y) = -\nabla f(x) + \{\operatorname{prox}_{g}^{\lambda}(x) - x\}/\lambda,$

and $\operatorname{prox}_{g}^{\lambda}(x) = \operatorname{argmin} u \in \mathbb{R}^{\mathbb{N}} g(u) + \frac{1}{2\lambda} ||u - x||^{2}$.

• $\nabla \log p_{\lambda}$ is Lipchitz continuous with constant $L \leq L_f + \lambda^{-1}$.

S Approximation error between $p_{\lambda}(x|y)$ and p(x|y):

- $\lim_{\lambda \to 0} \|p_{\lambda} p\|_{TV} = 0.$
- If g is L_g -Lipchitz, then $||p_{\lambda} p||_{TV} \le \lambda L_g^2$.

Examples of Moreau-Yoshida approximations:

Figure : True densities (solid blue) and approximations (dashed red).

We approximate ${\boldsymbol{\mathsf{X}}}$ with the "regularised" auxiliary Langevin diffusion

$$\mathbf{X}^{\lambda}: \quad \mathrm{d}\mathbf{X}_{t}^{\lambda} = \frac{1}{2} \nabla \log \mathbf{p}_{\lambda} \left(\mathbf{X}_{t}^{\lambda} | \mathbf{y}\right) \mathrm{d}t + \mathrm{d}W_{t}, \quad 0 \leq t \leq T, \quad \mathbf{X}^{\lambda}(0) = x_{0},$$

which targets $p_{\lambda}(x|y)$. Remark: we can make \mathbf{X}^{λ} arbitrarily close to \mathbf{X} .

Finally, an Euler Maruyama discretisation of \mathbf{X}^{λ} leads to the (Moreau-Yoshida regularised) proximal ULA

 $\text{MYULA}: \quad X_{m+1} = (1 - \frac{\delta}{\lambda})X_m - \delta \nabla f\{X_m\} + \frac{\delta}{\lambda} \operatorname{prox}_g^{\lambda}\{X_m\} + \sqrt{2\delta}Z_{m+1},$

where we used that $\nabla g_{\lambda}(x) = \{x - \operatorname{prox}_{g}^{\lambda}(x)\}/\lambda$.

Non-asymptotic estimation error bound

Theorem 2.1 (Durmus et al. (2018))

Let $\delta_{\lambda}^{max} = (L_1 + 1/\lambda)^{-1}$. Assume that g is Lipchitz continuous. Then, there exist $\delta_{\epsilon} \in (0, \delta_{\lambda}^{max}]$ and $M_{\epsilon} \in \mathbb{N}$ such that $\forall \delta < \delta_{\epsilon}$ and $\forall M \ge M_{\epsilon}$

$$\|\delta_{x_0} Q_{\delta}^M - p\|_{TV} < \epsilon + \lambda L_g^2,$$

where Q_{δ}^{M} is the kernel assoc. with *M* iterations of MYULA with step δ .

Note: δ_{ϵ} and M_{ϵ} are explicit and tractable. If f + g is strongly convex outside some ball, then M_{ϵ} scales with order $\mathcal{O}(d \log(d))$. See Durmus et al. (2018) for other convergence results.

Bayesian inference in imaging inverse problems

2 Proximal Markov chain Monte Carlo

Oncertainty quantification in astronomical and medical imaging

- 4 Empirical Bayes estimation with unknown regularisation parameters
- 5 Conclusion

Where does the posterior probability mass of x lie?

• A set C_{α} is a posterior credible region of confidence level $(1 - \alpha)$ % if

$$\mathbf{P}[x \in C_{\alpha}|y] = 1 - \alpha.$$

• The *highest posterior density* (HPD) region is decision-theoretically optimal (Robert, 2001)

 $C_{\alpha}^{*} = \{x : \phi(x) \leq \gamma_{\alpha}\}$

with $\gamma_{\alpha} \in \mathbb{R}$ chosen such that $\int_{C_{\alpha}^{*}} p(x|y) dx = 1 - \alpha$ holds.

Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

 $\hat{x}_{MLE}(y)$

 $\hat{x}_{MMSE} = \mathrm{E}(x|y)$

credible intervals (scale 10×10)

$$\begin{split} \hat{x}_{MLE}(y) & \hat{x}_{MMSE} = \mathbb{E}(x|y) & \text{credible intervals (scale 10 × 10)} \\ 3\text{C2888 and M31 radio galaxies (size 256 × 256 pixels). Computing time 1 minute.} \\ M = 10^5 \text{ iterations. Estimation error w.r.t. MH implementation 3\%.} \end{split}$$

Hypothesis testing for image structures

Bayesian hypothesis test for specific image structures (e.g., lesions)

- $\mathrm{H}_{0}: \mathrm{The}\ \mathrm{structure}\ \mathrm{of}\ \mathrm{interest}\ \mathrm{is}\ \mathrm{ABSENT}\ \mathrm{in}\ \mathrm{the}\ \mathrm{true}\ \mathrm{image}$
- $\mathrm{H}_{1}:$ The structure of interest is PRESENT in the true image

The null hypothesis H_0 is rejected with significance α if

 $\mathsf{P}(\mathrm{H}_0|y) \leq \alpha.$

Key idea: (Repetti et al., 2018)

Let S denote the region of \mathbb{R}^d associated with H_0 , containing all images without the structure of interest. Then

 $\mathcal{S} \cap \mathcal{C}_{\alpha} = \emptyset \iff \mathsf{P}(H_0|y) \le \alpha$.

If in addition S is convex, then checking $S \cap \widetilde{\mathcal{C}}_{\alpha} = \emptyset$ is a convex problem

$$\min_{\bar{x},\underline{x}\in\mathbb{R}^d} \|\bar{x}-\underline{x}\|_2^2 \quad \text{s.t.} \quad \bar{x}\in\mathcal{C}_\alpha, \quad \underline{x}\in\mathcal{S}.$$

Uncertainty quantification in MRI imaging

MRI experiment: test images $\bar{x} = \underline{x}$, hence we fail to reject H_0 and conclude that there is little evidence to support the observed structure.

M. Pereyra (MI — HWU)

Uncertainty quantification in MRI imaging

MRI experiment: test images $\bar{x} \neq \underline{x}$, hence we reject H_0 and conclude that there is significant evidence in favour of the observed structure.

M. Pereyra (MI — HWU)

Bayesian inference in imaging inverse problems

2 Proximal Markov chain Monte Carlo

3 Uncertainty quantification in astronomical and medical imaging

Empirical Bayes estimation with unknown regularisation parameters

5 Conclusion

Problem statement

Consider the class of Bayesian models

$$p(x|y,\theta) = \frac{p(y|x)p(x|\theta)}{p(y|\theta)},$$

parametrised by a regularisation parameter $\theta \in \Theta$. For example,

$$p(x|\theta) = \frac{1}{C(\theta)} \exp \{-\theta \varphi(x)\}, \quad p(y|x) \propto \exp \{-f_y(x)\},$$

with f_y and φ convex l.s.c. functions, and f_y L-Lipschitz differentiable.

We assume that $p(x|\theta)$ is proper, i.e.,

$$C(\theta) = \int_{\mathbb{R}^d} \exp\left\{-\theta\varphi(x)\right\} \mathrm{d}x < \infty$$
,

with $C(\theta)$ unknown and generally intractable.

In this talk we adopt an empirical Bayes approach and consider the MLE

$$\begin{split} \hat{\theta} &= \operatorname*{argmax}_{\theta \in \Theta} p(y|\theta) \,, \\ &= \operatorname*{argmax}_{\theta \in \Theta} \int_{\mathbb{R}^d} p(y, x|\theta) \mathrm{d}x \,, \end{split}$$

which we solve efficiently by using a stochastic gradient algorithm driven by two proximal MCMC kernels (see Fernandez-Vidal and Pereyra (2018)).

Given $\hat{\theta}$, we then straightforwardly compute

$$\hat{x}_{MAP} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f_y(x) + \hat{\theta}\varphi(x).$$
(4)

We use the following MCMC-driven stochastic gradient algorithm: Initialisation $x^{(0)}, u^{(0)} \in \mathbb{R}^d, \theta^{(0)} \in \Theta, \delta_t = \delta_0 t^{-0.8}$.

for t = 0 to n

- 1. MCMC update $x^{(t+1)} \sim M_{x|y,\theta^{(t)}}(\cdot|x^{(t)})$ targeting $p(x|y,\theta^{(t)})$
- 2. MCMC update $u^{(t+1)} \sim K_{x|\theta^{(t)}}(\cdot|u^{(t)})$ targeting $p(x|\theta^{(t)})$
- 3. Stoch. grad. update

$$\theta^{(t+1)} = P_{\Theta} \left[\theta^{(t)} + \delta_t \varphi(u^{(t+1)}) - \delta_t \varphi(x^{(t+1)}) \right].$$

end for

Output The iterates $\theta^{(t)} \rightarrow \hat{\theta}$ as $n \rightarrow \infty$.

SAPG algorithm driven MCMC kernels

Initialisation $x^{(0)}$, $u^{(0)} \in \mathbb{R}^d$, $\theta^{(0)} \in \Theta$, $\delta_t = \delta_0 t^{-0.8}$, $\lambda = 1/L$, $\gamma = 1/4L$. for t = 0 to n

1. Coupled Proximal MCMC updates: generate $z^{(t+1)} \sim \mathcal{N}(0, \mathbb{I}_d)$

$$\begin{aligned} x^{(t+1)} &= \left(1 - \frac{\gamma}{\lambda}\right) x^{(t)} - \gamma \nabla f_y\left(x^{(t)}\right) + \frac{\gamma}{\lambda} \mathrm{prox}_{\varphi}^{\theta\lambda}\left(x^{(t)}\right) + \sqrt{2\gamma} z^{(t+1)} \,, \\ u^{(t+1)} &= \left(1 - \frac{\gamma}{\lambda}\right) u^{(t)} + \frac{\gamma}{\lambda} \mathrm{prox}_{\varphi}^{\theta\lambda}\left(u^{(t)}\right) + \sqrt{2\gamma} z^{(t+1)} \,, \end{aligned}$$

2. Stochastic gradient update

$$\theta^{(t+1)} = P_{\Theta} \left[\theta^{(t)} + \delta_t \varphi(u^{(t+1)}) - \delta_t \varphi(x^{(t+1)}) \right].$$

end for

Output Averaged estimator $\bar{\theta} = n^{-1} \sum_{t=1}^{n} \theta^{(t+1)}$ converges approx. to $\hat{\theta}$.

Illustrative example - Image deblurring with TV- ℓ_2 prior

We consider the Bayesian image deblurring model

$$p(x|y,\theta) \propto \exp\left(-\|y - Ax\|^2/2\sigma^2 - \alpha\|x\|_2 - \theta\|\nabla_d x\|_{1-2}\right),$$

and compute $\hat{\theta} = \operatorname{argmax}_{\theta \in \mathbb{R}^+} p(y|\theta).$

Figure : Boat image deconvolution experiment.

Image deblurring with TV- ℓ_2 prior

(a) Original

(b) Degraded

(c) Emp. Bayes \hat{x}_{MAP}

- Bayesian inference in imaging inverse problems
- 2 Proximal Markov chain Monte Carlo
- 3 Uncertainty quantification in astronomical and medical imaging
- 4 Empirical Bayes estimation with unknown regularisation parameters

5 Conclusion

- The challenges facing modern imaging sciences require a methodological paradigm shift to go beyond point estimation.
- Opportunity for advanced Bayesian inference methods to take central role and deliver impact.
- This requires significantly accelerating inference methods, e.g., by integrating modern stochastic and variational approaches at algorithmic, methodological, and theoretical levels.

Thank you!

Bibliography:

- Ay, N. and Amari, S.-I. (2015). A novel approach to canonical divergences within information geometry. *Entropy*, 17(12):7866.
- Cai, X., Pereyra, M., and McEwen, J. D. (2017). Uncertainty quantification for radio interferometric imaging II: MAP estimation. *ArXiv e-prints*.
- Chambolle, A. and Pock, T. (2016). An introduction to continuous optimization for imaging. *Acta Numerica*, 25:161–319.
- Deledalle, C.-A., Vaiter, S., Fadili, J., and Peyré, G. (2014). Stein unbiased gradient estimator of the risk (sugar) for multiple parameter selection. *SIAM Journal on Imaging Sciences*, 7(4):2448–2487.
- Durmus, A., Moulines, E., and Pereyra, M. (2018). Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau. *SIAM J. Imaging Sci.*, 11(1):473–506.
- Fernandez-Vidal, A. and Pereyra, M. (2018). Maximum likelihood estimation of regularisation parameters. In *Proc. IEEE ICIP 2018*.
- Green, P. J., Łatuszyński, K., Pereyra, M., and Robert, C. P. (2015). Bayesian computation: a summary of the current state, and samples backwards and forwards. *Statistics and Computing*, 25(4):835–862.
- Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace Hilbertien. C. R. Acad. Sci. Paris Sér. A Math., 255:2897–2899.

- Pereyra, M. (2015). Proximal Markov chain Monte Carlo algorithms. Statistics and Computing. open access paper, http://dx.doi.org/10.1007/s11222-015-9567-4.
- Pereyra, M. (2016). Maximum-a-posteriori estimation with bayesian confidence regions. *SIAM J. Imaging Sci.*, 6(3):1665–1688.
- Pereyra, M. (2016). Revisiting maximum-a-posteriori estimation in log-concave models: from differential geometry to decision theory. *ArXiv e-prints*.
- Pereyra, M., Bioucas-Dias, J., and Figueiredo, M. (2015). Maximum-a-posteriori estimation with unknown regularisation parameters. In *Proc. Europ. Signal Process. Conf. (EUSIPCO) 2015.*
- Repetti, A., Pereyra, M., and Wiaux, Y. (2018). Scalable Bayesian uncertainty quantification in imaging inverse problems via convex optimisation. *ArXiv e-prints*.

Robert, C. P. (2001). The Bayesian Choice (second edition). Springer Verlag, New-York.