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Imaging inverse problems

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by a statistical model p(y ∣x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x .

For example, in many imaging problems

y = Ax +w ,

for some operator A that is rank-deficient, and additive noise w .
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior p(x), the posterior distribution of x given y

p(x ∣y) = p(y ∣x)p(x)/p(y)

models our knowledge about x after observing y .

In this talk we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−φ(x)}/Z ,

where φ(x) is a convex function and Z = ∫ exp{−φ(x)}dx .
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

φ(x),
(1)

computed efficiently, even in very high dimensions, by (proximal) convex
optimisation (Green et al., 2015; Chambolle and Pock, 2016).
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y = MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator and w is Gaussian noise. We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2
/2σ2

− θ∥Ψx∥1)1Rn
+(x). (2)

y
x̂MAP

Figure : Radio-interferometric image reconstruction of the W28 supernova.
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MAP estimation by proximal optimisation

To compute x̂MAP we use a proximal splitting algorithm. Let

f (x) = ∥y −MFx∥2
/2σ2 , and g(x) = θ∥Ψx∥1 + − log 1Rn

+(x) ,

where f and g are l.s.c. convex on Rd , and f is Lf -Lipschitz differentiable.

For example, we could use a proximal gradient iteration

xm+1
= prox

L−1
f

g {xm
+ L−1

f ∇f (xm
)},

converges to x̂MAP at rate O(1/m), with poss. acceleration to O(1/m2).

Definition Proximity mappings of a convex function g : For λ > 0, the
λ-proximity mapping of g is defined as (Moreau, 1962)

proxλg(x) ≜ argmin
u∈RN

g(u) +
1

2λ
∣∣u − x ∣∣2.
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MAP estimation by proximal optimisation

The alternating direction method of multipliers (ADMM) algorithm

xm+1
= proxλf {zm

− um
},

zm+1
= proxλg{xm+1

+ um
},

um+1
= um

+ xm+1
− zm+1,

also converges to x̂MAP very quickly, and does not require f to be smooth.

However, MAP estimation has some limitations, e.g.,

1 it provides little information about p(x ∣y),

2 it struggles with unknown/partially unknown models,

3 it is not theoretically well understood (yet).
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples X1, . . . ,XM distributed according to p(x ∣y), we
approximate posterior expectations and probabilities

1

M

M

∑
m=1

h(Xm) → E{h(x)∣y}, as M →∞

Markov chain Monte Carlo:
Construct a Markov kernel Xm+1∣Xm ∼ K(⋅∣Xm) such that the Markov
chain X1, . . . ,XM has p(x ∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose for now that p(x ∣y) ∈ C1. Then, we can generate samples by
mimicking a Langevin diffusion process that converges to p(x ∣y) as t →∞,

X ∶ dXt =
1

2
∇ log p (Xt ∣y)dt + dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the n-dimensional Brownian motion.

Because solving Xt exactly is generally not possible, we use an Euler
Maruyama approximation and obtain the “unadjusted Langevin algorithm”

ULA ∶ Xm+1 = Xm + δ∇ log p(Xm∣y) +
√

2δZm+1, Zm+1 ∼ N(0, In)

ULA is remarkably efficient when p(x ∣y) is sufficiently regular.
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Unadjusted Langevin algorithm

Suppose that
p(x ∣y) ∝ exp{−f (x) − g(x)} (3)

where f (x) and g(x) are l.s.c. convex functions from Rd → (−∞,+∞], f
is Lf -Lipschitz differentiable, and g ∉ C1.

For example,

f (x) = 1
2σ2 ∥y −Ax∥2

2, g(x) = α∥Bx∥† + 1S(x) ,

for some linear operators A, B, norm ∥ ⋅ ∥†, and convex set S.

Unfortunately, such non-models are beyond the scope of ULA.

Idea: Regularise p(x ∣y) to enable efficiently Langevin sampling.
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Approximation of p(x ∣y)

Moreau-Yoshida approximation of p(x ∣y) (Pereyra, 2015):

Let λ > 0. We propose to approximate p(x ∣y) with the density

pλ(x ∣y) =
exp[−f (x) − gλ(x)]

∫Rd exp[−f (x) − gλ(x)]dx
,

where gλ is the Moreau-Yoshida envelope of g given by

gλ(x) = inf
u∈Rd

{g(u) + (2λ)−1
∥u − x∥2

2},

and where λ controls the approximation error involved.
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Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2018):

1 ∀λ > 0, pλ defines a proper density of a probability measure on Rd .

2 Convexity and differentiability:
pλ is log-concave on Rd .

pλ ∈ C
1 even if p not differentiable, with

∇ log pλ(x ∣y) = −∇f (x) + {proxλg (x) − x}/λ,

and proxλg (x) = argmin u ∈ RN g(u) + 1
2λ

∣∣u − x ∣∣2.

∇ log pλ is Lipchitz continuous with constant L ≤ Lf + λ
−1.

3 Approximation error between pλ(x ∣y) and p(x ∣y):

limλ→0 ∥pλ − p∥TV = 0.

If g is Lg -Lipchitz, then ∥pλ − p∥TV ≤ λL2
g .
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Illustration

Examples of Moreau-Yoshida approximations:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure : True densities (solid blue) and approximations (dashed red).
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Proximal ULA

We approximate X with the “regularised” auxiliary Langevin diffusion

Xλ
∶ dXλ

t =
1

2
∇ log pλ (Xλ

t ∣y)dt + dWt , 0 ≤ t ≤ T , Xλ
(0) = x0,

which targets pλ(x ∣y). Remark: we can make Xλ arbitrarily close to X.

Finally, an Euler Maruyama discretisation of Xλ leads to the
(Moreau-Yoshida regularised) proximal ULA

MYULA ∶ Xm+1 = (1 − δ
λ)Xm − δ∇f {Xm} + δ

λ proxλg{Xm} +
√

2δZm+1,

where we used that ∇gλ(x) = {x − proxλg(x)}/λ.
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Convergence results

Non-asymptotic estimation error bound

Theorem 2.1 (Durmus et al. (2018))

Let δmax
λ = (L1 + 1/λ)−1. Assume that g is Lipchitz continuous. Then,

there exist δε ∈ (0, δmax
λ ] and Mε ∈ N such that ∀δ < δε and ∀M ≥ Mε

∥δx0QM
δ − p∥TV < ε + λL2

g ,

where QM
δ is the kernel assoc. with M iterations of MYULA with step δ.

Note: δε and Mε are explicit and tractable. If f + g is strongly convex
outside some ball, then Mε scales with order O(d log(d)). See Durmus
et al. (2018) for other convergence results.
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Uncertainty quantification in radio-interferometric imaging

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert, 2001)

C∗
α = {x ∶ φ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α

p(x ∣y)dx = 1 − α holds.
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Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂MLE (y) x̂MMSE = E(x ∣y) credible intervals (scale 10 × 10)

x̂MLE (y) x̂MMSE = E(x ∣y) credible intervals (scale 10 × 10)

3C2888 and M31 radio galaxies (size 256 × 256 pixels). Computing time 1 minute.

M = 105 iterations. Estimation error w.r.t. MH implementation 3%.
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Hypothesis testing for image structures

Bayesian hypothesis test for specific image structures (e.g., lesions)

H0 ∶ The structure of interest is ABSENT in the true image

H1 ∶ The structure of interest is PRESENT in the true image

The null hypothesis H0 is rejected with significance α if

P(H0∣y) ≤ α.

Key idea: (Repetti et al., 2018)
Let S denote the region of Rd associated with H0, containing all images
without the structure of interest. Then

S ∩ Cα = ∅ ⇐⇒ P(H0∣y) ≤ α .

If in addition S is convex, then checking S ∩ C̃α = ∅ is a convex problem

min
x̄ , x∈Rd

∥x̄ − x∥2
2 s.t. x̄ ∈ Cα , x ∈ S .
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C̃0.01 x ∈ S

x̂MAP (zoom) x̄ ∈ C̃0.01 (zoom) x ∈ S (zoom)

MRI experiment: test images x̄ = x, hence we fail to reject H0 and conclude that

there is little evidence to support the observed structure.

M. Pereyra (MI — HWU) Bayesian inference & convex geometry 21 / 33



Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C0.01 x ∈ S0

x̂MAP (zoom) x̄ ∈ C0.01 (zoom) x ∈ S0 (zoom)

MRI experiment: test images x̄ ≠ x, hence we reject H0 and conclude that there is

significant evidence in favour of the observed structure.
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Problem statement

Consider the class of Bayesian models

p(x ∣y , θ) =
p(y ∣x)p(x ∣θ)

p(y ∣θ)
,

parametrised by a regularisation parameter θ ∈ Θ. For example,

p(x ∣θ) =
1

C(θ)
exp{−θϕ(x)}, p(y ∣x) ∝ exp{−fy(x)} ,

with fy and ϕ convex l.s.c. functions, and fy L-Lipschitz differentiable.

We assume that p(x ∣θ) is proper, i.e.,

C(θ) = ∫
Rd

exp{−θϕ(x)}dx < ∞ ,

with C(θ) unknown and generally intractable.

M. Pereyra (MI — HWU) Bayesian inference & convex geometry 24 / 33



Regularisation parameter MLE

In this talk we adopt an empirical Bayes approach and consider the MLE

θ̂ = argmax
θ∈Θ

p(y ∣θ) ,

= argmax
θ∈Θ

∫
Rd

p(y , x ∣θ)dx ,

which we solve efficiently by using a stochastic gradient algorithm driven
by two proximal MCMC kernels (see Fernandez-Vidal and Pereyra (2018)).

Given θ̂, we then straightforwardly compute

x̂MAP = argmin
x∈Rd

fy(x) + θ̂ϕ(x) . (4)
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Stochastic Approximation algorithm to compute θ̂

We use the following MCMC-driven stochastic gradient algorithm:
Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t−0.8.

for t = 0 to n

1. MCMC update x(t+1) ∼ Mx ∣y ,θ(t)(⋅∣x
(t)) targeting p(x ∣y , θ(t))

2. MCMC update u(t+1) ∼ Kx ∣θ(t)(⋅∣u
(t)) targeting p(x ∣θ(t))

3. Stoch. grad. update

θ(t+1)
= PΘ [θ(t) + δtϕ(u(t+1)

) − δtϕ(x(t+1)
)] .

end for

Output The iterates θ(t) → θ̂ as n →∞.
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SAPG algorithm driven MCMC kernels

Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t−0.8, λ = 1/L, γ = 1/4L.

for t = 0 to n

1. Coupled Proximal MCMC updates: generate z(t+1) ∼ N(0, Id)

x(t+1)
= (1 −

γ

λ
)x(t) − γ∇fy (x(t)) +

γ

λ
proxθλϕ (x(t)) +

√
2γz(t+1) ,

u(t+1)
= (1 −

γ

λ
)u(t) +

γ

λ
proxθλϕ (u(t)) +

√
2γz(t+1) ,

2. Stochastic gradient update

θ(t+1)
= PΘ [θ(t) + δtϕ(u(t+1)

) − δtϕ(x(t+1)
)] .

end for

Output Averaged estimator θ̄ = n−1
∑

n
t=1 θ

(t+1) converges approx. to θ̂.
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Illustrative example - Image deblurring with TV-`2 prior

We consider the Bayesian image deblurring model

p(x ∣y , θ) ∝ exp (−∥y −Ax∥2
/2σ2

− α∥x∥2 − θ∥∇dx∥1−2) ,

and compute θ̂ = argmaxθ∈R+ p(y ∣θ).

y
Reg. param θ Estimation error for x̂MAP

Figure : Boat image deconvolution experiment.
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Image deblurring with TV-`2 prior

(a) Original (b) Degraded (c) Emp. Bayes x̂MAP
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Conclusion

The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

Opportunity for advanced Bayesian inference methods to take central
role and deliver impact.

This requires significantly accelerating inference methods, e.g., by
integrating modern stochastic and variational approaches at
algorithmic, methodological, and theoretical levels.

Thank you!
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