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The ground state eigenproblem

Compute the smallest eigenvalue Ep corresponding to an
anti-symmetric (with respect to particle exchange) eigenfunction, vy,

of
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E, determines the energy of any configuration of the molecule and
therefore also the structure of the molecule.

N, with STO-3G (Ngc; = 14,400)
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Full configuration interaction (FCI)

First project the eigenproblem #H1y = Egtg onto an orthonormal,
antisymmetric, basis of Slater determinants
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Giys P - - - > D, is a selection of N (number of electrons) distinct
orbitals from among a collection ¢1, ¢2, . .., dum.

So

Yo~ Y CrP(x)
I

Hc = \oc and )\ ~ E; the smallest eigenvalue of H € RNrorxNeei with

Hy = (), Hoy)



DMC in discrete space (FCIQMC)
Alavi and co-workers propose approximating ¢ by

\Uk = Sé(i) ex(;;), (e,)J = 5/J

i=1

=2l=

each “walker” X, is the index of a determinant and Sf;, € {—1,1}

To generate the next iterate W+' from Wk, each walker X(’§)

1. creates new walkers on new determinants J for which Hyx, # 0.
Sign of new walkers depends on Sf‘,) and sign of HXikJ.

2. is duplicated or removed according to the size of H)((g))((g) and
current estimate of \q.

Pairs of walkers with X* = X/ and S = — S annihilate one another.



DMC in discrete space (FCIQMC)

(ignoring signs)
similar to diffusion Monte Carlo:

1. walkers move,
2. are assigned a weight, L

3. then are duplicated or removed

E [V¥] approximates ¢k produced by the power method

P_ck
k+1 e
= £ and P.=(1-¢cH
P.c, (1= <H)

The ground state can be estimated from
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DMC in discrete space (FCIQMC)
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FIG. 3: -FCIQMC total energies for a basis of 2M spin orbitals. Each basis set corresponds to a kinetic energy
cutoff, with 2M = 2838 corresponding to 208 Ryd at ry=0.5 a.u. and 52.1 Ryd at ry=1.0 a.u. Each calculation used
40 million walkers for r; = 0.5 a.u. and 100 million walkers for 7, = 1.0 a.u.. The blue dashed line is an
extrapolation to M — oo based on the expected form 1/M using the data set with the largest number of walkers,
shown with error bars in the inset. The DMC results, taken from Rios et al.[6], do not suffer from basis set error and
are shown as two horizontal lines representing the mean plus and minus one standard deviation. Almost identical
backflow results can be found for ry = 1.0 a.u. in a study by Kwon et al.[4].

[J.J. Shepherd, G.H. Booth, A. Gruneis, and A. Alavi, Phys. Rev. B 85, 081104-R (2012)]



Fast Randomized lteration (FRI)

We want variants of classical schemes like power iteration

ket AV

(V&4

to find the dominant eigenpair (., v..) of A.

and more general iterations

cost dominated by a matrix vector multiply Av¥ (e.g. linear system
solves and matrix exponentials) for massive A.



Fast Randomized lteration (FRI)

Key to the efficiency of FCIQMC is the fact that

N
1
k _ k
V=2 Shex
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is sparse.

If v.e R"is any vector with ||v||, < mand A € R"™" has at most b < n
non-zero entries per column:

The cost to evaluate Av is O(bm).



Fast Randomized lteration (FRI)

But if we continue to multiply by A result becomes dense quickly.

We’ll replace v by a perturbed vector to make sure A always
multiplies a sparse vector.

Av isreplacedby A(v+n(v))
where

E[n(v)]=0,  [Iv+nWV)ly<m

The cost to generate v + 1 is typically O ([|v|,)-

So the cost to evaluate A(v + 7)) is

O ([Ivllo) + O(bm)



Fast Randomized lteration (FRI)

The recursion

AUk k(b)) Avk
Wkt — instead of c¢ft'= —
[A(WK + nk (W) (| AvA],

reduces operations and storage to O(bm) per iteration.

But we cannot hope that
[vK —wk||, — 0 unless m~n or |vi|,<n

(think of vk = 1/n)

What is the right notion of accuracy?



A few words on the accuracy of FRI

Often we only want a few dot products f'c for f € R".

For example if Av, = \.v, then

_ U'Av,
T
aslongasu'v, #0.
We consider the error
[[vE k||| = sup \/E[Ifrvk — frwkp

lIfll oo <1



A few words on the accuracy of FRI

A few useful properties of

X[ = sup +/E[[fX]?]

[Ifl] o <1

for random X € R":

1. IXI) = supygy_ 1/E [IGXIF]
where for G € R”, |G|, , = i maxj<n|Gj

2. If X'is not random then ||| X]|| = ||X]|
3. If X has independent components then || X||? = E [Hxng}

In general
E [IXI3] < 111 < & [IXI]



A few words on the accuracy of FRI

Consider the general recursions
VR — MWK L f(WF)) and VR = M(vF)

where the n* are independent conditioned on W and

E[*(v)] =0, [|lo*(v)|| < %uvm

Can adapt lots of tools for perturbed dynamical systems to produce
e.g. global in time error bounds when M is contractive in the
appropriate sense.

Special attention should be paid to the dependence on n.



A few words on the accuracy of FRI

Corollary

If A has non-negative entries and is irreducible and aperiodic, then

the power iteration
Av

M) = Tav,

is contractive (in the appropriate sense) as long as the entries of v are
non-negative. So the randomized iteration W% = M(Wk + nk) satisfies

c
vm

v = V||l <

where C is independent of k and does not (explicitly) depend on n.

Fixed accuracy in constant cost is possible (at least for b ~ 1).

Surprising from an NLA perspective. Not from an MCMC (or DMC)
perspective.

What about more general matrices?



Perturbations of identity
Recall that P. = (I — eH).

If M(v) = v+ eR(v) we hope our bounds remain stable as ¢ — 0 and
k~et.

This requires a good compression scheme. If ||v||, < m, we require

1 1
lln (v +wlll < = lIw v+ wi;

vm

This rules out some possible compression rules. E.g. we cannot use

n

v Vi

v+n(v) = ”nL|1 E N;ﬁe,
i=1

where (Ni,...,Ny) ~ Multinomial(m, 2. |v,,|))



Vector compression

Some basic principles:
1. No benefit to perturbing an entry that will remain non-zero

2. Important to correlate the N; (sampling with/without replacement
or multinomial/systematic resampling).
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N, at r = 2.5 A with STO-3G (Necy = 14,400) N, at r = 2.5 A with STO-3G (Nec; = 14,400)
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Matrix compression

Can't afford to list all entries in a column of A? This is the case for P..

We can use compression again if we have “cheap” matrix Q with

|A,‘j‘ >0= |Q,/| >0

ﬂQJrnC.) i lQil >0
(A4 n(A)), = | 0 (@ Q) TGy
0 otherwise

Only evaluate Aj; when (Q +7(Q)); # 0.

Only compress columns of A corresponding to non-zero entries of
V+n.

E.g. Q might be uniform on the indices of non-zero entries of A.



Matrix compression

Compressing the matrix columns will typically require that column
entries of Q can be factored in a tree structure.

Matrix columns |K) |L) |M)
rer;

I;=r, Single Double =I,®TI,
/ Occupied orbital pairs

(0] ied " o — > -
oitals ™ ] .. 7] [ik] [GA] .. n=D
TN <, N 2

Virtual n,(i) @@ |F1’ lﬂzlllﬁS’ F4||F5’ F6| N°§|T23v";?ry' Irrep pairs
orbitals
/ l \ choices
Ni(i — a) Ngli = b) Ny(i = ©) - m [b,c] ... l Virtual orbital
pairs

Nelij — ab) NKw = ac) Ny(ij = be) Nl -

It can get complicated.
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aug-cc-pVDZ basis (6.9 million determinants)
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aug-cc-pVDZ basis (6.9 million determinants)
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For QMC applications FRI may offer a significant performance

improvement over FCIQMC at similar cost.

This is still a very small problem and we're testing against an early
version of FCIQMC. Parallel scaling is a key question.




Is FRI just an efficient search

Does FRI quickly find a sparse vector that is a good approximation of
the true ground state?

For Neon, the energy of the iterates produced by FRI is well above
the final FRI estimate.

= FRI, Uniform, Multinomial (Ne) % FRI, Rayleigh Quotient (Ne)
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Recall: at least for a non-negative matrix, constant cost is possible
even when the desired eigenvector is not at all sparse.



Why not just truncate?
Consider the overdamped operator

Lf:—VVVTf+Af (x,y)) € [-1,1) x [-1,1) forj < ¢

V(x,y) = Z cos(27x;) cos(2my;)

/<€

+22cos(7r — Xk)) cos (m(y; — ¥k))

j<4
k>j

{ attractive particles each experience a corrugated external potential
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Why not just truncate?
For 5 particle (10D) we discretize with a Fourier basis of size
10110/2 ~ 10%° /2 and find the spectral gap (second largest
eigenvalue of L).
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Why not just truncate?

For 4 particles (8D) with a basis of size 1018 /2 ~ 106 /2 we compare

against truncation:
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