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The ground state eigenproblem
Compute the smallest eigenvalue E0 corresponding to an
anti-symmetric (with respect to particle exchange) eigenfunction, ψ0,
of

H =

Nel∑
j=1

−1
2

∆j + Vext(xj )−
Nnuc∑
α=1

Zα
|xα − xj |

+

Nel∑
i<j

1
|xi − xj |

 = −1
2

∆+V

E0 determines the energy of any configuration of the molecule and
therefore also the structure of the molecule.



Full configuration interaction (FCI)

First project the eigenproblem Hψ0 = E0ψ0 onto an orthonormal,
antisymmetric, basis of Slater determinants

ΦI(x) =
1√
Nel!

∣∣∣∣∣∣∣∣∣
φi1 (x1) φi2 (x1) · · · φiNel

(x1)

φi1 (x2) φi2 (x2) · · · φiNel
(x2)

...
. . .

...
φi1 (xNel ) φi2 (xNel ) · · · φiNel

(xNel )

∣∣∣∣∣∣∣∣∣
φi1 , φi2 , . . . , φiNel

is a selection of Nel (number of electrons) distinct
orbitals from among a collection φ1, φ2, . . . , φM .

So
ψ0 ≈

∑
I

cI ΦI(x)

Hc = λ0c and λ0 ≈ E0 the smallest eigenvalue of H ∈ RNFCI×NFCI with

HIJ = 〈ΦI ,HΦJ〉



DMC in discrete space (FCIQMC)

Alavi and co-workers propose approximating c by

Ψk =
1
N

N∑
i=1

Sk
(i) eX k

(i)
, (eI)J = δIJ

each “walker” X k
(i) is the index of a determinant and Sk

(i) ∈ {−1,1}

To generate the next iterate Ψk+1 from Ψk , each walker X k
(i)

1. creates new walkers on new determinants J for which HX k
i J 6= 0.

Sign of new walkers depends on Sk
(i) and sign of HX k

i J .

2. is duplicated or removed according to the size of HX k
(i)X

k
(i)

and
current estimate of λ0.

Pairs of walkers with X k
j = X k

i and Sk
j = −Sk

i annihilate one another.



DMC in discrete space (FCIQMC)

(ignoring signs)
similar to diffusion Monte Carlo:

1. walkers move,
2. are assigned a weight,
3. then are duplicated or removed

E
[
Ψk
]

approximates ck produced by the power method

ck+1 =
Pεck

‖Pεck‖1
and Pε = (I− εH)

The ground state can be estimated from

E0 ≈ lim
K→∞

1
K

K∑
k=0

uTHΨk

uTΨk



DMC in discrete space (FCIQMC)

[J.J. Shepherd, G.H. Booth, A. Gruneis, and A. Alavi, Phys. Rev. B 85, 081104–R (2012)]



Fast Randomized Iteration (FRI)

We want variants of classical schemes like power iteration

vk+1 =
Avk

‖vk‖1

to find the dominant eigenpair (λ∗,v∗) of A.

and more general iterations

vk =M(vk )

cost dominated by a matrix vector multiply Avk (e.g. linear system
solves and matrix exponentials) for massive A.



Fast Randomized Iteration (FRI)

Key to the efficiency of FCIQMC is the fact that

Ψk =
1
N

N∑
i=1

Sk
(i) eX k

(i)

is sparse.

If v ∈ Rn is any vector with ‖v‖0 ≤ m and A ∈ Rn×n has at most b ≤ n
non-zero entries per column:

The cost to evaluate Av is O(bm).



Fast Randomized Iteration (FRI)

But if we continue to multiply by A result becomes dense quickly.

We’ll replace v by a perturbed vector to make sure A always
multiplies a sparse vector.

A v is replaced by A(v + η(v))

where
E [η(v)] = 0, ‖v + η(v)‖0 ≤ m

The cost to generate v + η is typically O
(
‖v‖0

)
.

So the cost to evaluate A(v + η) is

O
(
‖v‖0

)
+O(bm)



Fast Randomized Iteration (FRI)

The recursion

Ψk+1 =
A(Ψk + ηk (Ψk ))

‖A(Ψk + ηk (Ψk ))‖1
instead of ck+1 =

Avk

‖Avk‖1

reduces operations and storage to O(bm) per iteration.

But we cannot hope that

‖vk −Ψk‖1 −→ 0 unless m ∼ n or ‖vk‖0 � n

(think of vk
i = 1/n)

What is the right notion of accuracy?



A few words on the accuracy of FRI

Often we only want a few dot products fTc for f ∈ Rn.

For example if A v∗ = λ∗v∗ then

λ∗ =
uTAv∗
uTv∗

as long as uTv∗ 6= 0.

We consider the error∣∣∣∣∣∣vk −Ψk
∣∣∣∣∣∣ = sup

‖f‖∞≤1

√
E [|fTvk − fTΨk |2]



A few words on the accuracy of FRI

A few useful properties of

|||X||| = sup
‖f‖∞≤1

√
E [|fTX|2]

for random X ∈ Rn:

1. |||X||| = sup‖G‖∞,∗

√
E
[
‖GX‖2

1

]
where for G ∈ Rn, ‖G‖∞,∗ =

∑n
i=1 maxj≤n|Gij |

2. If X is not random then |||X||| = ‖X‖1

3. If X has independent components then |||X|||2 = E
[
‖X‖2

2

]
In general

E
[
‖X‖2

2

]
≤ |||X|||2 ≤ E

[
‖X‖2

1

]



A few words on the accuracy of FRI

Consider the general recursions

Ψk+1 =M(Ψk + ηk (Ψk )) and vk+1 =M(vk )

where the ηk are independent conditioned on Ψk and

E
[
ηk (v)

]
= 0,

∣∣∣∣∣∣ηk (v)
∣∣∣∣∣∣ ≤ γ√

m
‖v‖1

Can adapt lots of tools for perturbed dynamical systems to produce
e.g. global in time error bounds whenM is contractive in the
appropriate sense.

Special attention should be paid to the dependence on n.



A few words on the accuracy of FRI

Corollary
If A has non-negative entries and is irreducible and aperiodic, then
the power iteration

M(v) =
A v
‖A v‖1

is contractive (in the appropriate sense) as long as the entries of v are
non-negative. So the randomized iteration Ψk =M(Ψk + ηk ) satisfies

∣∣∣∣∣∣Ψk − vk
∣∣∣∣∣∣ ≤ C√

m

where C is independent of k and does not (explicitly) depend on n.

Fixed accuracy in constant cost is possible (at least for b ∼ 1).

Surprising from an NLA perspective. Not from an MCMC (or DMC)
perspective.

What about more general matrices?



Perturbations of identity

Recall that Pε = (I− εH).

IfM(v) = v + εR(v) we hope our bounds remain stable as ε→ 0 and
k ∼ ε−1.

This requires a good compression scheme. If ‖v‖0 ≤ m, we require∣∣∣∣∣∣ηk (v + w)
∣∣∣∣∣∣ ≤ γ√

m
‖w‖

1
2
1 ‖v + w‖

1
2
1

This rules out some possible compression rules. E.g. we cannot use

v + η(v) =
‖v‖1

m

n∑
i=1

Ni
vi

|vi |
ei

where (N1, . . . ,Nn) ∼ Multinomial
(

m, ‖v‖−1
1 (|v1|, . . . , |vn|)

)



Vector compression

Some basic principles:
1. No benefit to perturbing an entry that will remain non-zero
2. Important to correlate the Nj (sampling with/without replacement

or multinomial/systematic resampling).

Stopping rule selects largest en-
tries to preserve exactly.

Remaining entries j ∈ R set to

(v + η(v))j =

{ vj
pj

w.p. pj

0 otherwise

pj =
(m − |Rc|)|vj |∑

i∈R |vi |
≤ 1 for j ∈ R
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Matrix compression

Can’t afford to list all entries in a column of A? This is the case for Pε.

We can use compression again if we have “cheap” matrix Q with

|Aij | > 0 =⇒ |Qij | > 0

(A + η(A))ij =

{
Aij
Qij

(Q + η(Q))ij if |Qij | > 0

0 otherwise

Only evaluate Aij when (Q + η(Q))ij 6= 0.

Only compress columns of A corresponding to non-zero entries of
v + η.

E.g. Q might be uniform on the indices of non-zero entries of A.



Matrix compression

Compressing the matrix columns will typically require that column
entries of Q can be factored in a tree structure.

Matrix columns

Single

Occupied 
orbitals

Virtual 
orbitals

Γi = Γa

i j k …

|K⟩ |L⟩ |M⟩ …

a b c …

Double

NK(i → a) NK(i → b) NK(i → c)

no

nv(i)

i, j i, k j, k … ne(ne −1)
2

Occupied orbital pairs

No symmetry-
allowed 
choices

NK(ij → ab) NK(ij → ac) NK(ij → bc) Null 
excitation

Γi ⊗ Γj

= Γa ⊗ Γb

Irrep pairsΓ1, Γ2 Γ3, Γ4 Γ5, Γ6

a, b a, c b, c Virtual orbital 
pairs

…

…

It can get complicated.
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For QMC applications FRI may offer a significant performance
improvement over FCIQMC at similar cost.

This is still a very small problem and we’re testing against an early
version of FCIQMC. Parallel scaling is a key question.



Is FRI just an efficient search

Does FRI quickly find a sparse vector that is a good approximation of
the true ground state?

For Neon, the energy of the iterates produced by FRI is well above
the final FRI estimate.
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Recall: at least for a non-negative matrix, constant cost is possible
even when the desired eigenvector is not at all sparse.



Why not just truncate?
Consider the overdamped operator

Lf = −∇V∇Tf + ∆f , (xj , yj ) ∈ [−1,1)× [−1,1) for j ≤ `

V (x , y) =
1
2

∑
j≤`

cos(2πxj ) cos(2πyj )

+ 2
∑
j≤4
k>j

cos (π(xj − xk )) cos (π(yj − yk ))

` attractive particles each experience a corrugated external potential



Why not just truncate?
For 5 particle (10D) we discretize with a Fourier basis of size
10110/2 ≈ 1020/2 and find the spectral gap (second largest
eigenvalue of L).

m = 106, no matrix compression



Why not just truncate?
For 4 particles (8D) with a basis of size 1018/2 ≈ 1016/2 we compare
against truncation:

no matrix compression


