Fast randomized iterative numerical linear algebra for quantum chemistry and other applications

Jonathan Weare

Courant Institute, New York University
with
Tim Berkelbach, Sam Greene, Lek-Heng Lim, and Rob Webber

November 13, 2018

The ground state eigenproblem

Compute the smallest eigenvalue E_{0} corresponding to an anti-symmetric (with respect to particle exchange) eigenfunction, ψ_{0}, of
$\mathcal{H}=\sum_{j=1}^{N_{\text {el }}}\left[-\frac{1}{2} \Delta_{j}+V_{\text {ext }}\left(x_{j}\right)-\sum_{\alpha=1}^{N_{\text {nuc }}} \frac{Z_{\alpha}}{\left|x_{\alpha}-x_{j}\right|}+\sum_{i<j}^{N_{\text {el }}} \frac{1}{\left|x_{i}-x_{j}\right|}\right]=-\frac{1}{2} \Delta+V$
E_{0} determines the energy of any configuration of the molecule and therefore also the structure of the molecule.

Full configuration interaction (FCI)

First project the eigenproblem $\mathcal{H} \psi_{0}=E_{0} \psi_{0}$ onto an orthonormal, antisymmetric, basis of Slater determinants

$$
\Phi_{l}(x)=\frac{1}{\sqrt{N_{\mathrm{el}}!}}\left|\begin{array}{cccc}
\phi_{i_{1}}\left(x_{1}\right) & \phi_{i_{2}}\left(x_{1}\right) & \cdots & \phi_{i_{N_{\mathrm{Ne}}}}\left(x_{1}\right) \\
\phi_{i_{1}}\left(x_{2}\right) & \phi_{i_{2}}\left(x_{2}\right) & \cdots & \phi_{i_{N_{\mathrm{el}}}}\left(x_{2}\right) \\
\vdots & & \ddots & \vdots \\
\phi_{i_{1}}\left(x_{N_{\mathrm{el}}}\right) & \phi_{i_{2}}\left(x_{\left.N_{\mathrm{el}}\right)}\right) & \cdots & \phi_{i_{N_{\mathrm{el}}}}\left(x_{N_{\mathrm{el}}}\right)
\end{array}\right|
$$

$\phi_{i_{1}}, \phi_{i_{2}}, \ldots, \phi_{i_{N_{\text {el }}}}$ is a selection of $N_{\text {el }}$ (number of electrons) distinct orbitals from among a collection $\phi_{1}, \phi_{2}, \ldots, \phi_{M}$.

So

$$
\psi_{0} \approx \sum_{l} c_{l} \Phi_{l}(x)
$$

$\mathbf{H c}=\lambda_{0} \mathbf{c}$ and $\lambda_{0} \approx E_{0}$ the smallest eigenvalue of $\mathbf{H} \in \mathbb{R}^{N_{\text {FCI }} \times N_{\text {FCI }}}$ with

$$
H_{l J}=\left\langle\Phi_{l}, \mathcal{H} \Phi_{J}\right\rangle
$$

DMC in discrete space (FCIQMC)

Alavi and co-workers propose approximating c by

$$
\Psi^{k}=\frac{1}{N} \sum_{i=1}^{N} S_{(i)}^{k} \mathbf{e}_{X_{(i)}^{k}}, \quad\left(\mathbf{e}_{l}\right)_{J}=\delta_{I J}
$$

each "walker" $X_{(i)}^{k}$ is the index of a determinant and $S_{(i)}^{k} \in\{-1,1\}$
To generate the next iterate Ψ^{k+1} from Ψ^{k}, each walker $X_{(i)}^{k}$

1. creates new walkers on new determinants J for which $H_{X_{i}^{k} J} \neq 0$. Sign of new walkers depends on $S_{(i)}^{k}$ and sign of $H_{X_{i}^{k} J}$.
2. is duplicated or removed according to the size of $H_{X_{(i)}^{k}} X_{(i)}^{k}$ and current estimate of λ_{0}.

Pairs of walkers with $X_{j}^{k}=X_{i}^{k}$ and $S_{j}^{k}=-S_{i}^{k}$ annihilate one another.

DMC in discrete space (FCIQMC)

(ignoring signs)

similar to diffusion Monte Carlo:

1. walkers move,
2. are assigned a weight,
3. then are duplicated or removed
$\mathbf{E}\left[\Psi^{k}\right]$ approximates \mathbf{c}^{k} produced by the power method

$$
\mathbf{c}^{k+1}=\frac{\mathbf{P}_{\varepsilon} \mathbf{c}^{k}}{\left\|\mathbf{P}_{\varepsilon} \mathbf{c}^{k}\right\|_{1}} \quad \text { and } \quad \mathbf{P}_{\varepsilon}=(\mathbf{I}-\varepsilon \mathbf{H})
$$

The ground state can be estimated from

$$
E_{0} \approx \lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K} \frac{\mathbf{u}^{\top} \mathbf{H} \Psi^{k}}{\mathbf{u}^{\top} \Psi^{k}}
$$

DMC in discrete space (FCIQMC)

FIG. 3: i-FCIQMC total energies for a basis of $2 M$ spin orbitals. Each basis set corresponds to a kinetic energy cutoff, with $2 M=2838$ corresponding to 208 Ryd at $r_{s}=0.5$ a.u. and 52.1 Ryd at $r_{s}=1.0$ a.u. Each calculation used

40 million walkers for $r_{s}=0.5$ a.u. and 100 million walkers for $r_{s}=1.0$ a.u.. The blue dashed line is an extrapolation to $M \rightarrow \infty$ based on the expected form $1 / M$ using the data set with the largest number of walkers, shown with error bars in the inset. The DMC results, taken from Ríos et al.[6], do not suffer from basis set error and are shown as two horizontal lines representing the mean plus and minus one standard deviation. Almost identical
backflow results can be found for $r_{s}=1.0$ a.u. in a study by Kwon et al.[4].

Fast Randomized Iteration (FRI)

We want variants of classical schemes like power iteration

$$
\mathbf{v}^{k+1}=\frac{\mathbf{A} \mathbf{v}^{k}}{\left\|\mathbf{v}^{k}\right\|_{1}}
$$

to find the dominant eigenpair $\left(\lambda_{*}, \mathbf{v}_{*}\right)$ of \mathbf{A}.
and more general iterations

$$
\mathbf{v}^{k}=\mathcal{M}\left(\mathbf{v}^{k}\right)
$$

cost dominated by a matrix vector multiply $\boldsymbol{A v}^{k}$ (e.g. linear system solves and matrix exponentials) for massive \mathbf{A}.

Fast Randomized Iteration (FRI)

Key to the efficiency of FCIQMC is the fact that

$$
\Psi^{k}=\frac{1}{N} \sum_{i=1}^{N} S_{(i)}^{k} \mathbf{e}_{X_{(i)}^{k}}
$$

is sparse.

If $\mathbf{v} \in \mathbb{R}^{n}$ is any vector with $\|v\|_{0} \leq m$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ has at most $b \leq n$ non-zero entries per column:

The cost to evaluate $\mathbf{A v}$ is $\mathcal{O}(b m)$.

Fast Randomized Iteration (FRI)

But if we continue to multiply by \mathbf{A} result becomes dense quickly.
We'll replace \mathbf{v} by a perturbed vector to make sure \mathbf{A} always multiplies a sparse vector.
$\mathbf{A} \mathbf{v}$ is replaced by $\mathbf{A}(\mathbf{v}+\eta(\mathbf{v}))$
where

$$
\mathbf{E}[\eta(\mathbf{v})]=0, \quad\|\mathbf{v}+\eta(\mathbf{v})\|_{0} \leq m
$$

The cost to generate $\mathbf{v}+\eta$ is typically $\mathcal{O}\left(\|\mathbf{v}\|_{0}\right)$.
So the cost to evaluate $\mathbf{A}(\mathbf{v}+\eta)$ is

$$
\mathcal{O}\left(\|\mathbf{v}\|_{0}\right)+\mathcal{O}(b m)
$$

Fast Randomized Iteration (FRI)

The recursion

$$
\Psi^{k+1}=\frac{\mathbf{A}\left(\Psi^{k}+\eta^{k}\left(\Psi^{k}\right)\right)}{\left\|\mathbf{A}\left(\Psi^{k}+\eta^{k}\left(\Psi^{k}\right)\right)\right\|_{1}} \quad \text { instead of } \quad \mathbf{c}^{k+1}=\frac{\mathbf{A} \mathbf{v}^{k}}{\left\|\mathbf{A} \mathbf{v}^{k}\right\|_{1}}
$$

reduces operations and storage to $\mathcal{O}(\mathrm{bm})$ per iteration.

But we cannot hope that

$$
\left\|\mathbf{v}^{k}-\Psi^{k}\right\|_{1} \longrightarrow 0 \text { unless } m \sim n \text { or }\left\|\mathbf{v}^{k}\right\|_{0} \ll n
$$

(think of $\mathbf{v}_{i}^{k}=1 / n$)
What is the right notion of accuracy?

A few words on the accuracy of FRI

Often we only want a few dot products $\mathbf{f}^{\top} \mathbf{c}$ for $\mathbf{f} \in \mathbb{R}^{n}$.

For example if $\mathbf{A} \mathbf{v}_{*}=\lambda_{*} \mathbf{v}_{*}$ then

$$
\lambda_{*}=\frac{\mathbf{u}^{\top} \mathbf{A} \mathbf{v}_{*}}{\mathbf{u}^{\top} \mathbf{v}_{*}}
$$

as long as $\mathbf{u}^{\top} \mathbf{v}_{*} \neq 0$.

We consider the error

$$
\left\|\left|\mathbf{v}^{k}-\Psi^{k}\right|\right\| \mid=\sup _{\|f\|_{\infty} \leq 1} \sqrt{\mathbf{E}\left[\left|\mathbf{f}^{\top} \mathbf{v}^{k}-\mathbf{f}^{\top} \Psi^{k}\right|^{2}\right]}
$$

A few words on the accuracy of FRI

A few useful properties of

$$
\|\mathbf{X}\| \|=\sup _{\|\boldsymbol{f}\|_{\infty} \leq 1} \sqrt{\mathbf{E}\left[\left|\mathbf{f}^{\top} \mathbf{X}\right|^{2}\right]}
$$

for random $\mathbf{X} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
& \text { 1. }\|\mathbf{X}\| \|=\sup _{\|\mathbf{G}\|_{\infty, *}} \sqrt{\mathbf{E}\left[\|\mathbf{G X}\|_{1}^{2}\right]} \\
& \text { where for } \mathbf{G} \in \mathbb{R}^{n},\|\mathbf{G}\|_{\infty, *}=\sum_{i=1}^{n} \max _{j \leq n}\left|G_{i j}\right|
\end{aligned}
$$

2. If \mathbf{X} is not random then $\|\mathbf{X}\|\|=\| \mathbf{X} \|_{1}$
3. If \mathbf{X} has independent components then $\left\|\|\mathbf{X}\|^{2}=\mathbf{E}\left[\|\mathbf{X}\|_{2}^{2}\right]\right.$

In general

$$
\mathbf{E}\left[\|\mathbf{X}\|_{2}^{2}\right] \leq\|\mathbf{X}\|^{2} \leq \mathbf{E}\left[\|\mathbf{X}\|_{1}^{2}\right]
$$

A few words on the accuracy of FRI

Consider the general recursions

$$
\Psi^{k+1}=\mathcal{M}\left(\Psi^{k}+\eta^{k}\left(\Psi^{k}\right)\right) \quad \text { and } \quad \mathbf{v}^{k+1}=\mathcal{M}\left(\mathbf{v}^{k}\right)
$$

where the η^{k} are independent conditioned on Ψ^{k} and

$$
\mathbf{E}\left[\eta^{k}(\mathbf{v})\right]=0, \quad\| \| \eta^{k}(\mathbf{v})\left\|\leq \frac{\gamma}{\sqrt{m}}\right\| \mathbf{v} \|_{1}
$$

Can adapt lots of tools for perturbed dynamical systems to produce e.g. global in time error bounds when \mathcal{M} is contractive in the appropriate sense.

Special attention should be paid to the dependence on n.

A few words on the accuracy of FRI

Corollary

If A has non-negative entries and is irreducible and aperiodic, then the power iteration

$$
\mathcal{M}(\mathbf{v})=\frac{\mathbf{A} \mathbf{v}}{\|\mathbf{A} \mathbf{v}\|_{1}}
$$

is contractive (in the appropriate sense) as long as the entries of \mathbf{v} are non-negative. So the randomized iteration $\Psi^{k}=\mathcal{M}\left(\Psi^{k}+\eta^{k}\right)$ satisfies

$$
\left\|\left\|\Psi^{k}-\mathbf{v}^{k}\right\|\right\| \leq \frac{C}{\sqrt{m}}
$$

where C is independent of k and does not (explicitly) depend on n.
Fixed accuracy in constant cost is possible (at least for $b \sim 1$).
Surprising from an NLA perspective. Not from an MCMC (or DMC) perspective.

What about more general matrices?

Perturbations of identity

Recall that $\mathbf{P}_{\varepsilon}=(\mathbf{I}-\varepsilon \mathbf{H})$.
If $\mathcal{M}(\mathbf{v})=\mathbf{v}+\varepsilon \mathcal{R}(\mathbf{v})$ we hope our bounds remain stable as $\varepsilon \rightarrow 0$ and $k \sim \varepsilon^{-1}$.

This requires a good compression scheme. If $\|\mathbf{v}\|_{0} \leq m$, we require

$$
\left\|\left\|\eta^{k}(\mathbf{v}+\mathbf{w})\right\|\right\| \leq \frac{\gamma}{\sqrt{m}}\|\mathbf{w}\|_{1}^{\frac{1}{2}}\|\mathbf{v}+\mathbf{w}\|_{1}^{\frac{1}{2}}
$$

This rules out some possible compression rules. E.g. we cannot use

$$
\mathbf{v}+\eta(\mathbf{v})=\frac{\|\mathbf{v}\|_{1}}{m} \sum_{i=1}^{n} N_{i} \frac{v_{i}}{\left|\boldsymbol{v}_{i}\right|} \mathbf{e}_{i}
$$

where $\left(N_{1}, \ldots, N_{n}\right) \sim \operatorname{Multinomial}\left(m,\|\mathbf{v}\|_{1}^{-1}\left(\left|v_{1}\right|, \ldots,\left|v_{n}\right|\right)\right)$

Vector compression

Some basic principles:

1. No benefit to perturbing an entry that will remain non-zero
2. Important to correlate the N_{j} (sampling with/without replacement or multinomial/systematic resampling).

Stopping rule selects largest entries to preserve exactly.

Remaining entries $j \in R$ set to

$$
\begin{gathered}
(\mathbf{v}+\eta(\mathbf{v}))_{j}=\left\{\begin{array}{cl}
\frac{v_{j}}{p_{j}} & \text { w.p. } p_{j} \\
0 & \text { otherwise }
\end{array}\right. \\
p_{j}=\frac{\left(m-\left|R^{\mathrm{c}}\right|\right)\left|v_{j}\right|}{\sum_{i \in R}\left|v_{i}\right|} \leq 1 \quad \text { for } \quad j \in R
\end{gathered}
$$

0.61		0.61
0.04	preserved exactly	0.00
-0.15		-0.15
0.00	compres	0.00
0.03		0.12
0.01	keeping only	0.00
-0.09	m nonzero entries $m=4$	-0.12
0.00		0.00
0.07	systematic sampling	0.00
0.00		0.00

N_{2}

\(\left[\begin{array}{r}0.61

0.04

-0.15

0.00

0.03

0.01

-0.09

0.00

0.07

0.00\end{array}\right] \xrightarrow{compress}\)| keeping only |
| :---: |
| m nonzero entries |
| $m=4$ |

$\left[\begin{array}{r}0.61 \\ 0.00 \\ -0.15 \\ 0.00 \\ 0.00 \\ 0.00 \\ -0.09 \\ 0.00 \\ 0.07 \\ 0.00\end{array}\right]$

$\left[\begin{array}{r}{\left[\begin{array}{r}0.61 \\ 0.04 \\ -0.15 \\ 0.00 \\ 0.03 \\ 0.01 \\ -0.09 \\ 0.00 \\ 0.07 \\ 0.00\end{array}\right]}\end{array} \underset{\text { preserved exactly }}{ } \quad \underset{\text { keeping only }}{\text { m nonzero entries }} \begin{array}{r}\text { systematic sampling }\end{array}\left[\begin{array}{r}0.61 \\ 0.00 \\ -0.15 \\ 0.00 \\ 0.12 \\ 0.00 \\ -0.12 \\ 0.00 \\ 0.00 \\ 0.00\end{array}\right]\right.$

Matrix compression

Can't afford to list all entries in a column of \mathbf{A} ? This is the case for \mathbf{P}_{ε}.
We can use compression again if we have "cheap" matrix \mathbf{Q} with

$$
\begin{gathered}
\left|A_{i j}\right|>0 \Longrightarrow\left|Q_{i j}\right|>0 \\
(\mathbf{A}+\eta(\mathbf{A}))_{i j}= \begin{cases}\frac{A_{i j}}{Q_{i j}}(\mathbf{Q}+\eta(\mathbf{Q}))_{i j} & \text { if }\left|Q_{i j}\right|>0 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Only evaluate $A_{i j}$ when $(\mathbf{Q}+\eta(\mathbf{Q}))_{i j} \neq 0$.
Only compress columns of \mathbf{A} corresponding to non-zero entries of $\mathbf{v}+\eta$.
E.g. \mathbf{Q} might be uniform on the indices of non-zero entries of \mathbf{A}.

Matrix compression

Compressing the matrix columns will typically require that column entries of \mathbf{Q} can be factored in a tree structure.

It can get complicated.

Ne

aug-cc-pVDZ basis (6.9 million determinants)

$m=243 K$

Ne

aug-cc-pVDZ basis (6.9 million determinants)

For QMC applications FRI may offer a significant performance improvement over FCIQMC at similar cost.

This is still a very small problem and we're testing against an early version of FCIQMC. Parallel scaling is a key question.

Is FRI just an efficient search

Does FRI quickly find a sparse vector that is a good approximation of the true ground state?

For Neon, the energy of the iterates produced by FRI is well above the final FRI estimate.

Recall: at least for a non-negative matrix, constant cost is possible even when the desired eigenvector is not at all sparse.

Why not just truncate?

Consider the overdamped operator

$$
\begin{gathered}
L f=-\nabla V \nabla^{\top} f+\Delta f, \quad\left(x_{j}, y_{j}\right) \in[-1,1) \times[-1,1) \text { for } j \leq \ell \\
V(x, y)=\frac{1}{2} \sum_{j \leq \ell} \cos \left(2 \pi x_{j}\right) \cos \left(2 \pi y_{j}\right) \\
+2 \sum_{\substack{j \leq 4 \\
k>j}} \cos \left(\pi\left(x_{j}-x_{k}\right)\right) \cos \left(\pi\left(y_{j}-y_{k}\right)\right)
\end{gathered}
$$

ℓ attractive particles each experience a corrugated external potential

Why not just truncate?

For 5 particle (10D) we discretize with a Fourier basis of size $101^{10} / 2 \approx 10^{20} / 2$ and find the spectral gap (second largest eigenvalue of L).

$m=10^{6}$, no matrix compression

Why not just truncate?

For 4 particles (8D) with a basis of size $101^{8} / 2 \approx 10^{16} / 2$ we compare against truncation:

no matrix compression

