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Immersed Boundary Problems

Fluid-structure interaction belong to a more general class of fluid
problems with internal boundaries

ρ (ut + (u · ∇)u)−∇ · (µD(u)) +∇p = F, plus

in some cases the internal boundary only represent an obstacle:
boundary conditions

in other cases the boundary has some additional physics ⇒
additional laws

gas bubbles in fluids

MHD models for liquid metals

elasticity, e.g., deformation of red blood cells

Typically presented in Eulerian-Lagrangian formulation –
numerically challenging
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Numerical Solvers

Eulerian-Lagrangian formulation:

Navier-Stokes solver (more on this later)

particle method to track interface

with all challenges included: particles getting too close/far,
different time scales, ∇ · u = 0 constraint, etc.

Eulerian formulation (requires reformulation of boundary
physics):

still needs Navier-Stokes solver

implicit interface tracking: level set method

still challenging...
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Elasticity – Lagrangian formulation of F

ρ (ut + (u · ∇)u)−∇ · (µD(u)) +∇p = F

F(x, t) =

∫ s2

s1

f(s, t)δ(x−X(s, t)) ds

f(s, t)– body force density with respect of measure ds

s – parametrization of interface satisfying
∂X(s, t)

∂t
= u(X(s, t), t)

f(s, t) =
∂

∂s
(T (s, t) τ(s, t)), T – tension, τ - unit tangent (Peskin, 1981)
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Elasticity – Eulerian Formulation

Force derived from Energy (Cottet et. al., 2005 - 08):

Ea(φ) =

∫
Ω

E (|∇φ|) 1

ε
ζ

(
φ

ε

)
dx

where:

E - stress-strain relationship: E(r) = λ(r − 1), it accounts for the
response of the membrane to a change in area

φ(x, t) - level set function satisfying:

φ(x, 0) = Γ0 – initial interface position (φ < 0 inside, φ > 0
outside)

φt + u · ∇φ = 0

interface location Γt = {x ∈ Ω : φ(x) = 0}

ζ cut-off function: |∇φ|1
ε
ζ

(
φ

ε

)
→ δφ=0 as ε→ 0



Introduction Fluid–Structure Interaction Numerical Schemes Numerical Results Conclusions

Elasticity – Eulerian Formulation

Force derived from Energy (Cottet et. al., 2005 - 08):

Ea(φ) =

∫
Ω

E (|∇φ|) 1

ε
ζ

(
φ

ε

)
dx

where:

E - stress-strain relationship: E(r) = λ(r − 1), it accounts for the
response of the membrane to a change in area

φ(x, t) - level set function satisfying:

φ(x, 0) = Γ0 – initial interface position (φ < 0 inside, φ > 0
outside)

φt + u · ∇φ = 0

interface location Γt = {x ∈ Ω : φ(x) = 0}

ζ cut-off function: |∇φ|1
ε
ζ

(
φ

ε

)
→ δφ=0 as ε→ 0



Introduction Fluid–Structure Interaction Numerical Schemes Numerical Results Conclusions

Elasticity – Eulerian Formulation (cont’d)

This leads to:

d

dt
Ea(φ) = −

∫
Ω

Fa(x, t) · u ds

and using the divergence theorem, we arrive at:

Fa(x, t) =

{
∇ [E(|∇φ|)]−∇ ·

[
E(|∇φ|) ∇φ

|∇φ|

]
∇φ
|∇φ|

}
|∇φ|1

ε
ζ

(
φ

ε

)

Remark: Not the only expression for F, it can be written/calculated in

tangential plus normal components showing how curvature acts on

normal direction
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Summary of Eulerian Formulation


ρε(φ) (ut + (u · ∇)u)−∇ · (µ(φ)D(u)) +∇p = Fa(φ) + Fc(φ)

∇ · u = 0

φt + u · ∇φ = 0

with the elastic and curvature forces

Fa(φ) =

{
∇ [E(|∇φ|)]−∇ ·

[
E(|∇φ|) ∇φ

|∇φ|

]
∇φ
|∇φ|

}
|∇φ|1

ε
ζ

(
φ

ε

)
,

coupling the two equations, and the density and viscosity convected by
fluid velocity:

ρt + u · ∇ρ = 0 µt + u · ∇µ = 0
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Lagrangian vs. Eulerian

∂X(s, t)

∂t
= u(X(s, t), t) φt + u · ∇φ = 0
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Numerical Solvers – Previous Work

Lagrangian formulation: Lee and LeVeque (2008):

Navier-Stokes: fractional step method with reprojection to
enforce ∇ · u = 0

Interface tracking: particle method with proper parametrization

Eulerian Formulation:

Cottet et. al. (2005 - 08): Navier-Stokes solver with
reprojection + high resolution ENO for level set (include
problems in 3D)

UCLA group (Fedkiw, Merriman, Osher, mid 90s): high
resolution ENO for level set, and different approaches for NS
(e.g., reprojection, vorticity)... but different physics (e.g., multi
fluid, gas bubbles)
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Our Approach

Navier-Stokes: use vorticity formulation...

ωt + u · ∇ω =
µ

ρ
∆ω +∇×

(
F

ρ

)
∇ · u = 0

Level set: semi-discrete central scheme for Hamilton-Jacobi
equations: φt +H(∇φ) = 0

Why vorticity formulation?

note that the vorticity formulation also has the form
ωt +H(∇ω) = . . .

we can use the same scheme for both equations!!!
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Our Approach – Other Observations

What about:

(1) ∇ · u = 0? We use stream function ψ:

∆ψ = −ω

Then, recover u as:

uj,k =
ψj,k+1 − ψj,k−1

2 ∆y
and vj,k = −

ψj+1,k − ψj−1,k

2 ∆x

(central differencing of uj,k and vj,k yield ∇ · u = 0), and

(2) ρ(φ) and µ(φ)?... they are not constant!!!
but they remain constant inside and outside the interface
plus we regularize them with the cut-off function:

ρε(φ) = ρ1 +H

(
φ

ε

)
(ρ2−ρ1)+λθ

1

ε
ζ

(
φ

ε

)
, µε(φ) = µ1 +H

(
φ

ε

)
(µ2−µ1)

where H(r) =
∫ r
−∞ ζ(s) ds, and λθ is the surface density in a reference

configuration
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Central Scheme for HJ (Kurganov–Tadmor, 2000)

2nd order semi-discrete Scheme for φt +H(∇φ) = 0:

dφj,k

dt
= −

1

4

[
H(φ+x , φ

+
y ) +H(φ+x , φ

−
y ) +H(φ−x , φ

+
y ) +H(φ−x , φ

−
y )
]
j,k

+
aj,k

2

[
(φ+x − φ−x ) + (φ+y − φ−y )

]
j,k

where (φ±x )j,k and (φ±y )j,k are non-oscillatory (minmod limiter) reconstruction of the
first derivatives of φ, and

aj,k = max
±

√
H2
φx

(φ±x , φ
±
y )j,k +H2

φy
(φ±x , φ

±
y )j,k

evolved with 2nd order SSP RK scheme, under the CFL condition

∆t < c
min (∆x,∆y)

maxj,k{aj,k}
c <

1

2
(provided RHS of HJ is 0!)
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Scheme – Additional Details

cut-off functions:

ζ
( r
ε

)
=


1
2

(
1 + cos πr

ε

)
if |r| < ε

0 otherwise
, H

( r
ε

)
=


0 if r < −ε
r+ε
2 ε

+
sin πr

ε
2π

if |r| < ε

1 if r > ε

Poisson equation solved with five-point formula using SOR

No re-initialization of φ, better to regularize (Cottet et. al.), replace

1

ε
|∇φ|ζ

(
φ

ε

)
by

1

ε
ζ

(
φ

ε|∇φ|

)
φ/|∇φ| behaves as distance and carries elasticity information (stretching) that
would be lost with reinitialization
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Elastic Membrane – Re ∼ 100

massless elastic membrane r = 0.5 immersed in fluid at rest with
ρ = 1.0, µ = 0.01

stretched into elliptical shape with semi-axes a = 0.75, b = 0.5

membrane should go back to equilibrium: circle stretched by a
factor of 1.262, r = 0.6124

φ(x, 0) – signed distance function to elipse multiplied by stretched
factor

Grid size 64× 64
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Elastic Membrane – Re ∼ 100
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Elastic Membrane – Re ∼ 1000

Same as before with µ2 = 0.001 on a 32× 32 grid
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Coalescence of Two Gas Bubbles

Two merging gas bubbles with ρ1 = 1, ρ2 = 10, η1 = 2.5× 10−4,
η2 = 5× 10−4
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Coalescence of Two Gas Bubbles – Re-Initialization of
Level Set

with re-initialization without re-initialization
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Conclusions/Future Work

Conclusions/Observations/Remarks:

similar results observed if elipse is stretched along other
directions

elastic force imposes stricter CFL condition, c < 0.08, yet
much better than the suggested time step for NS projection
solver

convenient to use same scheme for both equations

Future work:

2D and 3D full NS solver – vorticity formulation in 3D not as
convenient

other problems in biomechanics

incompressible MHD, liquid metals
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Work in Progress

We would like to simulate the deformation of (red blood) cells...

these are the most abundant cells in the human body

they have no nucleus ⇒ challenging deformation mechanics
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Thank you very much

Muchas Gracias
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