FSI: from the Immersed Boundary Method to a Fictitious Domain approach with Lagrange multiplier

Daniele Boffi

Dipartimento di Matematica "F. Casorati", Università di Pavia http://www-dimat.unipv.it/boffi

Collaborators (2003—??): Lucia Gastaldi, Luca Heltai, Nicola Cavallini, Francesca Gardini, Michele Ruggeri

Fluid-structure interaction

 $\Omega \subset \mathbb{R}^d$, d = 2, 3**x** Euler. var. in Ω

$$\begin{split} \mathcal{B}_t & \text{deformable structure domain} \\ \mathcal{B}_t \subset \mathbb{R}^m, \, m = d, d-1 \\ \mathbf{s} & \text{Lagrangian var. in } \mathcal{B} \\ \mathbf{X}(\cdot, t) &: \mathcal{B} \to \mathcal{B}_t \text{ position of the solid} \\ \mathbf{X}(\mathbf{s}, t) &= \mathbf{X}_0(\mathbf{s}) + \boldsymbol{\eta}(\mathbf{s}, t) \\ \text{with } \boldsymbol{\eta} \text{ displacement} \\ \mathbb{F} & \text{deformation gradient} \end{split}$$

the material velocity $\mathbf{u}(\mathbf{x}, t)$ is:

$$\mathbf{u}(\mathbf{x},t) = \frac{\partial \mathbf{X}}{\partial t}(\mathbf{s},t)$$
 where $\mathbf{x} = \mathbf{X}(\mathbf{s},t)$

FSI problem

$$\rho_{f} \dot{\mathbf{u}}_{f} = \rho_{f} \left(\frac{\partial \mathbf{u}_{f}}{\partial t} + \mathbf{u}_{f} \cdot \nabla \mathbf{u}_{f} \right) = \operatorname{div} \boldsymbol{\sigma}_{f} \quad \text{in } \Omega \setminus \mathcal{B}_{t}$$

$$\operatorname{div} \mathbf{u}_{f} = 0 \qquad \qquad \text{in } \Omega \setminus \mathcal{B}_{t}$$

$$\rho_{s} \dot{\mathbf{u}}_{s} = \operatorname{div} \boldsymbol{\sigma}_{s} \qquad \qquad \text{in } \mathcal{B}_{t}$$

$$\mathbf{u}_{f} = \mathbf{u}_{s} \qquad \qquad \text{on } \partial \mathcal{B}_{t}$$

$$\boldsymbol{\sigma}_{f} \mathbf{n}_{f} = -\boldsymbol{\sigma}_{s} \mathbf{n}_{s} \qquad \qquad \text{on } \partial \mathcal{B}_{t}$$

$$+ \text{ initial and boundary conditions}$$

Recall:

$$\mathbf{X}(t) : \mathcal{B} \to \mathcal{B}_t$$

 $\mathbf{u}_s(\mathbf{x}, t) = \frac{\partial \mathbf{X}}{\partial t}(\mathbf{s}, t) \text{ where } \mathbf{x} = \mathbf{X}(\mathbf{s}, t)$

Numerical approaches to FSI

Boundary fitted approaches The fluid problem is solved on a mesh that deforms around a Lagrangian structure mesh, using *arbitrary Lagrangian–Eulerian* (ALE) coordinate system In case of large deformation the boundary fitted fluid mesh can become severely distorted

Non boundary fitted approaches

- ► fictitious domain 〈Glowinski–Pan–Périaux '94, Yu '05〉
- ► level set method 〈Chang–How–Merriman–Osher '96〉
- ► immersed boundary method (Peskin '02)
- ► immersogeometric FSI (thin structures) ⟨Kamenski–Hsu–Schillinger–Evans–Aggarwal–Bazilevs– Sacks–Hughes '15⟩
- Nitsche X-FEM (Burman–Fernández '14, Alauzet–Fabrèges–Fernández–Landajuela '16)

Our research originates from the *immersed boundary method* IBM and moved towards a fictitious domain approach

Finite element Immersed Boundary Method (FE-IBM)

Initial analysis of the FE-IBM

Approximation of FE-IBM

Mass conservation

An interface problem (towards a fully variational approach)

IBM - Immersed Boundary Method

- Introduced by Peskin for the simulation of the blood flow in the heart.
- Applied to biological problems, where a fluid interacts with a flexible structure.
- The structure is a part of the fluid with additional forces and mass.
- The Navier–Stokes equations are solved in the whole domain (fluid + solid) by *finite differences*.
- The Dirac delta function is used to localize forces and masses in the solid domain.
- The immersed body has a fiber like structure.

FE-IBM Initial analysis Approximation Mass conservation Interface problem	FE-IBM	Initial a	nalysis Approximation	Mass conservation	Interface proble
---	--------	-----------	-----------------------	-------------------	------------------

Model assumptions

Incompressible fluid:

$$\boldsymbol{\sigma}_f = -p_f \mathbb{I} +
u_f \,
abla_{sym} \, \mathbf{u}_f$$

 $(\nabla_{sym} = \nabla \mathbf{u} + (\nabla \mathbf{u})^{\top})$

Visco-elastic incompressible material:

$$\boldsymbol{\sigma}_s = \boldsymbol{\sigma}_s^f + \boldsymbol{\sigma}_s^s$$

with

$$oldsymbol{\sigma}_s^f = -p_s \mathbb{I} +
u_s \,
abla_{sym} \, \mathbf{u}_s$$

and σ_s^s elastic part of the stress.

1

The Piola–Kirchhoff stress tensor takes into account the change of variable

$$\mathbb{P} = |\mathbb{F}| oldsymbol{\sigma}_s^s \mathbb{F}^{- op}$$

and is related with the potential energy density W by

$$\mathbb{P}(\mathbb{F}) = \frac{\partial W}{\partial \mathbb{F}}$$

FE-IBM

IBM - Immersed Boundary Method

Problem formulation

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nu_f \Delta \mathbf{u} + \nabla p = \mathbf{d} + \mathbf{F}^{FSI} + \mathbf{t} \quad \text{in } \Omega \times]0, T[$$

div $\mathbf{u} = 0$ $\text{in } \Omega \times]0, T[$

$$\begin{aligned} \mathbf{d}(\mathbf{x},t) &= (\rho_s - \rho_f) \int_{\mathcal{B}} \frac{\partial^2 \mathbf{X}}{\partial t^2} \delta(\mathbf{x} - \mathbf{X}(s,t)) ds & \text{excess mass density} \\ \mathbf{F}^{FSI}(\mathbf{x},t) &= \int_{\mathcal{B}} \nabla_s \cdot \mathbb{P}(s,t) \delta(\mathbf{x} - \mathbf{X}(s,t)) ds & \text{inner force density} \\ \mathbf{t}(\mathbf{x},t) &= -\int_{\partial \mathcal{B}} \mathbb{P}(s,t) \mathbf{N}(s,t) \delta(\mathbf{x} - \mathbf{X}(s,t)) ds & \text{transm. force dens.} \\ \partial \mathbf{X} \end{aligned}$$

 $\frac{\partial \mathbf{A}}{\partial t}(s,t) = \mathbf{u}(\mathbf{X}(s,t),t) \text{ in } \mathcal{B} \times]0,T[$ motion of the immersed body

FE-IBM	Initial analysis	Approximation	Mass conservation	Interface problem
		a	_	
FF_IRM	Finite elen	ionts for IRN	Л	

```
(B.–Gastaldi '03)
(B.–Gastaldi–Heltai '04-'07)
(Heltai '08)
(B.–Gastaldi–Heltai–Peskin '08)
(B.–Cavallini–Gastaldi '12)
```

- Variational formulation of the FSI force
- No need to approximating the Dirac delta functions
- Better interface approximation (less diffusion, sharp pressure jump)
- ► The fluid equations can be approximated with standard mixed schemes (Q₂ P₁, Hood-Taylor, Bercovier-Pironneau, ...)

page 9

Variational definition of the source term

Everything started from this simple remark (two space dimensions, co-dimension one)

 $\mathbf{X}(s,t)$ position of the immersed boundary \mathcal{B}_t

$$\mathbf{F}(\mathbf{x},t) = \int_0^L \kappa \frac{\partial^2 \mathbf{X}(s,t)}{\partial s^2} \delta(\mathbf{x} - \mathbf{X}(s,t)) \, ds$$

Lemma

Assume that, for all $t \in [0, T]$, the curve \mathcal{B}_t is Lipschitz continuous. Then for all $t \in]0, T[$, the force density $\mathbf{F}(t)$ is a distribution function belonging to $H^{-1}(\Omega)^2$ defined as follows: for all $\mathbf{v} \in H^1_0(\Omega)$

$$_{H^{-1}}\langle \mathbf{F}(t), \mathbf{v}
angle_{H_0^1} = \int_0^L \kappa rac{\partial^2 \mathbf{X}(s,t)}{\partial s^2} \mathbf{v}(\mathbf{X}(s,t)) \, ds \quad \forall t \in \left] 0, T \right[$$

Existence of the solution (1D)

 $\langle \text{B.-Gastaldi '03} \rangle$

Existence of the solution for a simplified 1D problem: Find $u : [a,b] \times [0,T] \rightarrow \mathbb{R}$ and $\mathbf{X} : [0,T] \rightarrow [a,b]$ such that

$$\begin{aligned} \frac{\partial u}{\partial t} &- \mu u_{xx} = F \quad \text{in }]a, b[\times]0, T[\\ F(x,t) &= f(t)\delta(x - X(t)) \quad \forall x \in]a, b[, t \in]0, T[\\ \mathbf{X}'(t) &= u(\mathbf{X}(t), t) \quad \forall t \in]0, T[\\ u(a,t) &= u(b,t) = 0 \ \forall t \in]0, T[\\ u &= u_0 \text{ in }]a, b[\qquad \mathbf{X}(0) = \mathbf{X}_0 \end{aligned}$$

Schauder theorem

We set
$$\mathbb{X} = \left\{ \mathbf{X} \in C^0([0,T]) : \mathbf{X}(0) = \mathbf{X}_0 \right\}$$

Given $\mathbf{X} \in \mathbb{X}$, $u(t) \in H^1_0(a,b)$ is the solution to:
 $\frac{d}{dt}(u(t),v) + \mu(u_x(t),v_x) = \langle F,v \rangle \quad [=f(t)v(\mathbf{X}(t))]$
 $\forall v \in H^1_0(a,b)$ (P1)
 $u(0) = u_0$ in $]a,b[$

Then $\mathbf{X} = \mathbb{T}(\mathbf{X})$ solves $\mathbf{X}'(t) = u(\mathbf{X}(t), t) \quad \forall t \in [0, T] \quad \mathbf{X}(0) = X_0$ (P2)

Theorem

There exists a fixed point of \mathbb{T} in the convex and compact subset $B = \{\mathbf{Y} \in \mathbb{X} : \mathbf{Y}(t) \in [a, b], \|\mathbf{Y}'\|_{L^2(0,T)} \leq K\}$ of \mathbb{X}

page 11

Schauder theorem (cont'ed)

Step 1. There exists a unique solution *u* to problem (**P**1)

If $\mathbf{X}' \in L^2(0,T)$, then there exists a summable function $\ell(t)$ so that

$$|u(x,t) - u(y,t)| \le \ell(t)|x-y| \quad \forall (x,t), (y,t) \in [a,b] \times [0,T]$$

Step 2. Let $X_0 \in]a, b[$. There exists a unique solution **X** to equation (P2) defined in [0, T], with $\mathbf{X}' \in L^2(0, T)$ and

 $\mathbf{X}(t) \in]a, b[\quad \forall t \in [0, T] \qquad \|\mathbf{X}'\|_{L^2(0,T)} \leq K$

FE-IBM	Initial analysis	Approximation	Mass conservation	Interface problem
Stability				

$\langle B.-Cavallini-Gastaldi '11 \rangle$

Recalling that

$$rac{\partial \mathbf{X}}{\partial t}(s,t) = \mathbf{u}(\mathbf{X}(s,t),t) \quad \forall s \in \mathcal{B}$$

it holds

$$\begin{aligned} \frac{\rho_f}{2} \frac{d}{dt} ||\mathbf{u}(t)||_0^2 + \mu || \nabla \mathbf{u}(t) ||_0^2 + \frac{d}{dt} E(\mathbf{X}(t)) \\ + \frac{1}{2} (\rho_s - \rho_f) \frac{d}{dt} \left\| \frac{\partial \mathbf{X}}{\partial t} \right\|_B^2 &= 0 \end{aligned}$$

where E is the total elastic potential energy

$$E(\mathbf{X}(t)) = \int_{\mathcal{B}} W(\mathbf{F}(s,t)) \, ds$$

Initial a

FE-IBM

Initial analysis

Approximation

Mass conservation

Interface problem

Finite element approximation

- Uniform background grid *T_h* for the domain Ω (meshsize *h_x*)
- Inf-sup stable finite element pair

$$V_h \subset H^1_0(\Omega)^d$$

 $Q_h \subset L^2_0(\Omega)$

- Grid S_h for \mathcal{B} (meshsize h_s)
- ▶ Piecewise linear finite element space for \mathbf{X} $S_h = \{ \mathbf{Y} \in C^0(\mathcal{B}; \Omega) : \mathbf{Y} \in P1 \}$

Notation

- T_k , $k = 1, \ldots, M_e$ elements of S_h
- $\mathbf{s}_j, j = 1, \dots, M$ vertices of \mathcal{S}_h
- \mathcal{E}_h set of the edges e of \mathcal{S}_h

DD.	TDAK	
FE-	-IBIVI	

Discrete source term

Source term:

$$\langle \mathbb{F}(t), \mathbf{v} \rangle = -\int_{\mathcal{B}} \mathbb{P}(\mathbf{F}_h(s, t)) : \nabla_s \mathbf{v}(\mathbf{X}_h(s, t)) \, ds \quad \forall \mathbf{v} \in V_h$$

 \mathbf{X}_h p.w. linear $\Rightarrow \mathbf{F}_h$, \mathbb{P}_h p.w. constant By integration by parts

$$\langle \mathbb{F}_h(t), \mathbf{v} \rangle_h = -\sum_{k=1}^{M_e} \int_{T_k} \mathbb{P}_h : \nabla_s \mathbf{v}(\mathbf{X}(s, t)) \, ds$$

$$= -\sum_{k=1}^{M_e} \int_{\partial T_k} \mathbb{P}_h \mathbf{N} \mathbf{v}(\mathbf{X}(s, t)) \, dA$$

that is

$$\langle \mathbb{F}_h(t), \mathbf{v} \rangle_h = -\sum_{e \in \mathcal{E}_h} \int_e [\![\mathbb{P}_h]\!] \cdot \mathbf{v}(\mathbf{X}(s, t)) \, dA$$

 $\llbracket \mathbb{P} \rrbracket = \mathbb{P}^+ \mathbf{N}^+ + \mathbb{P}^- \mathbf{N}^- \text{ jump of } \mathbb{P} \text{ across } e \text{ for internal edges} \\ \llbracket \mathbb{P} \rrbracket = \mathbb{P} \mathbf{N} \text{ jump when } e \subset \partial \mathcal{B}$

The *semidiscrete* problem reads:

find (\mathbf{u}_h, p_h) : $]0, T[\to V_h \times Q_h \text{ and } \mathbf{X}_h : [0, T] \to S_h \text{ such that}$

$$\begin{cases} \rho_f \frac{d}{dt}(\mathbf{u}_h(t), \mathbf{v}) + a(\mathbf{u}_h(t), \mathbf{v}) + b(\mathbf{u}_h(t), \mathbf{u}_h(t), \mathbf{v}) \\ -(\operatorname{div} \mathbf{v}, p_h(t)) = -\int_{\mathcal{B}} (\rho_s - \rho_f) \frac{\partial^2 \mathbf{X}_h}{\partial t^2} \mathbf{v}(\mathbf{X}_h(s, t)) ds \\ -\sum_{e \in \mathcal{E}_h} \int_e [\![\mathbb{P}_h]\!] \cdot \mathbf{v}(\mathbf{X}_h(s, t)) dA \qquad \forall \mathbf{v} \in V_h \\ (\operatorname{div} \mathbf{u}_h(t), q) = \mathbf{0} \qquad \forall q \in Q_h \end{cases}$$

$$\frac{d\mathbf{X}_{hi}}{dt}(t) = \mathbf{u}_h(\mathbf{X}_{hi}(t), t) \quad \forall i = 1, \dots, M$$
$$\mathbf{u}_h(0) = \mathbf{u}_{0h} \text{ in } \Omega$$
$$\mathbf{X}_{hi}(0) = \mathbf{X}_0(s_i) \quad \forall i = 1, \dots, M$$

Fully discrete problem (Backward Euler)

Find
$$(\mathbf{u}_h^{n+1}, p_h^{n+1}) \in V_h \times Q_h$$
 e $\mathbf{X}_h^{n+1} \in S_h$ such that
 $\langle \mathbb{F}_h^{n+1}, \mathbf{v} \rangle_h = -\sum_{e \in \mathcal{E}_h} \int_e [\mathbb{P}_h]^{n+1} \cdot \mathbf{v}(\mathbf{X}_h^{n+1}(s)) dA \qquad \forall \mathbf{v} \in V_h$

$$\mathbf{NS} \begin{cases} \rho_f \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t}, \mathbf{v} \right) + a(\mathbf{u}_h^{n+1}, \mathbf{v}) + b(\mathbf{u}_h^{n+1}, \mathbf{u}_h^{n+1}, \mathbf{v}) \\ -(\operatorname{div} \mathbf{v}, p_h^{n+1}) = \\ -\int_{\mathcal{B}} (\rho_s - \rho_f) \frac{\mathbf{X}_h^{n+1} - 2\mathbf{X}_h^n + \mathbf{X}_h^{n-1}}{\Delta t^2} \cdot \mathbf{v}(\mathbf{X}_h^{n+1}(s)) ds \\ + \langle \mathbb{F}_h^{n+1}, \mathbf{v} \rangle_h \qquad \forall \mathbf{v} \in V_h \\ (\operatorname{div} \mathbf{u}_h^{n+1}, q) = \mathbf{0} \qquad \forall q \in Q_h \end{cases}$$

$$\frac{\mathbf{X}_{hi}^{n+1} - \mathbf{X}_{hi}^{n}}{\Delta t} = \mathbf{u}_{h}^{n+1}(\mathbf{X}_{hi}^{n+1}) \quad \forall i = 1, \dots, M$$

Fully discrete problem (Modified Backward Euler)

Step 1.
$$\langle \mathbb{F}_h^n, \mathbf{v} \rangle_h = -\sum_{e \in \mathcal{E}_h} \int_e [\![\mathbb{P}_h]\!]^n \cdot \mathbf{v}(\mathbf{X}_h^n(s, t)) \, dA \qquad \forall \mathbf{v} \in V_h$$

Step 2. find $(\mathbf{u}_h^{n+1}, p_h^{n+1}) \in V_h \times Q_h$ such that

$$\mathbf{NS} \begin{cases} \rho_f \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t}, \mathbf{v} \right) + a(\mathbf{u}_h^{n+1}, \mathbf{v}) + b(\mathbf{u}_h^{n+1}, \mathbf{u}_h^{n+1}, \mathbf{v}) \\ -(\operatorname{div} \mathbf{v}, p_h^{n+1}) = \\ -\int_{\mathcal{B}} (\rho_s - \rho_f) \frac{\mathbf{X}_h^{n+1} - 2\mathbf{X}_h^n + \mathbf{X}_h^{n-1}}{\Delta t^2} \cdot \mathbf{v}(\mathbf{X}_h^n(s)) ds \\ + \langle \mathbb{F}_h^n, \mathbf{v} \rangle_h \qquad \forall \mathbf{v} \in V_h \\ (\operatorname{div} \mathbf{u}_h^{n+1}, q) = \mathbf{0} \qquad \forall q \in Q_h \end{cases}$$

Step 3.
$$\frac{\mathbf{X}_{hi}^{n+1} - \mathbf{X}_{hi}^{n}}{\Delta t} = \mathbf{u}_{h}^{n+1}(\mathbf{X}_{hi}^{n}) \quad \forall i = 1, \dots, M$$

Using **Step 3** in **Step 2** we get:

Step 1.
$$\langle \mathbb{F}_h^n, \mathbf{v} \rangle_h = -\sum_{e \in \mathcal{E}_h} \int_e [\![\mathbb{P}_h]\!]^n \cdot \mathbf{v}(\mathbf{X}_h^n(s, t)) \, dA \qquad \forall \mathbf{v} \in V_h$$

Step 2. find $(\mathbf{u}_h^{n+1}, p_h^{n+1}) \in V_h \times Q_h$ such that

$$\mathsf{NS} \begin{cases} \rho_f \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t}, \mathbf{v} \right) + a(\mathbf{u}_h^{n+1}, \mathbf{v}) + b(\mathbf{u}_h^{n+1}, \mathbf{u}_h^{n+1}, \mathbf{v}) \\ -(\operatorname{div} \mathbf{v}, p_h^{n+1}) = \\ -\int_{\mathcal{B}} (\rho_s - \rho_f) \frac{\mathbf{u}_h^{n+1}(\mathbf{X}_h^n(s)) - \mathbf{u}_h^n(\mathbf{X}_h^{n-1}(s))}{\Delta t} \cdot \mathbf{v}(\mathbf{X}_h^n(s)) ds \\ + \langle \mathbb{F}_h^n, \mathbf{v} \rangle_h \qquad \forall \mathbf{v} \in V_h \\ (\operatorname{div} \mathbf{u}_h^{n+1}, q) = 0 \qquad \forall q \in Q_h \end{cases}$$

Step 3. $\frac{\mathbf{X}_{hi}^{n+1} - \mathbf{X}_{hi}^{n}}{\Delta t} = \mathbf{u}_{h}^{n+1}(\mathbf{X}_{hi}^{n}) \quad \forall i = 1, \dots, M$

Discrete Energy Estimate

 $\langle B.-Cavallini-Gastaldi '11 \rangle$

Artificial Viscosity Theorem

Let \mathbf{u}_h^n , p_h^n and \mathbf{X}_h^n be a solution to the FE-IBM, then

$$\begin{split} \frac{\rho_f}{2\Delta t} \left(\|\mathbf{u}_h^{n+1}\|_0^2 - \|\mathbf{u}_h^n\|_0^2 \right) + (\mu + \mu_a) \|\nabla \mathbf{u}_h^{n+1}\|_0^2 \\ &+ \frac{1}{\Delta t} \left(E\left[\mathbf{X}_h^{n+1}\right] - E\left[\mathbf{X}_h^n\right] \right) \\ &+ \frac{1}{2\Delta t} (\rho_s - \rho_f) \left(\|\mathbf{u}_h^{n+1}(\mathbf{X}_h^n)\|_{0,\mathcal{B}}^2 - \|\mathbf{u}_h^n(\mathbf{X}_h^{n-1}\|_{0,\mathcal{B}}^2) \le 0 \end{split}$$

CFL Conditions: $\mu + \mu_a \ge 0$, $\rho_s \ge \rho_f$ (might be relaxed)

CFL condition

BE is unconditionally stable, while MBE requires the term μ_a to be not too large

$$\mu_a = -\kappa_{max} C \frac{h_s^{(m-2)} \Delta t}{h_x^{(d-1)}} L^n$$

$$L^{n} := \max_{T_{k} \in S_{h}} \left\{ \max_{\mathbf{s}_{j}, \mathbf{s}_{i} \in V(T_{k})} |\mathbf{X}_{hj}^{n} - \mathbf{X}_{hi}^{n}| \right\}$$

space dim.	solid dim.	CFL condition
2	1	$L^n \Delta t \leq Ch_x h_s$
2	2	$L^n \Delta t \leq Ch_x$
3	2	$L^n \Delta t \le C h_x^2$
3	3	$L^n \Delta t \leq C h_x^2 / h_s$

FE-IBM

Some numerical results

Original 2D code in Fortran 77, ported to DEAL.II (c++) (www.dealii.org) by L. Heltai $(Q_2 - P_1)$

2D

Codimension 1

Codimension 0

3D Codimension 1

FE-IBM

More numerical results

Fortran 90 code written by N. Cavallini $(P_1 iso P_2 - P_1^c)$ Densities: $\rho_s = 21$ and $\rho_f = 1$

Heart valve (Auricchio-B.-Cavallini-Gastaldi-Lefieux)

Mass conservation of the IBM

 $\langle B.-Cavallini-Gardini-Gastaldi '12 \rangle$

Well-known and studied problem

The discrete divergence free condition is imposed in a weak sense

$$\int_{\Omega} \operatorname{div} \mathbf{u}_h q_h \, d\mathbf{x} = \mathbf{0} \quad orall q_h \in Q_h$$

which is not exact unless $\operatorname{div}(V_h) \subset Q_h$

Basic remark

Discontinuous pressure schemes enjoy *local* mass conservation properties (average of divergence is zero element by element)

Not a new idea

Local mass conservation is guaranteed by extra degree of freedom: add piecewise constant pressures

Analysis of our elements

Known facts

Hood–Taylor

- ► Introduced in 1973 (Hood–Taylor '73)
- ► First analysis 〈Bercovier–Pironneau '79, Verfürth '84〉
- ► Full analysis with some restrictions on boundary elements ⟨Scott–Vogelius '85, Brezzi–Falk '91⟩
- ► General analysis for the $P_{k+1} P_k^c$ element with no restrictions (mesh contains at least 3 elements) (B. '94)

 P_1 **iso** $P_2 - P_1^c$

- Same analysis as for the Hood-Taylor element can be carried on (Bercovier–Pironneau '79, Brezzi–Fortin '91)
- Error estimates are suboptimal (unbalanced spaces); ease of implementation makes it appealing, in particular in 3D

Analysis of our elements (cont'ed)

Pressure enhancement

- Numerical evidence for lowest order Hood-Taylor (triangles and squares)
 - (Gresho–Lee–Chan–Leone '80)
 - $\langle \text{Griffiths '82} \rangle$
 - $\langle Tidd\text{--Thatcher--Kaye '88}\rangle$
- Proof of inf-sup for lowest order Hood-Taylor (triangles and squares)
 -
 (Thatcher '90, Pierre '94, Quin–Zhang '05)

Analysis of our elements (cont'ed)

Theorem (B.-Cavallini-Gardini-Gastaldi '12)

The generalized enhanced Hood-Taylor scheme

 $P_{k+1} - \left(P_k^c + P_0\right)$

in two ($k \ge 1$) and three ($k \ge 2$) dimensions and the enhanced

 $P_1 iso P_2 - (P_1^c + P_0)$

in two dimensions satisfy the inf-sup condition

Minimal restriction on the mesh: each element has at least one internal vertex.

FE-IBM	Initial analysis	Approximation	Mass conservation	Interface problem
ъл. 1				

Mesh restrictions

2D: let us understand the restrictions

- Standard schemes: the mesh needs at least three elements
- Enhanced schemes: each element needs at least an internal vertex

Uniform mesh

Symmetric mesh

FE-IBM

Mass conservation and FE-IBM

Inflated balloon test case

$$\begin{split} \mathbf{X}_{0}(s) &= \begin{pmatrix} R\cos(s/R) + 0.5\\ R\sin(s/R) + 0.5 \end{pmatrix}, \quad s \in [0, 2\pi R] \\ \langle \mathbb{F}(t), \mathbf{v} \rangle &= -\kappa \int_{0}^{2\pi R} \frac{\partial \mathbf{X}(s, t)}{\partial s} \frac{\partial \mathbf{v}(\mathbf{X}(s, t))}{\partial s} \\ p(\mathbf{x}, t) &= \begin{cases} \kappa(1/R - \pi R), & |\mathbf{x}| \leq R\\ -\kappa \pi R, & |\mathbf{x}| > R \end{cases} \quad \forall t \in]0, T[\\ T &= 10^{-1} \\ \rho_{f} &= \rho_{s} = 1 \\ \mu &= 1 \\ \kappa &= 1 \\ h_{x} &= 1/32 \\ h_{s} &= 2\pi R/1024 \end{split}$$

FE-IBM	Initial analysis	Approximation	Mass conservation	Interface problem

Area loss w.r.t. time

FE-	IBM	

Initial analysis

Approximation

Mass conservation

Interface problem

An interface problem

(Auricchio-B.-Gastaldi-Lefieux-Reali '13) (B.-Gastaldi-Ruggeri '13)

Let us consider a standard interface problem

 $\begin{aligned} &-\operatorname{div}(\beta_1 \nabla u_1) = f_1 & \text{in } \Omega_1 \\ &-\operatorname{div}(\beta_2 \nabla u_2) = f_2 & \text{in } \Omega_2 \\ &u_1 = u_2 & \text{on } \Gamma \end{aligned}$

$$\beta_1 \nabla u_1 \cdot \mathbf{n}_1 + \beta_2 \nabla u_2 \cdot \mathbf{n}_2 = 0 \quad \text{on } \Gamma$$
$$u_1 = 0 \qquad \qquad \text{on } \partial \theta$$

$$u_1 = 0$$

 $u_2 = 0$

in
$$\Omega_1$$

in Ω_2
on Γ
on Γ
on $\partial \Omega_1 \setminus \Gamma$
on $\partial \Omega_2 \setminus \Gamma$

FE-IBM	Initial analysis	Approximation	Mass conservation	Interface problem
Mixed f	ormulation			
Notat	ion: $\Omega = \Omega_1 \cup \Omega_1$	Ω_2		
Find ı	$u\in H^1_0(\Omega)$, $u_2\in$	$H^1(\Omega_2)$, and λ	$\in \Lambda = [H^1(\Omega_2)]^{?}$	* such that
β	$\nabla u \cdot \nabla v d\mathbf{x} + \langle u \cdot \nabla v d\mathbf{x} \rangle$	$\langle \lambda, v _{\Omega_2} \rangle = \int f v d v$	x	$\forall v \in H_0^1(\Omega)$

$$\int_{\Omega} \beta \nabla u \cdot \nabla v \, d\mathbf{x} + \langle \lambda, v | \Omega_2 \rangle = \int_{\Omega} \beta v \, d\mathbf{x} \qquad \forall v \in H_0(\Omega)$$
$$\int_{\Omega_2} (\beta_2 - \beta) \nabla u_2 \cdot \nabla v_2 \, d\mathbf{x} - \langle \lambda, v_2 \rangle = \int_{\Omega_2} (f_2 - f) v_2 \, d\mathbf{x} \quad \forall v_2 \in H^1(\Omega_2)$$
$$\langle \mu, u |_{\Omega_2} - u_2 \rangle = \mathbf{0} \qquad \qquad \forall \mu \in \Lambda$$

Equivalent to interface problem if $\beta|_{\Omega_1} = \beta_1$ and $f|_{\Omega_1} = f_1$ We get $u|_{\Omega_1} = u_1$ FE-IBM Initial analysis Approximation Mass conservation

Alternative mixed formulation

Find $u \in H_0^1(\Omega)$, $u_2 \in H^1(\Omega_2)$, and $\psi \in H^1(\Omega_2)$ such that

$$\begin{split} \int_{\Omega} \beta \nabla u \cdot \nabla v \, d\mathbf{x} + ((\psi, v|_{\Omega_2})) &= \int_{\Omega} f v \, d\mathbf{x} & \forall v \in H_0^1(\Omega) \\ \int_{\Omega_2} (\beta_2 - \beta) \nabla u_2 \cdot \nabla v_2 \, d\mathbf{x} - ((\psi, v_2)) &= \int_{\Omega_2} (f_2 - f) v_2 \, d\mathbf{x} & \forall v_2 \in H^1(\Omega_2) \\ ((\varphi, u|_{\Omega_2} - u_2)) &= 0 & \forall \varphi \in H^1(\Omega_2) \end{split}$$

where $((\cdot, \cdot))$ denotes the scalar product in $H^1(\Omega_2)$

Remark

The two mixed formulations are equivalent but give rise to different discrete schemes

FE-IBM

Initial analysis

Approximation

Mass conservation

Interface problem

Approximation of mixed formulations

Two meshes: \mathcal{T}_h for Ω and $\mathcal{T}_{2,h}$ for Ω_2 Three finite element spaces: V_h continuous p/w linears on \mathcal{T}_h $V_{2,h}$ continuous p/w linears on $\mathcal{T}_{2,h}$ $\Lambda_h = V_{2,h}$

Several other choices are possible

Remark

First mixed formulation makes use of V_h , $V_{2,h}$, and Λ_h (duality represented by scalar product in $L^2(\Omega_2)$) Second mixed formulation makes use of V_h , $V_{2,h}$, and $V_{2,h}$ FE-IBM

Initial analysis

Approximation

Mass conservation

Interface problem

Matrix form of the problem

$\begin{pmatrix} A & B^\top \\ B & 0 \end{pmatrix}$

Stability of the approximation

We need to show the ellipticity in the kernel and the inf-sup condition

ELKER

$$\begin{split} \int_{\Omega} \beta |\nabla v|^2 \, dx + \int_{\Omega_2} (\beta_2 - \beta) |\nabla v_2|^2 \, dx \geq \kappa_1 \left(\|v\|_{H^1(\Omega)}^2 + \|v_2\|_{H^1(\Omega_2)}^2 \right) \\ \forall (v, v_2) \in \mathbb{K}_h \end{split}$$

where the kernel \mathbb{K}_h is defined as

$$\mathbb{K}_h = \{(\mathbf{v}, \mathbf{v}_2) \in V_h \times V_{2,h} : (\mu, \mathbf{v}|_{\Omega_2} - \mathbf{v}_2) = \mathbf{0} \ \forall \mu \in \Lambda_h\}$$

or, for the second formulation,

$$\mathbb{K}_h = \{(\nu, \nu_2) \in V_h \times V_{2,h} : ((\varphi, \nu|_{\Omega_2} - \nu_2)) = \mathbf{0} \ \forall \varphi \in V_{2,h}\}$$

FE-IBM Initial a

Initial analysis

Approximation

Mass conservation

Interface problem

Stability of the approximation (cont'ed)

INFSUP1

$$\sup_{(\nu,\nu_{2})\in V_{h}\times\Lambda_{h}}\frac{(\mu,\nu|_{\Omega_{2}}-\nu_{2})}{\left(\|\nu\|_{H^{1}(\Omega)}^{2}+\|\nu_{2}\|_{H^{1}(\Omega_{2})}^{2}\right)^{1/2}}\geq\kappa_{2}\|\mu\|_{\Lambda}\quad\forall\mu\in\Lambda_{h}$$

INFSUP2

$$\sup_{(\nu,\nu_2)\in V_h\times V_{2,h}}\frac{((\varphi,\nu|_{\Omega_2}-\nu_2))}{\left(\|\nu\|_{H^1(\Omega)}^2+\|\nu_2\|_{H^1(\Omega_2)}^2\right)^{1/2}}\geq \kappa_2\|\varphi\|_{H^1(\Omega_2)}\quad \forall\varphi\in V_{2,h}$$

Stability of the approximation (cont'ed)

Theorem

If $\beta_2 - \beta|_{\Omega_2} \ge \eta_0 > 0$ then ELKER holds true for both formulations, uniformly in h and h_2

Remark

For the second mixed formulation, **ELKER** holds true without assumptions on β if $h_2/h^{d/2}$ is small enough and T_h is quasi-uniform

Stability of the approximation (cont'ed)

Theorem

If the mesh sequence $\mathcal{T}_{2,h}$ is quasi-uniform, then INFSUP1 holds true, uniformly in h and h_2

Theorem

INFSUP2 holds true, uniformly in h and h_2 without any additional assumptions on the mesh sequence

Conclusions (Part I)

- ► FE-IBM allows for natural treatment of Dirac delta function
- Superior CFL condition with respect to ALE formulations
- Superior mass conservation property
- Mixed approach for an interface problem
- Towards a DLM fictitious domain formulation