

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

A stable scheme for simulation of incompressible flows in time-dependent domains and hemodynamic applications

Yuri Vassilevski1,2,3Maxim OlshanskiiAlexander DanilovAlexander LozovskiyVictoria Salamatova

¹Institute of Numerical Mathematics RAS ²Moscow Institute of Physics and Technology ³Sechenov University ⁴University of Houston

BIRS-CMO 2018: Numerical Analysis of Coupled and Multi-Physics Problems with Dynamic Interfaces

July 30, 2018, Oaxaca

The work was supported by the Russian Science Foundation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fluid-Structure Interaction

Prerequisites for FSI

- reference subdomains Ω_f , Ω_s
- transformation $\boldsymbol{\xi}$ maps Ω_f , Ω_s to $\Omega_f(t)$, $\Omega_s(t)$
- ▶ **v** and **u** denote velocities and displacements in $\widehat{\Omega} := \Omega_f \cup \Omega_s$

- ► $\boldsymbol{\xi}(\mathbf{x}) := \mathbf{x} + \mathbf{u}(\mathbf{x}), \ \mathbf{F} := \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}, \ J := \det(\mathbf{F})$
- Cauchy stress tensors σ_f , σ_s
- pressures p_f, p_s
- density ρ_f is constant

Universal equations in reference subdomains

Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = \begin{cases} \rho_s^{-1} \operatorname{div} \left(J \boldsymbol{\sigma}_s \mathbf{F}^{-T} \right) & \text{in } \Omega_s, \\ \left(J \rho_f \right)^{-1} \operatorname{div} \left(J \boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) & \text{in } \Omega_f \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Universal equations in reference subdomains

Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = \begin{cases} \rho_s^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_s \mathbf{F}^{-T} \right) & \text{in } \Omega_s, \\ \left(J \rho_f \right)^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) & \text{in } \Omega_f \end{cases}$$

Kinematic equation

$$rac{\partial \mathbf{u}}{\partial t} = \mathbf{v} \quad ext{in } \Omega_s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Universal equations in reference subdomains

Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = \begin{cases} \rho_s^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_s \mathbf{F}^{-T} \right) & \text{in } \Omega_s, \\ \left(J \rho_f \right)^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) & \text{in } \Omega_f \end{cases}$$

Kinematic equation

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{v} \quad \text{in } \Omega_s$$

Fluid incompressibility

div
$$(J\mathbf{F}^{-1}\mathbf{v}) = 0$$
 in Ω_f or $J\nabla\mathbf{v} : \mathbf{F}^{-T} = 0$ in Ω_f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Universal equations in reference subdomains

Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = \begin{cases} \rho_s^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_s \mathbf{F}^{-T} \right) & \text{in } \Omega_s, \\ \left(J \rho_f \right)^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) & \text{in } \Omega_f \end{cases}$$

Kinematic equation

$$rac{\partial \mathbf{u}}{\partial t} = \mathbf{v} \quad ext{in } \Omega_s$$

Fluid incompressibility

div
$$(J\mathbf{F}^{-1}\mathbf{v}) = 0$$
 in Ω_f or $J\nabla\mathbf{v} : \mathbf{F}^{-T} = 0$ in Ω_f

Constitutive relation for the fluid stress tensor

$$\sigma_f = -p_f \mathbf{I} + \mu_f((\nabla \mathbf{v})\mathbf{F}^{-1} + \mathbf{F}^{-T}(\nabla \mathbf{v})^T)$$
 in Ω_f

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$oldsymbol{\sigma}_{s}=oldsymbol{\sigma}_{s}(J, \mathbf{F}, p_{s}, \lambda_{s}, \mu_{s}, \dots)$$
 in Ω_{s}

¹Michler et al (2004), Hubner et al (2004), Hron&Turek (2006), $\dots \in \mathbb{R}^{n}$

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$\sigma_s = \sigma_s(J, \mathbf{F}, p_s, \lambda_s, \mu_s, \dots)$$
 in Ω_s

Monolithic approach $^1\colon$ Extension of the displacement field to the fluid domain

$$egin{array}{ll} G({f u})=0 & ext{ in } \Omega_f, \ {f u}={f u}^* & ext{ on } \partial\Omega_f \end{array}$$

¹Michler et al (2004), Hubner et al (2004), Hron&Turek (2006), $\dots \in \mathbb{R}^{+}$

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$\sigma_s = \sigma_s(J, \mathbf{F}, p_s, \lambda_s, \mu_s, \dots)$$
 in Ω_s

Monolithic approach¹: Extension of the displacement field to the fluid domain

$$egin{array}{ll} G({f u})=0 & ext{ in } \Omega_f, \ {f u}={f u}^* & ext{ on } \partial\Omega_f \end{array}$$

for example, vector Laplace equation or elasticity equation

¹Michler et al (2004), Hubner et al (2004), Hron&Turek (2006), $\dots \in \mathbb{R}^{3}$

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$\sigma_s = \sigma_s(J, \mathbf{F}, p_s, \lambda_s, \mu_s, \dots)$$
 in Ω_s

Monolithic approach¹: Extension of the displacement field to the fluid domain

$$egin{array}{ll} G({f u})=0 & ext{ in } \Omega_f, \ {f u}={f u}^* & ext{ on } \partial\Omega_f \end{array}$$

for example, vector Laplace equation or elasticity equation

+ Initial, boundary, interface conditions $(\sigma_f \mathbf{F}^{-T} \mathbf{n} = \sigma_s \mathbf{F}^{-T} \mathbf{n})$

¹Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),... (≧) ≥ ∽ ...

- Conformal triangular or tetrahedral mesh Ω_h in $\widehat{\Omega}$
- ► LBB-stable pair for velocity and pressure P₂/P₁, P₂ for displacements
- Fortran open source software Ani2D, Ani3D (Advanced numerical instruments 2D/3D, K.Lipnikov, Yu.Vassilevski et al.) http://sf.net/p/ani2d/ http://sf.net/p/ani3d/:

- mesh generation
- FEM systems
- algebraic solvers

Find
$$\{\mathbf{u}^{k+1}, \mathbf{v}^{k+1}, p^{k+1}\} \in \mathbb{V}_h^0 \times \mathbb{V}_h \times \mathbb{Q}_h \text{ s.t.}$$

 $\mathbf{v}^{k+1} = \mathbf{g}_h(\cdot, (k+1)\Delta t) \text{ on } \Gamma_{f0}, \quad \left[\frac{\partial \mathbf{u}}{\partial t}\right]_{k+1} = \mathbf{v}^{k+1} \text{ on } \Gamma_{fs}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Find
$$\{\mathbf{u}^{k+1}, \mathbf{v}^{k+1}, p^{k+1}\} \in \mathbb{V}_h^0 \times \mathbb{V}_h \times \mathbb{Q}_h$$
 s.t.

$$\mathbf{v}^{k+1} = \mathbf{g}_h(\cdot, (k+1)\Delta t) \text{ on } \Gamma_{f0}, \quad \left[rac{\partial \mathbf{u}}{\partial t}
ight]_{k+1} = \mathbf{v}^{k+1} \text{ on } \Gamma_{fs}$$

where

$$\mathbb{V}_h \subset H^1(\widehat{\Omega})^3, \mathbb{Q}_h \subset L^2(\widehat{\Omega}), \mathbb{V}_h^0 = \{ \mathbf{v} \in \mathbb{V}_h \, : \, \mathbf{v}|_{\Gamma_{s0} \cup \Gamma_{f0}} = \mathbf{0} \}, \mathbb{V}_h^{00} = \{ \mathbf{v} \in \mathbb{V}_h^0 \, : \, \mathbf{v}|_{\Gamma_{fs}} = \mathbf{0} \}$$

$$\left[\frac{\partial \mathbf{f}}{\partial t}\right]_{k+1} := \frac{3\mathbf{f}^{k+1} - 4\mathbf{f}^k + \mathbf{f}^{k-1}}{2\Delta t}$$

$$\begin{split} &\int_{\Omega_s} \rho_s \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_s} J_k \mathbf{F}(\widetilde{\mathbf{u}}^k) \mathbf{S}(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} \rho_f J_k \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_f} \rho_f J_k \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}(\widetilde{\mathbf{u}}^k) \left(\widetilde{\mathbf{v}}^k - \left[\frac{\partial \mathbf{u}}{\partial t} \right]_k \right) \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} 2\mu_f J_k \mathbf{D}_{\widetilde{\mathbf{u}}^k} \mathbf{v}^{k+1} : \mathbf{D}_{\widetilde{\mathbf{u}}^k} \psi \, \mathrm{d}\Omega - \int_{\Omega} \rho^{k+1} J_k \mathbf{F}^{-T}(\widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega = 0 \quad \forall \psi \in \mathbb{V}_h^0 \end{split}$$

$$J_k := J(\widetilde{\mathbf{u}}^k), \quad \widetilde{\mathbf{f}}^k := 2\mathbf{f}^k - \mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}}\mathbf{v} := \{\nabla \mathbf{v}\mathbf{F}^{-1}(\mathbf{u})\}_s, \quad \{\mathbf{A}\}_s := \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

$$\begin{split} &\int_{\Omega_s} \rho_s \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_s} J_k \mathbf{F}(\widetilde{\mathbf{u}}^k) \mathbf{S}(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} \rho_f J_k \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_f} \rho_f J_k \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}(\widetilde{\mathbf{u}}^k) \left(\widetilde{\mathbf{v}}^k - \left[\frac{\partial \widetilde{\mathbf{u}}}{\partial t} \right]_k \right) \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} 2\mu_f J_k \mathbf{D}_{\widetilde{\mathbf{u}}^k} \mathbf{v}^{k+1} : \mathbf{D}_{\widetilde{\mathbf{u}}^k} \psi \, \mathrm{d}\Omega - \int_{\Omega} \rho^{k+1} J_k \mathbf{F}^{-T}(\widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega = 0 \quad \forall \psi \in \mathbb{V}_h^0 \end{split}$$

$$\int_{\Omega_s} \left[\frac{\partial \mathbf{u}}{\partial t} \right]_{k+1} \phi \, \mathrm{d}\Omega - \int_{\Omega_s} \mathbf{v}^{k+1} \phi \, \mathrm{d}\Omega + \int_{\Omega_f} G(\mathbf{u}^{k+1}) \phi \, \mathrm{d}\Omega = \mathbf{0} \quad \forall \phi \in \mathbb{V}_h^{00}$$

$$J_k := J(\widetilde{\mathbf{u}}^k), \quad \widetilde{\mathbf{f}}^k := 2\mathbf{f}^k - \mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}}\mathbf{v} := \{\nabla \mathbf{v}\mathbf{F}^{-1}(\mathbf{u})\}_s, \quad \{\mathbf{A}\}_s := \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

$$\begin{split} &\int_{\Omega_s} \rho_s \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_s} J_k \mathbf{F}(\widetilde{\mathbf{u}}^k) \mathbf{S}(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} \rho_f J_k \left[\frac{\partial \mathbf{v}}{\partial t} \right]_{k+1} \psi \, \mathrm{d}\Omega + \int_{\Omega_f} \rho_f J_k \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}(\widetilde{\mathbf{u}}^k) \left(\widetilde{\mathbf{v}}^k - \left[\frac{\partial \mathbf{u}}{\partial t} \right]_k \right) \psi \, \mathrm{d}\Omega + \\ &\int_{\Omega_f} 2\mu_f J_k \mathbf{D}_{\widetilde{\mathbf{u}}^k} \mathbf{v}^{k+1} : \mathbf{D}_{\widetilde{\mathbf{u}}^k} \psi \, \mathrm{d}\Omega - \int_{\Omega} \rho^{k+1} J_k \mathbf{F}^{-T}(\widetilde{\mathbf{u}}^k) : \nabla \psi \, \mathrm{d}\Omega = 0 \quad \forall \psi \in \mathbb{V}_h^0 \end{split}$$

$$\int_{\Omega_s} \left[\frac{\partial \mathbf{u}}{\partial t} \right]_{k+1} \phi \, \mathrm{d}\Omega - \int_{\Omega_s} \mathbf{v}^{k+1} \phi \, \mathrm{d}\Omega + \int_{\Omega_f} G(\mathbf{u}^{k+1}) \phi \, \mathrm{d}\Omega = \mathbf{0} \quad \forall \phi \in \mathbb{V}_h^{00}$$

$$\int_{\Omega_f} J_k \nabla \mathbf{v}^{k+1} : \mathbf{F}^{-T}(\widetilde{\mathbf{u}}^k) q \, \mathrm{d}\Omega = \mathbf{0} \quad \forall \, \, q \in \mathbb{Q}_h$$

$$J_k := J(\widetilde{\mathbf{u}}^k), \quad \widetilde{\mathbf{f}}^k := 2\mathbf{f}^k - \mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}}\mathbf{v} := \{\nabla \mathbf{v}\mathbf{F}^{-1}(\mathbf{u})\}_s, \quad \{\mathbf{A}\}_s := \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

$$\ldots + \int_{\Omega_s} J_k \mathbf{F}(\widetilde{\mathbf{u}}^k) \mathbf{S}(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^k) : \nabla \boldsymbol{\psi} \, \mathrm{d}\Omega + \ldots$$

St. Venant-Kirchhoff model (geometrically nonlinear):

$$\begin{split} \mathbf{S}(\mathbf{u}_1,\mathbf{u}_2) &= \lambda_s \texttt{tr}(\mathbf{E}(\mathbf{u}_1,\mathbf{u}_2))\mathbf{I} + 2\mu_s \mathbf{E}(\mathbf{u}_1,\mathbf{u}_2);\\ \mathbf{E}(\mathbf{u}_1,\mathbf{u}_2) &= \{\mathbf{F}(\mathbf{u}_1)^T \mathbf{F}(\mathbf{u}_2) - \mathbf{I}\}_s \end{split}$$

inc. Blatz–Ko model:

 $\mathbf{S}(\mathbf{u}_1, \mathbf{u}_2) = \mu_s(\operatorname{tr}(\{\mathbf{F}(\mathbf{u}_1)^T \mathbf{F}(\mathbf{u}_2)\}_s) \mathbf{I} - \{\mathbf{F}(\mathbf{u}_1)^T \mathbf{F}(\mathbf{u}_2)\}_s)$

inc. Neo-Hookean model:

$$\mathsf{S}(\mathsf{u}_1,\mathsf{u}_2) = \mu_s \mathsf{I}; \; \mathsf{F}(\widetilde{\mathsf{u}}^k) o \mathsf{F}(\mathsf{u}^{k+1})$$

$$\{\mathbf{A}\}_s := \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

The scheme

- provides strong coupling on interface
- semi-implicit
- produces one linear system per time step

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

second order in time

The scheme

- provides strong coupling on interface
- semi-implicit
- produces one linear system per time step
- second order in time
- unconditionally stable (no CFL restriction), proved with assumptions:
 - 1st order in time
 - ► St. Venant-Kirchhoff inc./comp. (experiment: Neo-Hookean inc./comp.)
 - extension of **u** to Ω_f guarantees $J_k > 0$
 - ► Δt is not large

A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI finite element method. *Comput.Methods Appl.Mech.Engrg.*, 297, 2015

Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Fluid-structure interaction, Springer Berlin Heidelberg, 371-385, 2006.

0.3

-0.02

-0.04

7.2 7.4 7.6 7.8

Time

- fluid: 2D transient Navier-Stokes, $\rho_f = 1000$, $\mu_f = 1$
- stick: SVK constitutive relation, $\rho_s = 1000$, $\lambda_s = 4\mu_s = 8 \cdot 10^6$
- inflow: parabolic velocity profile
- outflow: "do-nothing"
- rigid walls: no-slip condition

•
$$\Delta t = 10^{-3}$$
 until $T = 8$

Displacement extension in fluid domain: linear elasticity with $\mu_m = 20\mu_s$ and $\lambda_m = 20\lambda_s$ for adjacent to the beam elements

Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

	$\#$ of cells in Ω_f	$\#$ of cells in Ω_s	# of DOFs
Mesh 1	8652	162	76557
Mesh 2	17540	334	154242
Mesh 3	35545	658	310997

Mesh/method	$u_x \cdot 10^3$	$u_y \cdot 10^3$	F_D	F_L
1	-2.8 ± 2.6	1.5 ± 34.3	432.9 ± 22.3	0.98 ± 152.1
2	-3.0 ± 2.8	1.4 ± 35.9	453.8 ± 26.8	2.6 ± 154.0
3	-3.0 ± 2.9	1.4 ± 36.1	$\textbf{458.0} \pm \textbf{27.6}$	$\textbf{3.0} \pm \textbf{154.5}$
Turek, S. et al	[-3.04, -2.84]	[1.28, 1.55]	[452.4, 474.9]	[1.81, 3.86]
	\pm [2.67, 2.87]	\pm [34.61, 46.63]	\pm [26.19, 36.63]	\pm [152.7, 165.9]
Liu, J.	-2.91 ± 2.74	1.46 ± 35.2	460.3 ± 27.67	2.41 ± 157

computed statistics for FSI3 test for the time interval [7,8]

Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

Displacement extension in fluid domain:

- ► Harmonic → mesh tangling
- Linear elasticity with $\mu_m = \mu_s$ and $\lambda_m = \lambda_s \rightarrow$ mesh tangling
- ▶ Linear elasticity with $\mu_m = 20\mu_s$ and $\lambda_m = 20\lambda_s$ for adjacent to the beam elements → OK

2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

 Investigating sensitivity to compressibility of the vessel material: measuring wall shear stress (WSS) since it serves as a good indicator for the risk of aneurysm rupture

- ロ ト - 4 回 ト - 4 □ - 4

Showing reliability of the semi-implicit scheme for hemodynamic applications

2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

Material properties:

Weakly compressible neo-Hookean model (µ_s for dog's artery):

$$\boldsymbol{\sigma}_{s} = \frac{\mu_{s}}{J^{2}} \left(\mathbf{F} \mathbf{F}^{\mathsf{T}} - \frac{1}{2} \mathsf{tr} \ (\mathbf{F} \mathbf{F}^{\mathsf{T}}) \mathbf{I} \right) + \left(\lambda_{s} + \frac{2\mu_{s}}{3} \right) (J-1) \mathbf{I}, \quad \lambda_{s} \to \infty$$

Extrapolation is used in the model to retain semi-implicitness

Pulsatile parabolic inflow profile:

$$v_1(0,y,t) = -50(8-y)(y-6)(1+0.75\sin(2\pi t)), \quad 6 \le y \le 8.$$

- λ_s takes values 10⁴, 10⁶, 10⁸ kPa, i.e. Poisson's ratio $\nu \to 0.5$.
- Time step $\Delta t = 10^{-3}$ s until T = 3 s.
- Elasticity based displacement extension with $\mu_m = \mu_s$, $\lambda_m = 4\lambda_s$.

2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

WSS for weakly incompressible and fully incompressible cases, with continuous and discontinuous pressure at the interface

Best choices (area of wall, WSS): Neo-Hookean compressible with moderate λ_s and incompressible with discontinuous pressures.

3D: pressure wave in flexible tube

Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and $10 \times$ enlarged structure displacement for several time instances.

- The tube (fixed at both ends) is 50mm long, it has inner diameter of 10mm and the wall (SVK) is 1mm thick.
- ► Left end: external pressure p_{ext} is set to $1.333 \cdot 10^3$ Pa for $t \in (0, 3 \cdot 10^{-3})$ s and zero afterwards, $\sigma_f \mathbf{F}^{-T} \mathbf{n} = p_{ext} \mathbf{n}$. Right end: open boundary

• Simulation was run with
$$\Delta t = 10^{-4}$$
 s

• $\# Tets(\Omega_s) = 6336/11904/38016, \# Tets(\Omega_f) = 13200/29202/89232$

3D: pressure wave in flexible tube

Pressure wave: The radial and axial components of displacement of the inner tube wall at half the length of the pipe. Solutions are shown for three mesh sequentially refined meshes. The plots are almost indistinguishable.

3D: pressure wave in flexible tube

displacement extension in Ω_f

M.Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. *Int. J. for Numer. Meth. in Biomed. Engng.*, 33, 2017.

 Linear elasticity model is used for the update of the displacement extension in Ω_f

$$-\operatorname{div}\left[J\left(\lambda_{m}\operatorname{tr}\left(\nabla\left[\frac{\partial\mathbf{u}}{\partial t}\right]^{k}\mathbf{F}^{-1}\right)\mathbf{I}\right.\right.\right.\right.\\\left.\left.\left.+\mu_{m}\left(\nabla\left[\frac{\partial\mathbf{u}}{\partial t}\right]^{k}\mathbf{F}^{-1}+\left(\nabla\left[\frac{\partial\mathbf{u}}{\partial t}\right]^{k}\mathbf{F}^{-1}\right)^{T}\right)\right)\mathbf{F}^{-T}\right]=0 \quad \text{in } \Omega_{f},$$

the Lame parameters are element-volume dependent:

$$\lambda_m = 16\mu_m = 16\frac{\mu_s}{v_e^{1.2}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Benchmark challenge for CMBE 2015, Paris

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Image from A. Hessenthaler et al. Experiment for validation of fluid-structure interaction models and algorithms. Int. J. for Numer. Meth. Biomed. Engng., 2017

Meshed volume: original and extended domains.

 $\begin{tabular}{|c|c|c|c|c|} \hline Steady and pulsatile flow regimes \\ \hline Phase I & Phase II \\ \hline Phase I & Phase II \\ \hline \hline velocity & stationary & pulsatile \\ \hline \hline ρ_f & 1.1633 \cdot 10^{-3} \ g \ mm^3 & 1.164 \cdot 10^{-3} \ g \ mm^{-3} \\ \hline μ_f & 12.5 \cdot 10^{-3} \ g \ mm^{-1} s^{-1} & 13.37 \cdot 10^{-3} \ g \ mm^{-1} s^{-1} \\ \hline \end{tabular}$

Inflow velocities for one cycle of frequency 1/6 Hz for phase II:

- Simulation was run with $\Delta t = 10^{-2}$ s, $t \in [0, 12]$
- # Tets $(\Omega_s) = 733$, # Tets $(\Omega_f) = 28712$, # unknowns = 254439
- The filament (SVK) is lighter than the fluid and deflects upward
- Linear elasticity model is used for the **update** of the displacement extension in Ω_f , the Lame parameters are element-volume dependent

Track of the computed y-displacement of the point in the structure with coordinate $z \approx 53$, x = 0 for $t \in [0, 6]$ and recorded experimental data

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite element method.

Submitted to Computers & Fluids

Conclusions for Part I

- We proposed unconditionally stable semi-implicit ALE FE scheme for FSI
- Only one linear system is solved per time step
- The scheme can incorporate diverse elasticity models
- Works robustly in 2D and 3D and handles various time-discretizations
- Drawback: the scheme may suffer from mesh tangling for large deformations, and the cure is ad-hoc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Incompressible fluid flow in a time-dependent domain

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Navier-Stokes equations in a time-dependent domain Prerequisites

- reference domain Ω₀
- transformation $\boldsymbol{\xi}$ maps Ω_0 to $\Omega(t)$
- \blacktriangleright **v** and **u** denote velocities and displacements in Ω_0

►
$$\boldsymbol{\xi}(\mathbf{x}) := \mathbf{x} + \mathbf{u}(\mathbf{x}), \ \mathbf{F} := \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}, \ J := \det(\mathbf{F})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Cauchy stress tensor σ
- pressure p
- density \(\rho\) is constant

Navier-Stokes equations in reference domain Ω_0

Let $\boldsymbol{\xi}$ mapping Ω_0 to $\Omega(t)$, $\mathbf{F} = \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}$, $J = \det(\mathbf{F})$ be given

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Navier-Stokes equations in reference domain Ω_0

Let $\boldsymbol{\xi}$ mapping Ω_0 to $\Omega(t)$, $\mathbf{F} = \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}$, $J = \det(\mathbf{F})$ be given Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = (J\rho_f)^{-1} \mathrm{div} \left(J \boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) \quad \text{in } \Omega_0$$

・ロト・日本・モート モー うへぐ

Navier-Stokes equations in reference domain Ω_0

Let $\boldsymbol{\xi}$ mapping Ω_0 to $\Omega(t)$, $\mathbf{F} = \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}$, $J = \det(\mathbf{F})$ be given Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = (J\rho_f)^{-1} \mathrm{div} \left(J\boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) \quad \text{in } \Omega_0$$

Fluid incompressibility

div
$$(J\mathbf{F}^{-1}\mathbf{v}) = 0$$
 in Ω_0 or $J\nabla\mathbf{v} : \mathbf{F}^{-T} = 0$ in Ω_0

Navier-Stokes equations in reference domain Ω_0

Let $\boldsymbol{\xi}$ mapping Ω_0 to $\Omega(t)$, $\mathbf{F} = \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}$, $J = \det(\mathbf{F})$ be given Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = (J\rho_f)^{-1} \mathrm{div} \left(J\boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) \quad \text{in } \Omega_0$$

Fluid incompressibility

div
$$(J\mathbf{F}^{-1}\mathbf{v}) = 0$$
 in Ω_0 or $J\nabla\mathbf{v} : \mathbf{F}^{-T} = 0$ in Ω_0

Constitutive relation for the fluid stress tensor

$$\sigma_f = -p_f \mathbf{I} + \mu_f((\nabla \mathbf{v}) \mathbf{F}^{-1} + \mathbf{F}^{-T}(\nabla \mathbf{v})^T)$$
 in Ω_0

Navier-Stokes equations in reference domain Ω_0

Let $\boldsymbol{\xi}$ mapping Ω_0 to $\Omega(t)$, $\mathbf{F} = \nabla \boldsymbol{\xi} = \mathbf{I} + \nabla \mathbf{u}$, $J = \det(\mathbf{F})$ be given Dynamic equations

$$\frac{\partial \mathbf{v}}{\partial t} = (J\rho_f)^{-1} \mathrm{div} \left(J\boldsymbol{\sigma}_f \mathbf{F}^{-T} \right) - \nabla \mathbf{v} \left(\mathbf{F}^{-1} \left(\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t} \right) \right) \quad \text{in } \Omega_0$$

Fluid incompressibility

div
$$(J\mathbf{F}^{-1}\mathbf{v}) = 0$$
 in Ω_0 or $J\nabla\mathbf{v} : \mathbf{F}^{-T} = 0$ in Ω_0

Constitutive relation for the fluid stress tensor

$$\boldsymbol{\sigma}_f = -\boldsymbol{p}_f \mathbf{I} + \mu_f((\nabla \mathbf{v})\mathbf{F}^{-1} + \mathbf{F}^{-T}(\nabla \mathbf{v})^T) \quad \text{in } \Omega_0$$

Mapping ${m\xi}$ does not define material trajectories ightarrow quasi-Lagrangian formulation

Let $\mathbb{V}_h, \mathbb{Q}_h$ be Taylor-Hood P_2/P_1 finite element spaces. Find $\{\mathbf{v}_h^k, p_h^k\} \in \mathbb{V}_h \times \mathbb{Q}_h$ satisfying b.c. ("do nothing" $\sigma \mathbf{F}^{-T} \mathbf{n} = 0$ or no-penetration no-slip $\mathbf{v}^k = (\boldsymbol{\xi}^k - \boldsymbol{\xi}^{k-1})/\Delta t$)

Let $\mathbb{V}_h, \mathbb{Q}_h$ be Taylor-Hood P_2/P_1 finite element spaces. Find $\{\mathbf{v}_h^k, p_h^k\} \in \mathbb{V}_h \times \mathbb{Q}_h$ satisfying b.c. ("do nothing" $\sigma \mathbf{F}^{-\tau} \mathbf{n} = 0$ or no-penetration no-slip $\mathbf{v}^k = (\boldsymbol{\xi}^k - \boldsymbol{\xi}^{k-1})/\Delta t$)

$$\begin{split} \int_{\Omega_0} J_k \frac{\mathbf{v}_h^k - \mathbf{v}_h^{k-1}}{\Delta t} \cdot \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_0} J_k \nabla \mathbf{v}_h^k \mathbf{F}_k^{-1} \left(\mathbf{v}_h^{k-1} - \frac{\boldsymbol{\xi}^k - \boldsymbol{\xi}^{k-1}}{\Delta t} \right) \cdot \psi \, \mathrm{d}\mathbf{x} - \\ \int_{\Omega_0} J_k \rho_h^k \mathbf{F}_k^{-T} : \nabla \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_0} J_k q \mathbf{F}_k^{-T} : \nabla \mathbf{v}_h^k \, \mathrm{d}\mathbf{x} + \\ \int_{\Omega_0} \nu J_k (\nabla \mathbf{v}_h^k \mathbf{F}_k^{-1} \mathbf{F}_k^{-T} + \mathbf{F}_k^{-T} (\nabla \mathbf{v}_h^k)^T \mathbf{F}_k^{-T}) : \nabla \psi \, \mathrm{d}\mathbf{x} = 0 \\ \int_{\Omega_0} J_k \nabla \mathbf{v}^k : \mathbf{F}_k^{-T} q \, \mathrm{d}\Omega = 0 \end{split}$$

for all ψ and q from the appropriate FE spaces

- The scheme
 - semi-implicit
 - produces one linear system per time step
 - first order in time (may be generalized to the second order)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The scheme

- semi-implicit
- produces one linear system per time step
- first order in time (may be generalized to the second order)
- unconditionally stable (no CFL restriction) and 2nd order accurate, proved with assumptions:
 - $\inf_{Q} J \ge c_{J} > 0$, $\sup_{Q} (\|\mathbf{F}\|_{F} + \|\mathbf{F}^{-1}\|_{F}) \le C_{F}$
 - LBB-stable pairs (e.g. P_2/P_1)
 - Δt is not large

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017* A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Engrg. 333, 2018

Energy equality for the weak solution

Let $\partial \Omega(t) = \partial \Omega^{ns}(t)$ and $\boldsymbol{\xi}_t$ be given on $\partial \Omega^{ns}(t)$. Then there exists $\mathbf{v}_1 \in C^1(Q)^d$, $\mathbf{v}_1 = \boldsymbol{\xi}_t$, div $(J\mathbf{F}^{-1}\mathbf{v}_1) = 0$ [Miyakawa1982]

and we can decompose the solution $\mathbf{v} = \mathbf{w} + \mathbf{v}_1$, $\mathbf{w} = 0$ on $\partial \Omega^{ns}$

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017*, Compared to the second se

Energy equality for the weak solution

Let $\partial \Omega(t) = \partial \Omega^{ns}(t)$ and $\boldsymbol{\xi}_t$ be given on $\partial \Omega^{ns}(t)$. Then there exists $\mathbf{v}_1 \in C^1(Q)^d$, $\mathbf{v}_1 = \boldsymbol{\xi}_t$, div $(J\mathbf{F}^{-1}\mathbf{v}_1) = 0$ [Miyakawa1982]

and we can decompose the solution $\mathbf{v} = \mathbf{w} + \mathbf{v}_1$, $\mathbf{w} = 0$ on $\partial \Omega^{ns}$

Energy balance for w:

$$\mathsf{D}_{\xi}(\mathsf{v}) = rac{1}{2} (
abla \mathsf{v} \mathsf{F}^{-1} + \mathsf{F}^{- au} (
abla \mathsf{v})^{ au})$$

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017*, A.B. A.B. B.

Let $\partial \Omega(t) = \partial \Omega^{ns}(t)$ and $\boldsymbol{\xi}_t$ be given on $\partial \Omega^{ns}(t)$. Then there exists $\mathbf{v}_1 \in C^1(Q)^d$, $\mathbf{v}_1 = \boldsymbol{\xi}_t$, div $(J\mathbf{F}^{-1}\mathbf{v}_1) = 0$ [Miyakawa1982]

and we can decompose the solution $\mathbf{v} = \mathbf{w} + \mathbf{v}_1$, $\mathbf{w} = 0$ on $\partial \Omega^{ns}$

Stability estimate for \mathbf{w}_{h}^{k} FE approximation of \mathbf{w}^{k} :

$$\frac{\frac{1}{2\Delta t} \left(\|J_{k}^{\frac{1}{2}} \mathbf{w}_{h}^{k}\|^{2} - \|J_{k-1}^{\frac{1}{2}} \mathbf{w}_{h}^{k-1}\|^{2} \right)}{\text{variation of kinetic energy of kinetic energy}} \quad \underbrace{+2\nu \left\|J_{k}^{\frac{1}{2}} \mathbf{D}_{k}(\mathbf{w}_{h}^{k})\right\|^{2}}_{\text{energy of viscous dissipation}} \quad \underbrace{+\frac{(\Delta t)}{2} \left\|J_{k-1}^{\frac{1}{2}} \left[\mathbf{w}_{h}\right]_{t}^{k}\right\|^{2}}_{\text{term}} \\ \underbrace{+(J_{k}(\nabla \mathbf{v}_{1}^{k} \mathbf{F}_{k}^{-1}) \mathbf{w}_{h}^{k}, \mathbf{w}_{h}^{k})}_{\text{intensification due to b.c.}} = \underbrace{\underbrace{(\widetilde{\mathbf{f}}^{k}, \mathbf{w}_{h}^{k})}_{\text{work of ext. forces}}$$

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017* $\rightarrow 42 \rightarrow 42 \rightarrow 200$

Stability estimate for \mathbf{w}_{h}^{n} FE approximation of \mathbf{w}^{n} :

$$\begin{split} C_{1} \| \nabla \mathbf{v}_{1}^{k} \| &\leq \nu/2: \\ \frac{1}{2} \| \mathbf{w}_{h}^{n} \|_{n}^{2} + \nu \sum_{k=1}^{n} \Delta t \| \mathbf{D}_{k}(\mathbf{w}_{h}^{k}) \|_{k}^{2} &\leq \frac{1}{2} \| \mathbf{w}_{0} \|_{0}^{2} + C \sum_{k=1}^{n} \Delta t \| \widetilde{\mathbf{f}}^{k} \|^{2} \\ \mathbf{D}_{k}(\mathbf{v}) &:= \frac{1}{2} (\nabla \mathbf{v} \mathbf{F}_{k}^{-1} + \mathbf{F}_{k}^{-T} (\nabla \mathbf{v})^{T}) \end{split}$$

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017*, A.B. A.B. B. A.B. A.A.

Stability estimate for \mathbf{w}_{h}^{n} FE approximation of \mathbf{w}^{n} :

$$C_{1} \|\nabla \mathbf{v}_{1}^{k}\| \leq \nu/2;$$

$$\frac{1}{2} \|\mathbf{w}_{h}^{n}\|_{n}^{2} + \nu \sum_{k=1}^{n} \Delta t \|\mathbf{D}_{k}(\mathbf{w}_{h}^{k})\|_{k}^{2} \leq \frac{1}{2} \|\mathbf{w}_{0}\|_{0}^{2} + C \sum_{k=1}^{n} \Delta t \|\widetilde{\mathbf{f}}^{k}\|^{2}$$

$$\mathbf{D}_{k}(\mathbf{v}) := \frac{1}{2} (\nabla \mathbf{v} \mathbf{F}_{k}^{-1} + \mathbf{F}_{k}^{-T} (\nabla \mathbf{v})^{T})$$

$$C_{1} \|\nabla \mathbf{v}_{1}^{k}\| > \nu/2;$$

$$\frac{1}{2} \|\mathbf{w}_{h}^{n}\|_{n}^{2} + \nu \sum_{k=1}^{n} \Delta t \|\mathbf{D}_{k}(\mathbf{w}_{h}^{k})\|_{k}^{2} \leq e^{\frac{2C_{2}}{\alpha}T} \left(\frac{1}{2} \|\mathbf{w}_{0}\|_{0}^{2} + C \sum_{k=1}^{n} \Delta t \|\widetilde{\mathbf{f}}^{k}\|^{2}\right),$$

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017*, A.B. A.B. B. A.B. A.A.

Stability estimate for \mathbf{w}_{h}^{n} FE approximation of \mathbf{w}^{n} :

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. *Russian J. Numer. Anal. Math. Modelling, 32, 2017*, A.B. A.B. B. A.B. A.A.

Convergence of the FE solution

Assume

- 1. LBB stable FE pair P_{m+1} - P_m ;
- 2. Ω_0 is a convex polyhedron;
- 3. $\mathbf{u}_{tt} \in L^{\infty}(\Omega_0)$, $\mathbf{u}(t) \in H^{m+\frac{5}{2}}(\Omega_0)$, $p(t) \in H^{m+1}(\Omega_0)$ for all $t \in [0, T]$;
- 4. $c\Delta t \ge h^{2m+4}$ with some *c* independent of *h*, Δt ;
- 5. either Δt is small enough s.t. $\frac{1}{2} \tilde{C}\Delta t > 0$ or $\nu \geq \tilde{C} C_K$ Then

$$\max_{1 \le k \le N} \|\mathbf{e}^k\|_k^2 + 2\nu\Delta t \sum_{k=1}^N \|\mathbf{D}_k(\mathbf{e}^k)\|_k^2 \le C \left(h^{2(m+1)} + (\Delta t)^2 + (\Delta t)^{-1} h^{2(m+2)}\right)$$

In particular, for Taylor-Hood pair, m = 1:

$$\max_{1 \le k \le N} \|\mathbf{e}^k\|_k^2 + 2\nu\Delta t \sum_{k=1}^N \|\mathbf{D}_k(\mathbf{e}^k)\|_k^2 \le C \max\{h^2; \Delta t\} \text{ if } h^2 \le c\Delta t.$$

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Engrg. 333, 2018

3D: left ventricle of a human heart

Figure: Left ventricle

Figure: Ventricle volume

The law of motion for the ventricle walls is known thanks to ceCT scans \rightarrow 100 mesh files with time gap 0.0127 s \rightarrow **u** given as input \rightarrow FSI reduced to NSE in a moving domain

- 2 aortic valve (outflow)
- 5 mitral valve (inflow)

3D: left ventricle of a human heart

- Quasi-uniform mesh: 14033 vertices, 69257 elements, 88150 edges.
- Boundary conditions: Dirichlet $\mathbf{v} = \frac{\partial \mathbf{u}}{\partial t}$ except:
 - Do-nothing on aortal valve during systole
 - Do-nothing on mitral valve during diastole
- ► Time step 0.0127 s is too large! \implies refined to $\Delta t = 0.0127/20$ s \implies Cubic-splined **u**.
- ► Blood parameters: $\rho_f = 10^3 \text{ kg/m}^3$, $\mu_f = 4 \cdot 10^{-3} \text{ Pa} \cdot \text{s}.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

Conclusions for Part II

- We proposed unconditionally stable semi-implicit FE scheme for NS eqs in moving domain
- The scheme is proven to be second order accurate in space
- Only one linear system is solved per time step
- The scheme was applied to blood flow simulation in a geometrical dynamic model of the left ventricle

Stabilization in space for flow in the left ventricle

DNS resulted in convective instability during sharp deformation phases. We use a simple Smagorinsky dissipation model:

$$\mathbf{z}^{k-1} := \mathbf{v}^{k-1} - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t},$$
$$\int_{\Omega(t^{k-1})} \frac{\mathbf{v}^k - \mathbf{v}^{k-1}}{\Delta t} \cdot \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} \nabla \mathbf{v}^k \mathbf{z}^{k-1} \cdot \boldsymbol{\psi} \, \mathrm{d}\mathbf{x}$$
$$- \int_{\Omega(t^{k-1})} \mathbf{s}^k \mathrm{div} \, \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} q \mathrm{div} \, \mathbf{v}^k \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} 2\nu \{\nabla \mathbf{v}^k\}_s : \nabla \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} + \sum_e \int_{\Omega_e(t^{k-1})} 2\nu_T^{k-1} \{\nabla \mathbf{v}^k\}_s : \nabla \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} = 0,$$

where

$$\nu_T^{k-1} = 0.04 h_e^2 \sqrt{2\{\nabla \mathbf{Z}^{k-1}\}_s : \nabla \mathbf{Z}^{k-1}}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Worked for the entire cardiac cycle with the original viscosity and mesh!