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Special cases

- 2 — 2: Spectral Norm (we all know, love and compute.)

- 00 — 1: Grothendieck problem. Constant-factor K¢
approximation
[Grothendieck 53] ... [Braverman (Makarychev)? Naor 11].

- p > q: Widely studied in terms of algorithms and hardness.

- p < q: Hypercontractive norms. Relevant for small-set
expansion like problems.
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- p and p* define dual norms if % + 5 = 1.

- xllpe = maxy) <1 (x, y)

- NIAlg = [AT]
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A reminder on duality

- p and p* define dual norms if % + p% = 1.
- xllpe = maxy) <1 (x, y)
MAllsq = A7), .
[Allpesqg = ”fﬂaélﬂAXH
= R e b A

q*—p*

et e (ATy.x) = [aT]

Hypercontractive remains hypercontractive (p < ¢ = g* < p*).
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Hypercontractive norms and small-set expansion

- Bound on any hypercontractive norm of Ag implies small-set
expansion of graph G.

1s, A1
1_¢G(5) — < S 6G 5>
== _ sl IAsLsll,
S== S - s
/ [Ls]lg- [[Ts]]
z < Mgllyg — 52

fr ||AG||p—>q . 61/P71/q

- [BBHKSZ 12]: Two-sided connection for 2 — g norm of
related matrix Af.
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Results, implications and speculations

- [|A[l,_ is hard to approximate within 208" for any € > 0 when

2 ¢ [p, q] (assuming NP not in randomized quasipolynomial time).
Hardness of (2 + ) — g norm for any ¢ > 0.

- [|A[l,_,4 is hard to approximate within 1/(yp- - 7q) when 2 € [q, p],
where v, = ||g||, for g ~ N(0,1).

- Gadget reductions had similar bottlenecks for all p < g. Can
overcome when 2 ¢ [p, q].

- Some evidence that the case when 2 € [p, gq] may be different from
2¢ [p,q]?
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Hardness of proving hypercontractive hardness (via gadgets)

- Usually x, = (A1), &U{RY)
for f, : {—1,1}R — {—1,1} defining
Xy encoding of label-cover solution.

- Want global solution to be spread
(nonzero mass on most blocks u).

- Need to prove soundness by viewing x
as Label-Cover solution.
Label Cover
[l

ue Ix1l,

maximized when x is sparse

X (for p < g). No mass on most blocks.



Hardness of 2 — r for r <2  (extending [Briét Regev Saket 15])




Hardness of 2 — r for r <2  (extending [Briét Regev Saket 15])

- x = (R, BURY)

Xu




Hardness of 2 — r for r < 2

(extending [Briét Regev Saket 15])

Xu

- x = (R, BURY)

- Rademacher gadget:

R
A
Xy — E €j * Xu,i
i=1

€lyeny er€{—1,1}



Hardness of 2 — r for r <2  (extending [Briét Regev Saket 15])

- x = (R, RURY)

- Rademacher gadget:

R
A
Xy — E €j * Xu,i
i=1

Xu

€1,...,er€{—1,1}

- Enforces local sparsity. For ||x,|/, < 1:
- ||Ax|, =1 for x, = (1,0,...,0).
- ||Axyl|, <~r < 1 for spread x,.



Hardness of 2 — r for r <2  (extending [Briét Regev Saket 15])

x = (RE. RRY)

- Rademacher gadget:
Xu
B R
Xy — {ZG,’ . Xu’,'}
i=1 €1,...,er€{—1,1}
- Enforces local sparsity. For ||x,|/, < 1:
- |Axy]|, = 1 for x, = (1,0, ...,0).
Label Cover
- ||Axyl|, <~r < 1 for spread x,.
u-e - Globally project to linear space implied
X by (smooth) label cover constraints.

r < 2 ensures global spread.
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- 1/~ hardness for ||-||,_,, when r < 2.

1/7p hardness for [|A|,_,, = HATHZ_”,*-
(p>2 = p*<2)

For random Gaussian matrix G € R™*" and
zeR"

GAx 16z, = izl

[Dvoretzky]: Simultaneously Vz if m > n9/2,

Reduction from p — 2 norm, to p — g norm

IGAX],
IGA|

[I1AX (|5 for all x
~ |Al

Q
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Hardness for hypercontractive norms: 2 < p < g

- [1GAll,q ~ [IAll

p—q p—2

- Matrix A derived from Label Cover via
gadgets. G represents (simple) global
transformation.

- Constant factor (1/7,+) hardness for ||| ,_, .

GAx - Hardness amplificaton for p — g norm (via
tensoring). For all p < g

t
14y = (1All=)

- ct harcliness for instances of size N = n©(ta/2),
RM 2(loe N)™" hardness for t = (log n)°(}/€).
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The non-hypercontractive case: q < p < 2

Previous result gives strong hardness for
when p < 2, since

= ||AT and p* > 2.
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[Schechtman 87]: For g < p < 2, there exists
samplable distribution of matrices B € R™*"
(with m = O(n®)) such that w.h.p.

Bz 1Bzll, ~ llzll, VzeR"

(slight modification of Schechtman's result).

Reduction from p — p norm, to p — g norm

I1BAX]|,
1BAllp—q =~ [IAl

p—q

%

I Ax|, for all x

p—p

Rm

- Simplified (but randomized) proof of [BV 11].
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Open questions

- The case when p <2 < g. Hardness of 2 — 4 norm? Of any
degree-4 polynomial over ¢, ball.

- Hardness of (2 + ) — 4 norm. How small can ¢ be?

- Known algorithms for Unique Games, SSE imply
sub-exponential algorithms for 2 — g norms. Can this be
extended to all p < g when 2 € [p, g]?

- Right (form of ) approximation ratio when p > g and

2 €q,p]
- Hardness result is tight when p or g equals 2.

- [BGGLT 18]: Matching approximation ratio (up to uncertainty
in value of Kg).
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