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Co-expression patterns define 
epigenetic regulators 

associated with neurological 
dysfunction
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Mendelian disorders of the epigenetic machinery
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EM: genes involved in DNA methylation or histone modifications

Recent interest in the epigenetic machinery 

Cancer: Somatic mutations in EM genes are frequent in many 
cancers. 

Neurological: GWAS and rare variant analysis has implicated EM 
genes in various neurological disorders incl. sz. and autism.

(hypothesis)



Shared phenotypes in EM disorders
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Bjornsson (2015) Genome Research



Kabuki syndrome / intervening on the epigenome
Caused by LOF in KMT2D or KDM6A. 

Can the intellectual disability associated with Kabuki syndrome be 
reversed by changing the epigenome? 

The answer is yes 
(caveats: short-term, in mice, Kabuki type I) 

1. (with HDACi): “Histone deacetylase inhibition rescues 
structural and functional brain deficits in a mouse model of 
Kabuki syndrome” Bjornsson et al (2014) Sci Trans Med. 

2. (with diet): “A ketogenic diet rescues hippocampal memory 
defects in a mouse model of Kabuki syndrome”, Benjamin et al 
(2017) PNAS.
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Questions
1. Characterize the EM 

2. Is the epigenetic function of the EM genes, the most likely 
cause of disease? 

3. Are there expression signatures characteristic of disease 
candidates? 

4. Are there distinct expression signatures between the EM genes 
involved in neurological dysfunction and cancer? 
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Defining the Epigenetic Machinery using protein domains
Any gene encoding a protein with a domain which can act as 
 - Reader / Writer / Eraser of DNA methylation.  
 - Reader / Writer / Eraser of histone methylation / acetylation.  
 - Chromatin remodeler 

295 EM genes
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Loss of function (LOF) mutations
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We have two copies of each gene.  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EM genes are highly intolerant to LOF mutations
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EM genes are very intolerant to LOF mutations
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EM genes are very intolerant to LOF mutations
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The epigenetic machinery and tissue expression
These epigenetic marks are present in every cell type and at every 
time point. 

Genetic defects act in every cell where the gene is expressed. 

The GTEx (genotype-tissue expression) project is profiling ~30 
tissues in ~1000 people. 
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Testis is an outlier tissue
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Motivation for co-expression
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Co-expression; tissue-specific networks and modules
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Removing unwanted variation in co-expression networks
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Systematicnoisedegradesgeneco-expression
signals but can be corrected
Saskia Freytag1,2*, Johann Gagnon-Bartsch3, Terence P. Speed1,2,3 and Melanie Bahlo1,2,4

Abstract
Background: In the past decade, the identification of gene co-expression has become a routine part of the analysis
of high-dimensional microarray data. Gene co-expression, which is mostly detected via the Pearson correlation
coefficient, has played an important role in the discovery of molecular pathways and networks. Unfortunately, the
presence of systematic noise in high-dimensional microarray datasets corrupts estimates of gene co-expression.
Removing systematic noise from microarray data is therefore crucial. Many cleaning approaches for microarray data
exist, however these methods are aimed towards improving differential expression analysis and their performances
have been primarily tested for this application. To our knowledge, the performances of these approaches have never
been systematically compared in the context of gene co-expression estimation.

Results: Using simulations we demonstrate that standard cleaning procedures, such as background correction and
quantile normalization, fail to adequately remove systematic noise that affects gene co-expression and at times
further degrade true gene co-expression. Instead we show that a global version of removal of unwanted variation
(RUV), a data-driven approach, removes systematic noise but also allows the estimation of the true underlying
gene-gene correlations. We compare the performance of all noise removal methods when applied to five large
published datasets on gene expression in the human brain. RUV retrieves the highest gene co-expression values for
sets of genes known to interact, but also provides the greatest consistency across all five datasets. We apply the
method to prioritize epileptic encephalopathy candidate genes.

Conclusions: Our work raises serious concerns about the quality of many published gene co-expression analyses.
RUV provides an efficient and flexible way to remove systematic noise from high-dimensional microarray datasets
when the objective is gene co-expression analysis. The RUV method as applicable in the context of gene-gene
correlation estimation is available as a BioconductoR-package: RUVcorr.

Keywords: Gene co-expression, Data cleaning, Removal of unwanted variation, Human brain, Epilepsy

Background
With the advent of affordable high-throughput technolo-
gies, numerous gene expression studies involving large
numbers of samples have been conducted. This develop-
ment inspired ongoing research into analysis tools that
allow the systematic interrogation of gene organization
using expression data. Gene co-expression methods are
one of the better-known examples of such tools. They

*Correspondence: freytag.s@wehi.edu.au
1Bioinformatics Division, Walter + Eliza Hall Institute, 1G Royal Parade, 3050
Melbourne, Australia
2Department of Mathematics and Statistics, University of Melbourne, 3010
Melbourne, Australia
Full list of author information is available at the end of the article

have been routinely used in the construction of biolog-
ical pathways (i.e. [1]), gene annotation [2, 3], and even
for assessing preservation of biological systems across dif-
ferent species [4]. Gene co-expression methods equate
dependence between expression levels of two genes with
the presence of a potential functional interaction. While
there are several statistically appropriate and arguably
better ways to measure such dependence, the Pearson
correlation coefficient (PCC) remains the most widely
adopted.
A weakness of the PCC is its inaccuracy when pairs of

observations are not independent. Even though this prob-
lem is well known in statistics [5–8], it is often overlooked

© 2015 Freytag et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Simple solution: remove the top singular values; they will 
represent artifacts

How do we measure if it works?



Random groups of genes
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Supplementary Figure S5. Removing noise in co-expression analysis by removing
principal components. We remove unwanted variation in our co-expression analysis by
removing 4 principal components from the expression matrix in all tissues. (a) The
distribution of pairwise correlations between randomly sampled genes, serving as a
negative control, for 9 out of the 28 tissues. (b) The distribution of pairwise correlations
between 80 genes coding for ribosomal proteins, which serve as a positive control, for
the same tissues as in (a).
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Positive controls
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Supplementary Figure S5. Removing noise in co-expression analysis by removing
principal components. We remove unwanted variation in our co-expression analysis by
removing 4 principal components from the expression matrix in all tissues. (a) The
distribution of pairwise correlations between randomly sampled genes, serving as a
negative control, for 9 out of the 28 tissues. (b) The distribution of pairwise correlations
between 80 genes coding for ribosomal proteins, which serve as a positive control, for
the same tissues as in (a).
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Co-expression; tissue-specific networks and modules
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Co-expression is associated with LOF intolerance
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Co-expression is associated with LOF intolerance
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Figure 4. A large subset of the components of the epigenetic machinery are
highly co-expressed. (a) Schematic illustrating our definition and identification
of module partners. WGCNA was used to construct tissue-specific
co-expression networks and modules for 28 tissues profiled in GTEx. We
determined if two EM genes were module partners (part of the same module in
10 � 14 tissues) or stable module partners (part of the same module in > 14
tissues). (b) The number of module partners for each EM gene, in decreasing
order. (c) The module partner matrix for EM genes, ordered by its number of
module partners (b). We define 3 groups of EM genes, “highly co-expressed”,
“co-expressed” and “not co-expressed” based on their number of module
partners. (d) The pLI for each EM gene, ordered by the its number of module
partners as in (b). (e) The size of the (highly) co-expressed group of EM genes
compared to 300 draws of 270 random genes, where the random genes are
selected to have a similar expression level across tissues compared to EM genes
(Supplementary Figure S7).
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Permutations
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Co-expression is associated with LOF intolerance
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Co-expression is associated with neurological dysfunction
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