CIRCULAR (YET SOUND) PROOFS

Albert Atserias Universitat Politècnica de Catalunya Barcelona

Joint work with Massimo Lauria

What is this talk about?

Tree Resolution

Regular Resolution

General Resolution

Circular Resolution NEW!

exponentially stronger!

Inference rules

Standard rules:

$$\frac{C\vee X \quad D\vee \overline{X}}{C\vee D}$$

$$\frac{C}{C \vee D}$$

$$\overline{X\vee \overline{X}}$$

Inference rules

Standard rules:

$$\frac{C\vee X \quad D\vee \overline{X}}{C\vee D}$$

$$\frac{C}{C \vee D}$$

$$\overline{X \vee \overline{X}}$$

Symmetric rules:

$$\frac{C\vee X \quad \ C\vee \overline{X}}{C}$$

$$\frac{C}{C \vee X} \quad C \vee \overline{X}$$

$$\overline{X \vee \overline{X}}$$

Graphical representation of proofs

Want: $E, F \vdash A$

A

???

Circular Pre-proofs

Definition: A pre-proof is a pair (Π, B) where:

- Π is an ordinary proof C_1, C_2, \ldots, C_m ,
- B is a set of backedges; i.e. pairs (i, j) s.t. j < i and $C_j = C_i$.

Circular Pre-proofs

Definition: A pre-proof is a pair (Π, B) where:

- Π is an ordinary proof C_1, C_2, \ldots, C_m ,
- B is a set of backedges; i.e. pairs (i, j) s.t. j < i and $C_j = C_i$.

Example:

$$\Pi': (\Pi = (B_1, A_1, B_1, A_2, A_3), B = \{(3, 1)\})$$

Some terminology and notation

$$\Pi':((C_1,C_2,\ldots,C_m),B)$$

Terminology and notation:

- $G(\Pi)$: the graph representation of Π .
- $N^+(u)$: the set of out-neighbours of u.
- $N^-(u)$: the set of in-neighbours of u.
- F: the set of formula vertices (the squares) of $G(\Pi)$.
- I: the set of inference vertices (the circles) of $G(\Pi)$.

Some terminology and notation

$$\Pi':((C_1,C_2,\ldots,C_m),B)$$

Terminology and notation:

- $G(\Pi)$: the graph representation of Π .
- $N^+(u)$: the set of out-neighbours of u.
- $N^-(u)$: the set of in-neighbours of u.
- F: the set of formula vertices (the squares) of $G(\Pi)$.
- I: the set of inference vertices (the circles) of $G(\Pi)$.

Observe:

- $u \in F$ implies $N^-(u) \subseteq I$ and $N^+(u) \subseteq I$.
- $u \in I$ implies $N^-(u) \subseteq F$ and $N^+(u) \subseteq F$.

Severe unsoundness of pre-proofs

$$\Pi': ((C_1, C_2, \dots, C_m), B)$$

More terminology and notation:

$$\Pi': ((C_1, C_2, \ldots, C_m), B)$$

More terminology and notation:

• a flow assignment is a mapping $W: I \to \mathbb{R}^+$.

$$\Pi': ((C_1, C_2, \dots, C_m), B)$$

More terminology and notation:

- a flow assignment is a mapping $W: I \to \mathbb{R}^+$.
- $W^-(u) := \sum_{v \in N^-(u)} W(u)$ for $u \in F$; the in-flow of u.
- $W^+(u) := \sum_{v \in N^+(u)} W(u)$ for $u \in F$; the out-flow of u.
- $B(u) := W^-(u) W^+(u)$ for $u \in F$; the balance of $u \in F$.

$$\Pi':((C_1,C_2,\ldots,C_m),B)$$

More terminology and notation:

- a flow assignment is a mapping $W: I \to \mathbb{R}^+$.
- $W^-(u) := \sum_{v \in N^-(u)} W(u)$ for $u \in F$; the in-flow of u.
- $W^+(u) := \sum_{v \in N^+(u)} W(u)$ for $u \in F$; the out-flow of u.
- $B(u) := W^-(u) W^+(u)$ for $u \in F$; the balance of $u \in F$.
- if B(u) < 0, then C_u is called a hypothesis.
- if B(u) > 0, then C_u is called a conclusion.

Circular Proofs

Definition: A circular proof of A from A_1,\ldots,A_m is a pre-proof for which there exists a flow-assignment such that, for each formula vertex $u\in F$, the following hold:

- 1. B(u) < 0 if $C_u \in \{A_1, \dots, A_m\}$,
- 2. $B(u) \ge 0$ if $C_u \notin \{A_1, \dots, A_m\}$,
- 3. B(u) > 0 if $C_u = A$.

Circular Proofs

Definition: A circular proof of A from A_1, \ldots, A_m is a pre-proof for which there exists a flow-assignment such that, for each formula vertex $u \in F$, the following hold:

- 1. B(u) < 0 if $C_u \in \{A_1, \dots, A_m\}$,
- 2. $B(u) \ge 0$ if $C_u \notin \{A_1, ..., A_m\}$,
- 3. B(u) > 0 if $C_u = A$.

Notes:

- efficient verification: linear programming techniques,
- weights may be assumed small rationals: by LP techniques,
- and even small integers: by flow techniques,

The examples again

The examples again

The examples again

Soundness

Theorem:

If there is a circular proof of A from A_1, \ldots, A_m , then every assignment that satisfies A_1, \ldots, A_m also satisfies A.

1st proof of soundness: by example

$$E, F \vdash A \implies E, F \models A$$

Poly-size circular resolution proof of PHP

Theorem:

 PHP_n^{n+1} has poly-size circular resolution refutations.

Proof of PHP

Proof of PHP

Proof of PHP

Proof of PHP: weaken and clean for hole 1

Next question

WHAT IS CIRCULAR RESOLUTION?

Sherali-Adams proofs on Boolean variables

Variables:

$$X_1,\ldots,X_n$$
 and $\overline{X_1},\ldots,\overline{X_n}$

Axioms:

$$X_i \ge 0$$
 $X_i^2 - X_i \ge 0$ $X_i + \overline{X_i} - 1 \ge 0$
 $1 - X_i \ge 0$ $-X_i + X_i^2 \ge 0$ $1 - X_i - \overline{X_i} \ge 0$

SA Proofs: A refutation of $P_1 \ge 0, \dots, P_m \ge 0$ (including the axioms) is a polynomial identity of the form

$$\sum_{j=1}^{m} P_j Q_j + Q_0 = -1$$

where each Q_i has the form

$$\sum_{j \in K} c_j^2 \prod_{i \in I_j} X_i \prod_{i \in J_j} \overline{X_i}.$$

Monomial size: max number monomials in P_iQ_i and Q_0 .

Equivalence: Circular Resolution Sherali-Adams

Multiplicative encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \quad \mapsto \quad -\prod_{i \in I} \overline{X_i} \prod_{j \in J} X_i \ge 0$$

Additive encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad \sum_{i \in I} X_i + \sum_{j \in J} \overline{X_i} - 1 \geq 0$$

Theorem:

Circular Resolution \equiv_p Sherali-Adams. (for both encodings)

Equivalence: Circular Resolution \equiv Sherali-Adams

Multiplicative encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad -\prod_{i \in I} \overline{X_i} \prod_{j \in J} X_i \ge 0$$

Additive encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad \sum_{i \in I} X_i + \sum_{j \in J} \overline{X_i} - 1 \geq 0$$

Theorem:

Proof:

Equivalence: Circular Resolution Sherali-Adams

Multiplicative encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad -\prod_{i \in I} \overline{X_i} \prod_{j \in J} X_i \ge 0$$

Additive encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad \sum_{i \in I} X_i + \sum_{j \in J} \overline{X_i} - 1 \geq 0$$

Theorem:

Proof:

 \leq_p : essentially [Dantchev 2007] (reused in [ALN16]).

Equivalence: Circular Resolution Sherali-Adams

Multiplicative encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \quad \mapsto \quad - \prod_{i \in I} \overline{X_i} \prod_{j \in J} X_i \ge 0$$

Additive encoding of clauses:

$$\bigvee_{i \in I} X_i \vee \bigvee_{i \in J} \overline{X_i} \qquad \mapsto \qquad \sum_{i \in I} X_i + \sum_{j \in J} \overline{X_i} - 1 \geq 0$$

Theorem:

Circular Resolution \equiv_p Sherali-Adams. (for both encodings)

Proof:

 \leq_p : essentially [Dantchev 2007] (reused in [ALN16]).

 \geq_p : a normal form result for Sherali-Adams proofs.

2nd proof of soundness: via LP

Assume: α satisfies all the hypotheses. **Define**: $Z_u = 1 - \alpha(C_u)$ for each $u \in F$.

Note:

$$-Z_u \geq 0$$
 for each axiom vertex $Z_u + Z_v - Z_w \geq 0$ for each cut vertex $Z_u - Z_v - Z_w \geq 0$ for each weakening vertex

Therefore:

$$\sum_{v \in I} W(v) \left(\sum_{u \in N^-(v)} Z_u - \sum_{u \in N^+(v)} Z_u \right) \ge 0.$$

Equivalently:

$$-\sum_{z \in E} B(u)Z_u \ge 0$$

Proof of Circular Resolution \leq_p Sherali-Adams

Define: $M_u =$ "multiplicative encoding of C_u " for each $u \in F$. **Note**:

$$\begin{array}{rcl} M_u &=& -X\overline{X} & \text{for axiom} \vdash u \\ -M_u - M_v + M_w &=& (-X - \overline{X} + 1)M_w & \text{for cut } u, v \vdash w \\ -M_u + M_v + M_w &=& (-1 + X + \overline{X})M_u & \text{for weakening } u \vdash v, w \end{array}$$

Therefore:

$$\sum_{v \in I} W(v) \left(\sum_{u \in N^{-}(v)} M_u - \sum_{u \in N^{+}(v)} M_u \right) = -\sum_{u \in F} B(u) M_u$$

Now: Add positive multiples of

$$\prod_{i} X_{i} \prod_{j} \overline{X_{j}} = -M_{u} \quad \text{ for each } u \text{ s.t. } C_{u} \neq 0.$$

Get: $M_0 = -1$.

Take-home messages

- 1- Circular proofs are not always meaningless.
- 2- PHP has poly-size proofs in Circular Resolution.
- 3- Indeed Circular Resolution \equiv_p Sherali-Adams.

Acknowledgments

ERC-2014-CoG 648276 (AUTAR) EU.