Symmetry in SAT: an overview

August 27th, 2018 Theory and Practice of SAT solving Oaxaca, Mexico

Jo Devriendt, KU Leuven

1

Intro

Everyone knows symmetry:

"something does not change under a set of transformations" - Wikipedia

Symmetry :=

Permutation of variable assignments that preserves satisfaction

Symmetry :=

Permutation of variable assignments that preserves satisfaction

Symmetry induces symmetry classes:

Symmetry induces symmetry classes:

Symmetry classes tend to get huge -> search problem

Goal: investigate only asymmetrical cases

Contents

- 1. Intro
- 2. SAT Prelims
- 3. "Classic" symmetry breaking
- 4. The pigeonhole problem
- 5. "Recent" symmetry breaking
- 6. Non-breaking approaches
- 7. Bonus: symmetry, local search & maxSAT

Contents

1. Intro

?

- 2. SAT Prelims
- 3. "Classic" symmetry breaking
- 4. The pigeonhole problem
- 5. "Recent" symmetry breaking
- 6. Non-breaking approaches
- 7. Bonus: symmetry, local search & maxSAT

In SAT:

Syntactic symmetry := literal permutation that preserves the CNF

In SAT:

Syntactic symmetry := literal permutation that preserves the CNF

In SAT literature:

static \leftrightarrow dynamic

Terminology

- variable **x**
 - set of all variables X
- literal *I*
- clause *c*
- (propositional) formula $\pmb{\varphi}$
- (variable) assignment *α*
 - $\alpha(I)$ is the truth value of I in α
- symmetry *σ*
 - σ(...) is the symmetrical image of ...
- symmetry group Σ
 - $\Sigma(...)$ is the orbit of ... under Σ
 - generator set gen(Σ)

3. "Classic" symmetry breaking

Given: ϕ , Σ Find: symmetry breaking formula *sbf* that invalidates symmetrical assignments

Core idea: sbf encodes " α is lexicographically smaller than $\sigma(\alpha)$ " for $\sigma \in \Sigma$

Core idea: sbf encodes " α is lexicographically smaller than $\sigma(\alpha)$ " for $\sigma \in \Sigma$

$$egin{aligned} &x_1 \leq \sigma(x_1) \ &x_1 = \sigma(x_1) \Rightarrow x_2 \leq \sigma(x_2) \ &(x_1 = \sigma(x_1) \wedge x_2 = \sigma(x_2)) \Rightarrow x_3 \leq \sigma(x_3) \end{aligned}$$

• • •

Core idea: sbf encodes " α is lexicographically smaller than $\sigma(\alpha)$ " for $\sigma \in \Sigma$

$$egin{aligned} &x_1 \leq \sigma(x_1) \ &x_1 = \sigma(x_1) \Rightarrow x_2 \leq \sigma(x_2) \ &(x_1 = \sigma(x_1) \wedge x_2 = \sigma(x_2)) \Rightarrow x_3 \leq \sigma(x_3) \end{aligned}$$

• • •

parameter: total order on X

Core idea: sbf encodes " α is lexicographically smaller than $\sigma(\alpha)$ " for **all** $\sigma \in \Sigma$

 $\varphi \cup sbf$

Core idea: sbf encodes " α is lexicographically smaller than $\sigma(\alpha)$ " for **all** $\sigma \in \Sigma$

 $\varphi \cup sbf$

Symmetry breaking: Shatter [2]

- construct sbf for -much smaller- gen(Σ)
- "chain encoding"
- improved clausal encoding

Symmetry breaking: Shatter [2]

- construct sbf for -much smaller- gen(Σ)
- "chain encoding"
- improved clausal encoding

Detecting symmetry: Saucy [3]

Sparse graph automorphism detection

Detecting symmetry: Saucy [3]

Sparse graph automorphism detection

- Graph construction from CNF:
 - node for each literal and clause
 - edge between literals occurring in clause
 - edge between literal and negation
- No polynomial algorithm known
- Output: generators to automorphism group

Static symmetry breaking: Shatter+Saucy

4. The pigeonhole problem

Do n pigeons fit in n-1 holes?

 $\forall p \colon \bigvee_h x_{ph}$ $orall h \colon orall p
eq p' \colon
eg x_{ph} \lor
eg x_{p'h}$

Do n pigeons fit in n-1 holes?

$$orall p \colon igvee _h x_{ph} \ orall h \colon orall p
eq p' \colon
eg x_{ph} \lor
eg x_{p'h}$$

- Proof-theoretic problem
- Simple but large symmetry group
 - composition of "pigeon interchangeability" and "hole interchangeability"
 - 1 symmetry class

┍→	x_{11}	x_{12}	x_{13}
┍→└→	x_{21}	x_{22}	x_{23}
┕╸┍╸	x_{31}	x_{32}	x_{33}
L	x_{41}	x_{42}	x_{43} 18

Original Shatter experiment:

			& ons	$\hat{\mathbf{Q}}$	Time to solve instances and S				SPs (sec)	
Bench- mark	Instance	# Generators	erators e mpositio	Time to find symmetries (se	Time to solve of instance (sec)	Generators only			G &]	enerators their com- positions
гаппу			# Gen their co			All Bits	Irredundant B		lits	
						Quadratic c	onstruction	Linear co	nst	ruction
	hole07	13	102	0.00	0.03	0.03	0.01	0.01	N	0.01
	hole08	15	133	0.00	0.15	0.17	0.01	0.01		0.01
Hole-n	hole09	17	168	0.01	0.97	0.30	0.01	0.01		0.01
	hole10	19	207	0.02	14.4	2.87	0.01	0.01		0.01
	hole11	21	250	0.02	133	9.04	0.01	0.01		0.02
	hole12	23	297	0.02	>1000	6.90	0.01	0.01	V	0.03

Original Shatter experiment:

			& Suc	$\frac{s}{2}$ $\frac{s}{2}$ $\frac{s}{2}$ Time to sol		to solve insta	e instances and SBPs (sec)				
Bench- mark	Instance	# Generators	# Generators of their composition	Time to find symmetries (se	Time to solve of instance (sec)	Generators only				G & I	enerators their com- positions
ranny						All Bits	Irredundant B		ınt Bi	its	
						Quadratic c	onstruction	Linea	ar cor	nst	ruction
	hole07	13	102	0.00	0.03	0.03	0.01		0.01		0.01
	hole08	15	133	0.00	0.15	0.17	0.01		0.01		0.01
e-n	hole09	17	168	0.01	0.97	0.30	0.01		0.01		0.01
Hol	hole10	19	207	0.02	14.4	2.87	0.01		0.01		0.01
[hole11	21	250	0.02	133	9.04	0.01		0.01		0.02
	hole12	23	297	0.02	>1000	6.90	0.01		0.01		0.03

Own Shatter experiment:

Own Shatter experiment:

Modest gains... Better results in original paper?

- Propositional encoding reduces "pigeon interchangeability" to "row interchangeability"
- Shatter's sbf's are complete [4] with correct choice of
 - gen(Σ)
 - variable order

x_{11}	x_{12}	x_{13}
x_{21}	x_{22}	x_{23}
x_{31}	x_{32}	x_{33}
x_{41}	x_{42}	x_{43}

• |full sbf| = O(n²)

- Propositional encoding reduces "pigeon interchangeability" to "row interchangeability"
- Shatter's sbf's are complete [4] with correct choice of
 - gen(Σ)
 - variable order

• |full sbf| = O(n²)

5. "Recent" symmetry breaking

Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm
Core idea: detect "row swap" symmetries

*Approximative algorithm

- 1. Search σ_1 , $\sigma_2 \epsilon gen(\Sigma)$ that form 2 subsequent row swaps
 - forms initial **3-rowed variable matrix M**

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search σ_1 , $\sigma_2 \epsilon gen(\Sigma)$ that form 2 subsequent row swaps

• forms initial **3-rowed variable matrix M**

2. Apply every $\sigma \in gen(\Sigma)$ to all detected rows **r** \in M so far

- images $\sigma(r)$ disjoint of M are candidates to extend M
- test if swap $r \leftrightarrow \sigma(r)$ is a symmetry by syntactical check on ϕ
- if success, extend M with σ(r)

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search σ_1 , $\sigma_2 \epsilon gen(\Sigma)$ that form 2 subsequent row swaps

• forms initial **3-rowed variable matrix M**

2. Apply every $\sigma \in gen(\Sigma)$ to all detected rows **r** \in M so far

- images $\sigma(r)$ disjoint of M are candidates to extend M
- test if swap $r \leftrightarrow \sigma(r)$ is a symmetry by syntactical check on ϕ
- if success, extend M with σ(r)
- 3. Use **Saucy** to extend gen(Σ) with new symmetry generators by fixing all variable nodes with variable in M, first row excepted

Core idea: detect "row swap" symmetries

Core idea: detect "row swap" symmetries

Detect row interchangeability subgroups?

Core idea: maximize number of **binary sbf clauses**

Core idea: maximize number of **binary sbf clauses**

• First clause in sbf for σ is binary:

 $eg x_1 ee \sigma(x_1)$

- x is **stabilized** by Σ iff $\Sigma(x) = \{x\}$
- Given Σ with **smallest non-stabilized x**, for each x' $\in \Sigma(x)$:

$$eg x \lor x'$$

is clause of sbf under some $\sigma \, \varepsilon \, \Sigma$

Core idea: exploit **binary sbf clauses**

Core idea: exploit **binary sbf clauses**

• Create **stabilizer chain** of Σ:

$\Sigma \supset \Sigma_1 \supset \Sigma_2 \supset \ldots \supset 1$

- Σ_i is the **stabilizer subgroup** of Σ_{i-1} stabilizing the next non-stabilized variable in ordering
 - Σ_i have different smallest non-stabilized variables x_i
- For each x' $\in \Sigma_i(x_i)$:

$$eg x_i \lor x'$$

is a clause of some sbf

Core idea: exploit **binary sbf clauses**

Core idea: exploit **binary sbf clauses**

- Approximative implementation
 - which adapts the variable order!

Core idea: exploit **binary sbf clauses**

- Approximative implementation
 - which adapts the variable order!
- Works well for **polarity symmetry** σ where for all x: $\sigma(x) = \neg x$

as sbf is equivalent to unit clause

 $\neg x_1$

and their number is maximized through adopted variable order.

Core idea: exploit **binary sbf clauses**

- Approximative implementation
 - which adapts the variable order!
- Works well for **polarity symmetry** σ where for all x: $\sigma(x) = \neg x$

as sbf is equivalent to unit clause

 $\neg x_1$

and their number is maximized through adopted variable order.

Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically

Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically

- Keep track of **reducer** symmetries where $\sigma(\alpha) < \alpha$
 - by watching smallest variable s.t. $\sigma(v) \neq v$
- **Generate clause** from sbf forcing $\alpha \le \sigma(\alpha)$

Additionally: try Bliss instead of Saucy

Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically

- Keep track of **reducer** symmetries where $\sigma(\alpha) < \alpha$
 - by watching smallest variable s.t. $\sigma(v) \neq v$
- **Generate clause** from sbf forcing $\alpha \le \sigma(\alpha)$

Additionally: try Bliss instead of Saucy

?

Use clauses for propagation? Not only generator symmetries?

• Pigeon **interchangeability** can be completely broken with polynomial sbf

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent intrest [11] [14]

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent intrest [11] [14]
- How about **general interchangeability** over arbitrary high dimensional relations?

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent intrest [11] [14]

• How about **general interchangeability** over arbitrary high dimensional relations?

Symmetry breaking: Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

Symmetry breaking: **Prefix breaking** [7]

Core idea: enumerate asymmetrical assignments to variable prefix

6. Non-breaking approaches

Core idea: search decisions consider row interchangeability

	↓ ↓	→ ↓	•
┍→	x_{11}	x_{12}	x_{13}
	x_{21}	x_{22}	x_{23}
└→ ┌→	x_{31}	x_{32}	x_{33}
	x_{41}	x_{42}	x_{43} зз

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use cardinality decision points over row-interchangeable variables

	♥	♦ ♦	₩
I	x_{11}	x_{12}	x_{13}
	x_{21}	x_{22}	x_{23}
→	x_{31}	x_{32}	x_{33}
I	x_{41}	x_{42}	x_{43} 33

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use cardinality decision points over row-interchangeable variables

Cardinality decision of 1 over first column:

	↓	\rightarrow \leftarrow	$\mathbf{+}$
┍→	x_{11}	x_{12}	x_{13}
→ L→	x_{21}	x_{22}	x_{23}
→ →	x_{31}	x_{32}	x_{33}
L	x_{41}	x_{42}	x_{43} 33

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use cardinality decision points over row-interchangeable variables

Cardinality decision of 1 over first column:

┍→	0	x_{12}	x_{13}
→ L→	0	x_{22}	x_{23}
►	0	x_{32}	x_{33}
	1	x_{42}	x_{43} 34

Strong performance on pigeonhole

I	Problem	SymChaff
	009-008	0.01
d	013-012	0.01
hq	051-050	0.24
	091-090	0.84
	101-100	1.20

Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses

Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses

- Learnt clauses are **logical consequences** of $\boldsymbol{\phi}$
- Whenever c is a consequence of φ , **so is \sigma(c)**
- Problem: Σ(c) is huge
 - Learn only $\sigma(c)$ for $\sigma \in gen(\Sigma)$

Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses

- Learnt clauses are **logical consequences** of $\boldsymbol{\phi}$
- Whenever c is a consequence of φ , **so is \sigma(c)**
- Problem: Σ(c) is huge
 - Learn only $\sigma(c)$ for $\sigma \in gen(\Sigma)$

- Learn σ(c) that **propagate at least once**
 - symmetries typically permute only a **fraction** of the literals
 - if c is unit, $\sigma(c)$ has a good chance of being unit as well
 - explanation clauses are unit ;-)

- For each σ ε gen(Σ), whenever c propagates, store σ(c) in a separate clause store θ
 - Propagation on θ happens only if standard unit propagation is at a fixpoint
 - Whenever a σ(c) ε θ propagates, upgrade it to a "normal" learned clause
 - After **backjump** over c's propagation level, **clear** $\sigma(c)$ from θ

- For each σ ε gen(Σ), whenever c propagates, store σ(c) in a separate clause store θ
 - Propagation on θ happens only if standard unit propagation is at a fixpoint
 - Whenever a σ(c) ε θ propagates, upgrade it to a "normal" learned clause
 - After **backjump** over c's propagation level, **clear** $\sigma(c)$ from θ
- Every learned σ(c) is **useful** & **original**
- **Transitive** effect: track $\sigma'(\sigma(c))$ when $\sigma(c)$ propagates
Symmetry handling: Symmetric explanation learning [10]

Symmetry handling: Symmetric explanation learning [10]

Caveat: performance on larger instances

Symmetry handling: Symmetric explanation learning [10]

Caveat: performance on larger instances

What is "complete" symmetrical learning? Can it be done efficiently?

Research trends:

- Symmetry detection on propositional level is hard
 - not a solved problem, cfr. pigeonhole
 - papers often assume high-level symmetry input [7] [8]
- Sbf construction based on **canonical labeling** [7] [11]
- Dynamical approaches often perform lazy clause generation [6]
 [10] [12]
- Use computational group algebra to detect symmetry group structure [5] [13]

Proof checking and symmetrical learning? The influence of the variable order on an sbf?

Thanks for listening! Questions?

- [1] Symmetry-Breaking Predicates for Search Problems (1996) Crawford et al.
- [2] Efficient Symmetry-Breaking for Boolean Satisfiability (2003) Aloul et al.
- [3] Symmetry and Satisfiability: An Update (2010) Katebi et al.
- [4] Breaking row and column symmetries in matrix models (2002) Flener et al.
- [5] Improved Static Symmetry Breaking for SAT (2016) Devriendt et al.
- [6] CDCLSym: Introducing Effective Symmetry Breaking in SAT Solving (2018) Metin et al.
- [7] An Adaptive Prefix-Assignment Technique for Symmetry Reduction (2017) Juntilla et al.
- [8] Symchaff: exploiting symmetry in a structure-aware satisfiability solver (2009) Sabharwal
- [9] Enhancing clause learning by symmetry in SAT solvers (2010) Benhamou
- [10] Symmetric explanation learning: Effective dynamic symmetry handling for SAT (2017) Devriendt et al.
- [11] Breaking Symmetries in Graphs: The Nauty Way (2016) Codish et al.
- [12] Symmetries, almost symmetries, and lazy clause generation (2014) Chu et al.
- [13] Breaking symmetries in all-different problems (2005) Puget
- [14] The quest for perfect and compact symmetry breaking for graph problems (2016) ⁴¹

• (Satisfying) assignments now have an associated **score**

- (Satisfying) assignments now have an associated **score**
- Local search "moves" from one to the other based on structurepreserving transformations

- (Satisfying) assignments now have an associated **score**
- Local search "moves" from one to the other based on structurepreserving transformations
- Designing local moves is typically done **by hand**...

- (Satisfying) assignments now have an associated **score**
- Local search "moves" from one to the other based on structurepreserving transformations
- Designing local moves is typically done **by hand**...

Symmetries form moves! Can be automatically detected!

Scatter plot of objective value of knapsack instances (higher is better)

Scatter plot of objective value of knapsack instances (higher is better)

Symmetry-based local search in weighted maxSAT?